Multichem commited on
Commit
3096df7
·
1 Parent(s): 620784c

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +212 -0
app.py ADDED
@@ -0,0 +1,212 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ st.set_page_config(layout="wide")
3
+
4
+ for name in dir():
5
+ if not name.startswith('_'):
6
+ del globals()[name]
7
+
8
+ import numpy as np
9
+ import pandas as pd
10
+ import streamlit as st
11
+ import gspread
12
+ import gc
13
+
14
+ @st.cache_resource
15
+ def init_conn():
16
+ scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive']
17
+
18
+ credentials = {
19
+ "type": "service_account",
20
+ "project_id": "model-sheets-connect",
21
+ "private_key_id": "0e0bc2fdef04e771172fe5807392b9d6639d945e",
22
+ "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQDiu1v/e6KBKOcK\ncx0KQ23nZK3ZVvADYy8u/RUn/EDI82QKxTd/DizRLIV81JiNQxDJXSzgkbwKYEDm\n48E8zGvupU8+Nk76xNPakrQKy2Y8+VJlq5psBtGchJTuUSHcXU5Mg2JhQsB376PJ\nsCw552K6Pw8fpeMDJDZuxpKSkaJR6k9G5Dhf5q8HDXnC5Rh/PRFuKJ2GGRpX7n+2\nhT/sCax0J8jfdTy/MDGiDfJqfQrOPrMKELtsGHR9Iv6F4vKiDqXpKfqH+02E9ptz\nBk+MNcbZ3m90M8ShfRu28ebebsASfarNMzc3dk7tb3utHOGXKCf4tF8yYKo7x8BZ\noO9X4gSfAgMBAAECggEAU8ByyMpSKlTCF32TJhXnVJi/kS+IhC/Qn5JUDMuk4LXr\naAEWsWO6kV/ZRVXArjmuSzuUVrXumISapM9Ps5Ytbl95CJmGDiLDwRL815nvv6k3\nUyAS8EGKjz74RpoIoH6E7EWCAzxlnUgTn+5oP9Flije97epYk3H+e2f1f5e1Nn1d\nYNe8U+1HqJgILcxA1TAUsARBfoD7+K3z/8DVPHI8IpzAh6kTHqhqC23Rram4XoQ6\nzj/ZdVBjvnKuazETfsD+Vl3jGLQA8cKQVV70xdz3xwLcNeHsbPbpGBpZUoF73c65\nkAXOrjYl0JD5yAk+hmYhXr6H9c6z5AieuZGDrhmlFQKBgQDzV6LRXmjn4854DP/J\nI82oX2GcI4eioDZPRukhiQLzYerMQBmyqZIRC+/LTCAhYQSjNgMa+ZKyvLqv48M0\n/x398op/+n3xTs+8L49SPI48/iV+mnH7k0WI/ycd4OOKh8rrmhl/0EWb9iitwJYe\nMjTV/QxNEpPBEXfR1/mvrN/lVQKBgQDuhomOxUhWVRVH6x03slmyRBn0Oiw4MW+r\nrt1hlNgtVmTc5Mu+4G0USMZwYuOB7F8xG4Foc7rIlwS7Ic83jMJxemtqAelwOLdV\nXRLrLWJfX8+O1z/UE15l2q3SUEnQ4esPHbQnZowHLm0mdL14qSVMl1mu1XfsoZ3z\nJZTQb48CIwKBgEWbzQRtKD8lKDupJEYqSrseRbK/ax43DDITS77/DWwHl33D3FYC\nMblUm8ygwxQpR4VUfwDpYXBlklWcJovzamXpSnsfcYVkkQH47NuOXPXPkXQsw+w+\nDYcJzeu7F/vZqk9I7oBkWHUrrik9zPNoUzrfPvSRGtkAoTDSwibhoc5dAoGBAMHE\nK0T/ANeZQLNuzQps6S7G4eqjwz5W8qeeYxsdZkvWThOgDd/ewt3ijMnJm5X05hOn\ni4XF1euTuvUl7wbqYx76Wv3/1ZojiNNgy7ie4rYlyB/6vlBS97F4ZxJdxMlabbCW\n6b3EMWa4EVVXKoA1sCY7IVDE+yoQ1JYsZmq45YzPAoGBANWWHuVueFGZRDZlkNlK\nh5OmySmA0NdNug3G1upaTthyaTZ+CxGliwBqMHAwpkIRPwxUJpUwBTSEGztGTAxs\nWsUOVWlD2/1JaKSmHE8JbNg6sxLilcG6WEDzxjC5dLL1OrGOXj9WhC9KX3sq6qb6\nF/j9eUXfXjAlb042MphoF3ZC\n-----END PRIVATE KEY-----\n",
23
+ "client_email": "[email protected]",
24
+ "client_id": "100369174533302798535",
25
+ "auth_uri": "https://accounts.google.com/o/oauth2/auth",
26
+ "token_uri": "https://oauth2.googleapis.com/token",
27
+ "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
28
+ "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40model-sheets-connect.iam.gserviceaccount.com"
29
+ }
30
+
31
+ gc_con = gspread.service_account_from_dict(credentials, scope)
32
+
33
+ return gc_con
34
+
35
+ gcservice_account = init_conn()
36
+
37
+ NBA_Data = 'https://docs.google.com/spreadsheets/d/1Yq0vGriWK-bS79e-bD6_u9pqrYE6Yrlbb_wEkmH-ot0/edit#gid=1808117109'
38
+
39
+ percentages_format = {'Pts% Boost': '{:.2%}', 'Reb% Boost': '{:.2%}', 'Ast% Boost': '{:.2%}', '3p% Boost': '{:.2%}',
40
+ 'Stl Boost%': '{:.2%}', 'Blk Boost%': '{:.2%}', 'TOV Boost%': '{:.2%}', 'FPPM Boost': '{:.2%}',
41
+ 'Team FPPM Boost': '{:.2%}'}
42
+
43
+ @st.cache_resource(ttl = 600)
44
+ def init_baselines():
45
+ sh = gcservice_account.open_by_url(NBA_Data)
46
+
47
+ worksheet = sh.worksheet('Trending')
48
+ raw_display = pd.DataFrame(worksheet.get_values())
49
+ raw_display.columns = raw_display.iloc[0]
50
+ raw_display = raw_display[1:]
51
+ raw_display = raw_display.reset_index(drop=True)
52
+ trend_table = raw_display[raw_display['PLAYER_NAME'] != ""]
53
+ trend_table = trend_table[['PLAYER_NAME', 'Team', 'Position', 'FD_Position', 'L10 MIN', 'L10 Fantasy', 'L10 Ceiling', 'L10 FD_Fantasy',
54
+ 'L10 FD_Ceiling', 'L5 MIN', 'L5 Fantasy', 'L5 Ceiling', 'L5 FD_Fantasy', 'L5 FD_Ceiling', 'L3 MIN', 'L3 Fantasy',
55
+ 'L3 Ceiling', 'L3 FD_Fantasy', 'L3 FD_Ceiling', 'Trend Min', 'Trend Median', 'DK_Proj', 'Adj Median', 'Adj Ceiling',
56
+ 'Trend FD_Median', 'FD_Proj', 'Adj FD_Median', 'Adj FD_Ceiling', 'DK_Salary', 'DK_Avg_Val', 'DK_Ceiling_Value',
57
+ 'FD_Salary', 'FD_Avg_Val', 'FD_Ceiling_Value']]
58
+
59
+ dk_minutes_table = trend_table[['PLAYER_NAME', 'Team', 'L10 MIN', 'L5 MIN', 'L3 MIN', 'Trend Min']]
60
+
61
+ fd_minutes_table = trend_table[['PLAYER_NAME', 'Team', 'L10 MIN', 'L5 MIN', 'L3 MIN', 'Trend Min']]
62
+
63
+ dk_medians_table = trend_table[['PLAYER_NAME', 'Team', 'L10 FANTASY', 'L5 FANTASY', 'L3 FANTASY', 'Trend Median']]
64
+
65
+ fd_medians_table = trend_table[['PLAYER_NAME', 'Team', 'L10 FD_FANTASY', 'L5 FD_FANTASY', 'L3 FD_FANTASY', 'Trend FD_Median']]
66
+
67
+ dk_proj_medians_table = trend_table[['PLAYER_NAME', 'Team', 'Position', 'DK_Salary', 'DK_Proj', 'Adj Median', 'DK_Avg_Val', 'Adj Ceiling', 'DK_Ceiling_Value']]
68
+
69
+ fd_proj_medians_table = trend_table[['PLAYER_NAME', 'Team', 'FD_Position', 'FD_Salary', 'FD_Proj', 'Adj FD_Median', 'FD_Avg_Val', 'Adj FD_Ceiling', 'FD_Ceiling_Value']]
70
+
71
+ return trend_table, dk_minutes_table, fd_minutes_table, dk_medians_table, fd_medians_table, dk_proj_medians_table, fd_proj_medians_table
72
+
73
+ def convert_df_to_csv(df):
74
+ return df.to_csv().encode('utf-8')
75
+
76
+ trend_table, dk_minutes_table, fd_minutes_table, dk_medians_table, fd_medians_table, dk_proj_medians_table, fd_proj_medians_table = init_baselines()
77
+
78
+ col1, col2 = st.columns([1, 9])
79
+ with col1:
80
+ if st.button("Reset Data", key='reset1'):
81
+ st.cache_data.clear()
82
+ trend_table, dk_minutes_table, fd_minutes_table, dk_medians_table, fd_medians_table, dk_proj_medians_table, fd_proj_medians_table = init_baselines()
83
+ split_var1 = st.radio("What table would you like to view?", ('Minutes Trends', 'Fantasy Trends', 'Slate specific', 'Overall'), key='split_var1')
84
+ site_var1 = st.radio("What site would you like to view?", ('Draftkings', 'Fanduel'), key='site_var1')
85
+ if site_var1 == 'Draftkings':
86
+ trend_table = trend_table[['PLAYER_NAME', 'Team', 'Position', 'L10 MIN', 'L10 Fantasy', 'L10 Ceiling',
87
+ 'L5 MIN', 'L5 Fantasy', 'L5 Ceiling', 'L3 MIN', 'L3 Fantasy',
88
+ 'L3 Ceiling', 'Trend Min', 'Trend Median', 'DK_Proj', 'Adj Median', 'Adj Ceiling',
89
+ 'DK_Salary', 'DK_Avg_Val', 'DK_Ceiling_Value']]
90
+ minutes_table = dk_minutes_table
91
+ medians_table = dk_medians_table
92
+ proj_medians_table = dk_proj_medians_table
93
+ elif site_var1 == 'Fanduel':
94
+ trend_table = trend_table[['PLAYER_NAME', 'Team', 'FD_Position', 'L10 MIN', 'L10 FD_Fantasy',
95
+ 'L10 FD_Ceiling', 'L5 MIN', 'L5 FD_Fantasy', 'L5 FD_Ceiling', 'L3 MIN', 'L3 FD_Fantasy',
96
+ 'L3 FD_Ceiling', 'Trend Min', 'Trend FD_Median', 'FD_Proj', 'Adj FD_Median', 'Adj FD_Ceiling',
97
+ 'FD_Salary', 'FD_Avg_Val', 'FD_Ceiling_Value']]
98
+ minutes_table = fd_minutes_table
99
+ medians_table = fd_medians_table
100
+ proj_medians_table = fd_proj_medians_table
101
+ trend_table = trend_table.set_axis(['PLAYER_NAME', 'Team', 'Position', 'L10 MIN', 'L10 Fantasy', 'L10 Ceiling',
102
+ 'L5 MIN', 'L5 Fantasy', 'L5 Ceiling', 'L3 MIN', 'L3 Fantasy',
103
+ 'L3 Ceiling', 'Trend Min', 'Trend Median', 'Proj', 'Adj Median', 'Adj Ceiling',
104
+ 'Salary', 'Avg_Val', 'Ceiling_Value'], axis=1)
105
+ minutes_table = minutes_table.set_axis(['PLAYER_NAME', 'Team', 'L10 MIN', 'L5 MIN', 'L3 MIN', 'Trend Min'], axis=1)
106
+ medians_table = medians_table.set_axis(['PLAYER_NAME', 'Team', 'L10 FANTASY','L5 FANTASY', 'L3 FANTASY', 'Trend Median'], axis=1)
107
+ proj_medians_table = proj_medians_table.set_axis(['PLAYER_NAME', 'Team', 'Position', 'Salary', 'Proj',
108
+ 'Adj Median', 'Avg_Val', 'Adj Ceiling', 'Ceiling_Value'], axis=1)
109
+ if split_var1 == 'Overall':
110
+ view_var1 = trend_table.Team.values.tolist()
111
+ split_var2 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var2')
112
+
113
+ if split_var2 == 'Specific Teams':
114
+ team_var1 = st.multiselect('Which teams would you like to include in the tables?', options = view_var1, key='team_var1')
115
+ elif split_var2 == 'All':
116
+ team_var1 = view_var1
117
+
118
+ split_var3 = st.radio("Would you like to view all positions or specific ones?", ('All', 'Specific Positions'), key='split_var3')
119
+ if split_var3 == 'Specific Positions':
120
+ pos_var1 = st.multiselect('Which positions would you like to include in the tables?', options = trend_table['Position'].unique(), key='pos_var1')
121
+ elif split_var3 == 'All':
122
+ pos_var1 = trend_table.Position.values.tolist()
123
+
124
+ proj_var1 = st.slider("Is there a certain projection range you want to view?", 0, 100, (10, 100), key='proj_var1')
125
+
126
+ elif split_var1 == 'Minutes Trends':
127
+ view_var2 = trend_table.Team.values.tolist()
128
+ split_var2 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var2')
129
+
130
+ if split_var2 == 'Specific Teams':
131
+ team_var1 = st.multiselect('Which teams would you like to include in the tables?', options = view_var1, key='team_var1')
132
+ elif split_var2 == 'All':
133
+ team_var1 = view_var1
134
+
135
+ elif split_var1 == 'Fantasy Trends':
136
+ view_var1 = trend_table.Team.values.tolist()
137
+ split_var2 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var2')
138
+
139
+ if split_var2 == 'Specific Teams':
140
+ team_var1 = st.multiselect('Which teams would you like to include in the tables?', options = view_var1, key='team_var1')
141
+ elif split_var2 == 'All':
142
+ team_var1 = view_var1
143
+
144
+ elif split_var1 == 'Slate Specific':
145
+ view_var1 = trend_table.Team.values.tolist()
146
+ split_var2 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var2')
147
+
148
+ if split_var2 == 'Specific Teams':
149
+ team_var1 = st.multiselect('Which teams would you like to include in the tables?', options = view_var1, key='team_var1')
150
+ elif split_var2 == 'All':
151
+ team_var1 = view_var1
152
+
153
+ split_var3 = st.radio("Would you like to view all positions or specific ones?", ('All', 'Specific Positions'), key='split_var3')
154
+ if split_var3 == 'Specific Positions':
155
+ pos_var1 = st.multiselect('Which positions would you like to include in the tables?', options = proj_medians_table['Position'].unique(), key='pos_var1')
156
+ elif split_var3 == 'All':
157
+ pos_var1 = proj_medians_table.Position.values.tolist()
158
+
159
+ proj_var1 = st.slider("Is there a certain projection range you want to view?", 0, 100, (10, 100), key='proj_var1')
160
+
161
+ with col2:
162
+ if split_var1 == 'Overall':
163
+ table_display = trend_table[trend_table['Proj'] >= proj_var1[0]]
164
+ table_display = table_display[table_display['Proj'] <= proj_var1[1]]
165
+ table_display = table_display[table_display['Team'].isin(team_var1)]
166
+ table_display = table_display[table_display['Position'].isin(pos_var1)]
167
+ table_display = table_display.sort_values(by='Adj Ceiling', ascending=False)
168
+ table_display = table_display.set_index('PLAYER_NAME')
169
+ st.dataframe(table_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(percentages_format, precision=2), use_container_width = True)
170
+ st.download_button(
171
+ label="Export Trending Numbers",
172
+ data=convert_df_to_csv(table_display),
173
+ file_name='Trending_export.csv',
174
+ mime='text/csv',
175
+ )
176
+
177
+ elif split_var1 == 'Minutes Trends':
178
+ table_display = minutes_table[minutes_table['Team'].isin(team_var1)]
179
+ table_display = table_display.set_index('PLAYER_NAME')
180
+ st.dataframe(table_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(percentages_format, precision=2), use_container_width = True)
181
+ st.download_button(
182
+ label="Export Trending Numbers",
183
+ data=convert_df_to_csv(table_display),
184
+ file_name='Trending_export.csv',
185
+ mime='text/csv',
186
+ )
187
+
188
+ elif split_var1 == 'Fantasy Trends':
189
+ table_display = medians_table[medians_table['Team'].isin(team_var1)]
190
+ table_display = table_display.set_index('PLAYER_NAME')
191
+ st.dataframe(table_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(percentages_format, precision=2), use_container_width = True)
192
+ st.download_button(
193
+ label="Export Trending Numbers",
194
+ data=convert_df_to_csv(table_display),
195
+ file_name='Trending_export.csv',
196
+ mime='text/csv',
197
+ )
198
+
199
+ elif split_var1 == 'Slate Specific':
200
+ table_display = proj_medians_table[proj_medians_table['Proj'] >= proj_var1[0]]
201
+ table_display = table_display[table_display['Proj'] <= proj_var1[1]]
202
+ table_display = table_display[table_display['Team'].isin(team_var1)]
203
+ table_display = table_display[table_display['Position'].isin(pos_var1)]
204
+ table_display = table_display.sort_values(by='Adj Ceiling', ascending=False)
205
+ table_display = table_display.set_index('PLAYER_NAME')
206
+ st.dataframe(table_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(percentages_format, precision=2), use_container_width = True)
207
+ st.download_button(
208
+ label="Export Trending Numbers",
209
+ data=convert_df_to_csv(table_display),
210
+ file_name='Trending_export.csv',
211
+ mime='text/csv',
212
+ )