Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
st.set_page_config(layout="wide")
|
3 |
+
|
4 |
+
for name in dir():
|
5 |
+
if not name.startswith('_'):
|
6 |
+
del globals()[name]
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
import pandas as pd
|
10 |
+
import streamlit as st
|
11 |
+
import gspread
|
12 |
+
import gc
|
13 |
+
|
14 |
+
@st.cache_resource
|
15 |
+
def init_conn():
|
16 |
+
scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive']
|
17 |
+
|
18 |
+
credentials = {
|
19 |
+
"type": "service_account",
|
20 |
+
"project_id": "model-sheets-connect",
|
21 |
+
"private_key_id": "0e0bc2fdef04e771172fe5807392b9d6639d945e",
|
22 |
+
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQDiu1v/e6KBKOcK\ncx0KQ23nZK3ZVvADYy8u/RUn/EDI82QKxTd/DizRLIV81JiNQxDJXSzgkbwKYEDm\n48E8zGvupU8+Nk76xNPakrQKy2Y8+VJlq5psBtGchJTuUSHcXU5Mg2JhQsB376PJ\nsCw552K6Pw8fpeMDJDZuxpKSkaJR6k9G5Dhf5q8HDXnC5Rh/PRFuKJ2GGRpX7n+2\nhT/sCax0J8jfdTy/MDGiDfJqfQrOPrMKELtsGHR9Iv6F4vKiDqXpKfqH+02E9ptz\nBk+MNcbZ3m90M8ShfRu28ebebsASfarNMzc3dk7tb3utHOGXKCf4tF8yYKo7x8BZ\noO9X4gSfAgMBAAECggEAU8ByyMpSKlTCF32TJhXnVJi/kS+IhC/Qn5JUDMuk4LXr\naAEWsWO6kV/ZRVXArjmuSzuUVrXumISapM9Ps5Ytbl95CJmGDiLDwRL815nvv6k3\nUyAS8EGKjz74RpoIoH6E7EWCAzxlnUgTn+5oP9Flije97epYk3H+e2f1f5e1Nn1d\nYNe8U+1HqJgILcxA1TAUsARBfoD7+K3z/8DVPHI8IpzAh6kTHqhqC23Rram4XoQ6\nzj/ZdVBjvnKuazETfsD+Vl3jGLQA8cKQVV70xdz3xwLcNeHsbPbpGBpZUoF73c65\nkAXOrjYl0JD5yAk+hmYhXr6H9c6z5AieuZGDrhmlFQKBgQDzV6LRXmjn4854DP/J\nI82oX2GcI4eioDZPRukhiQLzYerMQBmyqZIRC+/LTCAhYQSjNgMa+ZKyvLqv48M0\n/x398op/+n3xTs+8L49SPI48/iV+mnH7k0WI/ycd4OOKh8rrmhl/0EWb9iitwJYe\nMjTV/QxNEpPBEXfR1/mvrN/lVQKBgQDuhomOxUhWVRVH6x03slmyRBn0Oiw4MW+r\nrt1hlNgtVmTc5Mu+4G0USMZwYuOB7F8xG4Foc7rIlwS7Ic83jMJxemtqAelwOLdV\nXRLrLWJfX8+O1z/UE15l2q3SUEnQ4esPHbQnZowHLm0mdL14qSVMl1mu1XfsoZ3z\nJZTQb48CIwKBgEWbzQRtKD8lKDupJEYqSrseRbK/ax43DDITS77/DWwHl33D3FYC\nMblUm8ygwxQpR4VUfwDpYXBlklWcJovzamXpSnsfcYVkkQH47NuOXPXPkXQsw+w+\nDYcJzeu7F/vZqk9I7oBkWHUrrik9zPNoUzrfPvSRGtkAoTDSwibhoc5dAoGBAMHE\nK0T/ANeZQLNuzQps6S7G4eqjwz5W8qeeYxsdZkvWThOgDd/ewt3ijMnJm5X05hOn\ni4XF1euTuvUl7wbqYx76Wv3/1ZojiNNgy7ie4rYlyB/6vlBS97F4ZxJdxMlabbCW\n6b3EMWa4EVVXKoA1sCY7IVDE+yoQ1JYsZmq45YzPAoGBANWWHuVueFGZRDZlkNlK\nh5OmySmA0NdNug3G1upaTthyaTZ+CxGliwBqMHAwpkIRPwxUJpUwBTSEGztGTAxs\nWsUOVWlD2/1JaKSmHE8JbNg6sxLilcG6WEDzxjC5dLL1OrGOXj9WhC9KX3sq6qb6\nF/j9eUXfXjAlb042MphoF3ZC\n-----END PRIVATE KEY-----\n",
|
23 |
+
"client_email": "[email protected]",
|
24 |
+
"client_id": "100369174533302798535",
|
25 |
+
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
|
26 |
+
"token_uri": "https://oauth2.googleapis.com/token",
|
27 |
+
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
|
28 |
+
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40model-sheets-connect.iam.gserviceaccount.com"
|
29 |
+
}
|
30 |
+
|
31 |
+
gc_con = gspread.service_account_from_dict(credentials, scope)
|
32 |
+
|
33 |
+
return gc_con
|
34 |
+
|
35 |
+
gcservice_account = init_conn()
|
36 |
+
|
37 |
+
NBA_Data = 'https://docs.google.com/spreadsheets/d/1Yq0vGriWK-bS79e-bD6_u9pqrYE6Yrlbb_wEkmH-ot0/edit#gid=1808117109'
|
38 |
+
|
39 |
+
percentages_format = {'Pts% Boost': '{:.2%}', 'Reb% Boost': '{:.2%}', 'Ast% Boost': '{:.2%}', '3p% Boost': '{:.2%}',
|
40 |
+
'Stl Boost%': '{:.2%}', 'Blk Boost%': '{:.2%}', 'TOV Boost%': '{:.2%}', 'FPPM Boost': '{:.2%}',
|
41 |
+
'Team FPPM Boost': '{:.2%}'}
|
42 |
+
|
43 |
+
@st.cache_resource(ttl = 600)
|
44 |
+
def init_baselines():
|
45 |
+
sh = gcservice_account.open_by_url(NBA_Data)
|
46 |
+
|
47 |
+
worksheet = sh.worksheet('Trending')
|
48 |
+
raw_display = pd.DataFrame(worksheet.get_values())
|
49 |
+
raw_display.columns = raw_display.iloc[0]
|
50 |
+
raw_display = raw_display[1:]
|
51 |
+
raw_display = raw_display.reset_index(drop=True)
|
52 |
+
trend_table = raw_display[raw_display['PLAYER_NAME'] != ""]
|
53 |
+
trend_table = trend_table[['PLAYER_NAME', 'Team', 'Position', 'FD_Position', 'L10 MIN', 'L10 Fantasy', 'L10 Ceiling', 'L10 FD_Fantasy',
|
54 |
+
'L10 FD_Ceiling', 'L5 MIN', 'L5 Fantasy', 'L5 Ceiling', 'L5 FD_Fantasy', 'L5 FD_Ceiling', 'L3 MIN', 'L3 Fantasy',
|
55 |
+
'L3 Ceiling', 'L3 FD_Fantasy', 'L3 FD_Ceiling', 'Trend Min', 'Trend Median', 'DK_Proj', 'Adj Median', 'Adj Ceiling',
|
56 |
+
'Trend FD_Median', 'FD_Proj', 'Adj FD_Median', 'Adj FD_Ceiling', 'DK_Salary', 'DK_Avg_Val', 'DK_Ceiling_Value',
|
57 |
+
'FD_Salary', 'FD_Avg_Val', 'FD_Ceiling_Value']]
|
58 |
+
|
59 |
+
dk_minutes_table = trend_table[['PLAYER_NAME', 'Team', 'L10 MIN', 'L5 MIN', 'L3 MIN', 'Trend Min']]
|
60 |
+
|
61 |
+
fd_minutes_table = trend_table[['PLAYER_NAME', 'Team', 'L10 MIN', 'L5 MIN', 'L3 MIN', 'Trend Min']]
|
62 |
+
|
63 |
+
dk_medians_table = trend_table[['PLAYER_NAME', 'Team', 'L10 FANTASY', 'L5 FANTASY', 'L3 FANTASY', 'Trend Median']]
|
64 |
+
|
65 |
+
fd_medians_table = trend_table[['PLAYER_NAME', 'Team', 'L10 FD_FANTASY', 'L5 FD_FANTASY', 'L3 FD_FANTASY', 'Trend FD_Median']]
|
66 |
+
|
67 |
+
dk_proj_medians_table = trend_table[['PLAYER_NAME', 'Team', 'Position', 'DK_Salary', 'DK_Proj', 'Adj Median', 'DK_Avg_Val', 'Adj Ceiling', 'DK_Ceiling_Value']]
|
68 |
+
|
69 |
+
fd_proj_medians_table = trend_table[['PLAYER_NAME', 'Team', 'FD_Position', 'FD_Salary', 'FD_Proj', 'Adj FD_Median', 'FD_Avg_Val', 'Adj FD_Ceiling', 'FD_Ceiling_Value']]
|
70 |
+
|
71 |
+
return trend_table, dk_minutes_table, fd_minutes_table, dk_medians_table, fd_medians_table, dk_proj_medians_table, fd_proj_medians_table
|
72 |
+
|
73 |
+
def convert_df_to_csv(df):
|
74 |
+
return df.to_csv().encode('utf-8')
|
75 |
+
|
76 |
+
trend_table, dk_minutes_table, fd_minutes_table, dk_medians_table, fd_medians_table, dk_proj_medians_table, fd_proj_medians_table = init_baselines()
|
77 |
+
|
78 |
+
col1, col2 = st.columns([1, 9])
|
79 |
+
with col1:
|
80 |
+
if st.button("Reset Data", key='reset1'):
|
81 |
+
st.cache_data.clear()
|
82 |
+
trend_table, dk_minutes_table, fd_minutes_table, dk_medians_table, fd_medians_table, dk_proj_medians_table, fd_proj_medians_table = init_baselines()
|
83 |
+
split_var1 = st.radio("What table would you like to view?", ('Minutes Trends', 'Fantasy Trends', 'Slate specific', 'Overall'), key='split_var1')
|
84 |
+
site_var1 = st.radio("What site would you like to view?", ('Draftkings', 'Fanduel'), key='site_var1')
|
85 |
+
if site_var1 == 'Draftkings':
|
86 |
+
trend_table = trend_table[['PLAYER_NAME', 'Team', 'Position', 'L10 MIN', 'L10 Fantasy', 'L10 Ceiling',
|
87 |
+
'L5 MIN', 'L5 Fantasy', 'L5 Ceiling', 'L3 MIN', 'L3 Fantasy',
|
88 |
+
'L3 Ceiling', 'Trend Min', 'Trend Median', 'DK_Proj', 'Adj Median', 'Adj Ceiling',
|
89 |
+
'DK_Salary', 'DK_Avg_Val', 'DK_Ceiling_Value']]
|
90 |
+
minutes_table = dk_minutes_table
|
91 |
+
medians_table = dk_medians_table
|
92 |
+
proj_medians_table = dk_proj_medians_table
|
93 |
+
elif site_var1 == 'Fanduel':
|
94 |
+
trend_table = trend_table[['PLAYER_NAME', 'Team', 'FD_Position', 'L10 MIN', 'L10 FD_Fantasy',
|
95 |
+
'L10 FD_Ceiling', 'L5 MIN', 'L5 FD_Fantasy', 'L5 FD_Ceiling', 'L3 MIN', 'L3 FD_Fantasy',
|
96 |
+
'L3 FD_Ceiling', 'Trend Min', 'Trend FD_Median', 'FD_Proj', 'Adj FD_Median', 'Adj FD_Ceiling',
|
97 |
+
'FD_Salary', 'FD_Avg_Val', 'FD_Ceiling_Value']]
|
98 |
+
minutes_table = fd_minutes_table
|
99 |
+
medians_table = fd_medians_table
|
100 |
+
proj_medians_table = fd_proj_medians_table
|
101 |
+
trend_table = trend_table.set_axis(['PLAYER_NAME', 'Team', 'Position', 'L10 MIN', 'L10 Fantasy', 'L10 Ceiling',
|
102 |
+
'L5 MIN', 'L5 Fantasy', 'L5 Ceiling', 'L3 MIN', 'L3 Fantasy',
|
103 |
+
'L3 Ceiling', 'Trend Min', 'Trend Median', 'Proj', 'Adj Median', 'Adj Ceiling',
|
104 |
+
'Salary', 'Avg_Val', 'Ceiling_Value'], axis=1)
|
105 |
+
minutes_table = minutes_table.set_axis(['PLAYER_NAME', 'Team', 'L10 MIN', 'L5 MIN', 'L3 MIN', 'Trend Min'], axis=1)
|
106 |
+
medians_table = medians_table.set_axis(['PLAYER_NAME', 'Team', 'L10 FANTASY','L5 FANTASY', 'L3 FANTASY', 'Trend Median'], axis=1)
|
107 |
+
proj_medians_table = proj_medians_table.set_axis(['PLAYER_NAME', 'Team', 'Position', 'Salary', 'Proj',
|
108 |
+
'Adj Median', 'Avg_Val', 'Adj Ceiling', 'Ceiling_Value'], axis=1)
|
109 |
+
if split_var1 == 'Overall':
|
110 |
+
view_var1 = trend_table.Team.values.tolist()
|
111 |
+
split_var2 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var2')
|
112 |
+
|
113 |
+
if split_var2 == 'Specific Teams':
|
114 |
+
team_var1 = st.multiselect('Which teams would you like to include in the tables?', options = view_var1, key='team_var1')
|
115 |
+
elif split_var2 == 'All':
|
116 |
+
team_var1 = view_var1
|
117 |
+
|
118 |
+
split_var3 = st.radio("Would you like to view all positions or specific ones?", ('All', 'Specific Positions'), key='split_var3')
|
119 |
+
if split_var3 == 'Specific Positions':
|
120 |
+
pos_var1 = st.multiselect('Which positions would you like to include in the tables?', options = trend_table['Position'].unique(), key='pos_var1')
|
121 |
+
elif split_var3 == 'All':
|
122 |
+
pos_var1 = trend_table.Position.values.tolist()
|
123 |
+
|
124 |
+
proj_var1 = st.slider("Is there a certain projection range you want to view?", 0, 100, (10, 100), key='proj_var1')
|
125 |
+
|
126 |
+
elif split_var1 == 'Minutes Trends':
|
127 |
+
view_var2 = trend_table.Team.values.tolist()
|
128 |
+
split_var2 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var2')
|
129 |
+
|
130 |
+
if split_var2 == 'Specific Teams':
|
131 |
+
team_var1 = st.multiselect('Which teams would you like to include in the tables?', options = view_var1, key='team_var1')
|
132 |
+
elif split_var2 == 'All':
|
133 |
+
team_var1 = view_var1
|
134 |
+
|
135 |
+
elif split_var1 == 'Fantasy Trends':
|
136 |
+
view_var1 = trend_table.Team.values.tolist()
|
137 |
+
split_var2 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var2')
|
138 |
+
|
139 |
+
if split_var2 == 'Specific Teams':
|
140 |
+
team_var1 = st.multiselect('Which teams would you like to include in the tables?', options = view_var1, key='team_var1')
|
141 |
+
elif split_var2 == 'All':
|
142 |
+
team_var1 = view_var1
|
143 |
+
|
144 |
+
elif split_var1 == 'Slate Specific':
|
145 |
+
view_var1 = trend_table.Team.values.tolist()
|
146 |
+
split_var2 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var2')
|
147 |
+
|
148 |
+
if split_var2 == 'Specific Teams':
|
149 |
+
team_var1 = st.multiselect('Which teams would you like to include in the tables?', options = view_var1, key='team_var1')
|
150 |
+
elif split_var2 == 'All':
|
151 |
+
team_var1 = view_var1
|
152 |
+
|
153 |
+
split_var3 = st.radio("Would you like to view all positions or specific ones?", ('All', 'Specific Positions'), key='split_var3')
|
154 |
+
if split_var3 == 'Specific Positions':
|
155 |
+
pos_var1 = st.multiselect('Which positions would you like to include in the tables?', options = proj_medians_table['Position'].unique(), key='pos_var1')
|
156 |
+
elif split_var3 == 'All':
|
157 |
+
pos_var1 = proj_medians_table.Position.values.tolist()
|
158 |
+
|
159 |
+
proj_var1 = st.slider("Is there a certain projection range you want to view?", 0, 100, (10, 100), key='proj_var1')
|
160 |
+
|
161 |
+
with col2:
|
162 |
+
if split_var1 == 'Overall':
|
163 |
+
table_display = trend_table[trend_table['Proj'] >= proj_var1[0]]
|
164 |
+
table_display = table_display[table_display['Proj'] <= proj_var1[1]]
|
165 |
+
table_display = table_display[table_display['Team'].isin(team_var1)]
|
166 |
+
table_display = table_display[table_display['Position'].isin(pos_var1)]
|
167 |
+
table_display = table_display.sort_values(by='Adj Ceiling', ascending=False)
|
168 |
+
table_display = table_display.set_index('PLAYER_NAME')
|
169 |
+
st.dataframe(table_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(percentages_format, precision=2), use_container_width = True)
|
170 |
+
st.download_button(
|
171 |
+
label="Export Trending Numbers",
|
172 |
+
data=convert_df_to_csv(table_display),
|
173 |
+
file_name='Trending_export.csv',
|
174 |
+
mime='text/csv',
|
175 |
+
)
|
176 |
+
|
177 |
+
elif split_var1 == 'Minutes Trends':
|
178 |
+
table_display = minutes_table[minutes_table['Team'].isin(team_var1)]
|
179 |
+
table_display = table_display.set_index('PLAYER_NAME')
|
180 |
+
st.dataframe(table_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(percentages_format, precision=2), use_container_width = True)
|
181 |
+
st.download_button(
|
182 |
+
label="Export Trending Numbers",
|
183 |
+
data=convert_df_to_csv(table_display),
|
184 |
+
file_name='Trending_export.csv',
|
185 |
+
mime='text/csv',
|
186 |
+
)
|
187 |
+
|
188 |
+
elif split_var1 == 'Fantasy Trends':
|
189 |
+
table_display = medians_table[medians_table['Team'].isin(team_var1)]
|
190 |
+
table_display = table_display.set_index('PLAYER_NAME')
|
191 |
+
st.dataframe(table_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(percentages_format, precision=2), use_container_width = True)
|
192 |
+
st.download_button(
|
193 |
+
label="Export Trending Numbers",
|
194 |
+
data=convert_df_to_csv(table_display),
|
195 |
+
file_name='Trending_export.csv',
|
196 |
+
mime='text/csv',
|
197 |
+
)
|
198 |
+
|
199 |
+
elif split_var1 == 'Slate Specific':
|
200 |
+
table_display = proj_medians_table[proj_medians_table['Proj'] >= proj_var1[0]]
|
201 |
+
table_display = table_display[table_display['Proj'] <= proj_var1[1]]
|
202 |
+
table_display = table_display[table_display['Team'].isin(team_var1)]
|
203 |
+
table_display = table_display[table_display['Position'].isin(pos_var1)]
|
204 |
+
table_display = table_display.sort_values(by='Adj Ceiling', ascending=False)
|
205 |
+
table_display = table_display.set_index('PLAYER_NAME')
|
206 |
+
st.dataframe(table_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(percentages_format, precision=2), use_container_width = True)
|
207 |
+
st.download_button(
|
208 |
+
label="Export Trending Numbers",
|
209 |
+
data=convert_df_to_csv(table_display),
|
210 |
+
file_name='Trending_export.csv',
|
211 |
+
mime='text/csv',
|
212 |
+
)
|