Spaces:
Runtime error
Runtime error
James McCool
commited on
Commit
·
9287978
1
Parent(s):
6dac0fa
Added season numbers
Browse files
app.py
CHANGED
@@ -47,7 +47,7 @@ def init_baselines():
|
|
47 |
raw_display = raw_display.reset_index(drop=True)
|
48 |
trend_table = raw_display[raw_display['PLAYER_NAME'] != ""]
|
49 |
trend_table.replace('', np.nan, inplace=True)
|
50 |
-
trend_table = trend_table[['PLAYER_NAME', 'Team', 'Position', 'FD_Position', 'L10 MIN', 'L10 Fantasy', 'L10 FPPM', 'L10 Ceiling', 'L10 FD_Fantasy',
|
51 |
'L10 FD_Ceiling', 'L5 MIN', 'L5 Fantasy', 'L5 FPPM', 'L5 Ceiling', 'L5 FD_Fantasy', 'L5 FD_Ceiling', 'L3 MIN', 'L3 Fantasy',
|
52 |
'L3 FPPM', 'L3 Ceiling', 'L3 FD_Fantasy', 'L3 FD_Ceiling', 'Trend Min', 'Trend Median', 'Trend FPPM', 'DK_Proj', 'Adj Median', 'Adj Ceiling',
|
53 |
'Trend FD_Median', 'FD_Proj', 'Adj FD_Median', 'Adj FD_Ceiling', 'DK_Salary', 'DK_Avg_Val', 'DK_Ceiling_Value',
|
@@ -58,17 +58,17 @@ def init_baselines():
|
|
58 |
data_cols = trend_table.columns.drop(['PLAYER_NAME', 'Team', 'Position', 'FD_Position'])
|
59 |
trend_table[data_cols] = trend_table[data_cols].apply(pd.to_numeric, errors='coerce')
|
60 |
|
61 |
-
dk_minutes_table = trend_table[['PLAYER_NAME', 'Team', 'L10 MIN', 'L5 MIN', 'L3 MIN', 'Trend Min']]
|
62 |
|
63 |
-
fd_minutes_table = trend_table[['PLAYER_NAME', 'Team', 'L10 MIN', 'L5 MIN', 'L3 MIN', 'Trend Min']]
|
64 |
|
65 |
-
dk_medians_table = trend_table[['PLAYER_NAME', 'Team', 'L10 Fantasy', 'L5 Fantasy', 'L3 Fantasy', 'Trend Median']]
|
66 |
|
67 |
-
fd_medians_table = trend_table[['PLAYER_NAME', 'Team', 'L10 FD_Fantasy', 'L5 FD_Fantasy', 'L3 FD_Fantasy', 'Trend FD_Median']]
|
68 |
|
69 |
-
dk_fppm_table = trend_table[['PLAYER_NAME', 'Team', 'L10 FPPM', 'L5 FPPM', 'L3 FPPM', 'Trend FPPM']]
|
70 |
|
71 |
-
fd_fppm_table = trend_table[['PLAYER_NAME', 'Team', 'L10 FPPM', 'L5 FPPM', 'L3 FPPM', 'Trend FPPM']]
|
72 |
|
73 |
dk_proj_medians_table = trend_table[['PLAYER_NAME', 'Team', 'Position', 'DK_Salary', 'DK_Proj', 'Adj Median', 'DK_Avg_Val', 'Adj Ceiling', 'DK_Ceiling_Value']]
|
74 |
|
@@ -89,32 +89,30 @@ with col1:
|
|
89 |
split_var1 = st.radio("What table would you like to view?", ('Minutes Trends', 'Fantasy Trends', 'FPPM Trends', 'Slate specific', 'Overall'), key='split_var1')
|
90 |
site_var1 = st.radio("What site would you like to view?", ('Draftkings', 'Fanduel'), key='site_var1')
|
91 |
if site_var1 == 'Draftkings':
|
92 |
-
trend_table = trend_table[['PLAYER_NAME', 'Team', 'Position', '
|
93 |
-
'
|
94 |
-
'L3 FPPM', 'L3 Ceiling', 'Trend Min', 'Trend Median', 'Trend FPPM', 'DK_Proj', 'Adj Median', 'Adj Ceiling',
|
95 |
'DK_Salary', 'DK_Avg_Val', 'DK_Ceiling_Value']]
|
96 |
minutes_table = dk_minutes_table
|
97 |
medians_table = dk_medians_table
|
98 |
fppm_table = dk_fppm_table
|
99 |
proj_medians_table = dk_proj_medians_table
|
100 |
elif site_var1 == 'Fanduel':
|
101 |
-
trend_table = trend_table[['PLAYER_NAME', 'Team', 'FD_Position', '
|
102 |
-
'
|
103 |
-
'Trend Min', 'Trend FD_Median', 'Trend FPPM', 'FD_Proj', 'Adj FD_Median', 'Adj FD_Ceiling',
|
104 |
'FD_Salary', 'FD_Avg_Val', 'FD_Ceiling_Value']]
|
105 |
minutes_table = fd_minutes_table
|
106 |
medians_table = fd_medians_table
|
107 |
fppm_table = fd_fppm_table
|
108 |
proj_medians_table = fd_proj_medians_table
|
109 |
-
trend_table = trend_table.set_axis(['PLAYER_NAME', 'Team', 'Position', '
|
110 |
-
'
|
111 |
-
'
|
112 |
'FD_Salary', 'FD_Avg_Val', 'FD_Ceiling_Value'], axis=1)
|
113 |
-
minutes_table = minutes_table.set_axis(['PLAYER_NAME', 'Team', 'L10 MIN', 'L5 MIN', 'L3 MIN', 'Trend Min'], axis=1)
|
114 |
-
medians_table = medians_table.set_axis(['PLAYER_NAME', 'Team', 'L10 Fantasy','L5 Fantasy', 'L3 Fantasy', 'Trend Median'], axis=1)
|
115 |
-
fppm_table = fppm_table.set_axis(['PLAYER_NAME', 'Team', 'L10 FPPM', 'L5 FPPM', 'L3 FPPM', 'Trend FPPM'], axis=1)
|
116 |
-
proj_medians_table = proj_medians_table.set_axis(['PLAYER_NAME', 'Team', 'Position', '
|
117 |
-
'Adj
|
118 |
if split_var1 == 'Overall':
|
119 |
view_var1 = trend_table.Team.values.tolist()
|
120 |
split_var2 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var2')
|
|
|
47 |
raw_display = raw_display.reset_index(drop=True)
|
48 |
trend_table = raw_display[raw_display['PLAYER_NAME'] != ""]
|
49 |
trend_table.replace('', np.nan, inplace=True)
|
50 |
+
trend_table = trend_table[['PLAYER_NAME', 'Team', 'Position', 'FD_Position', 'Season MIN', 'Season Fantasy', 'Season FPPM', 'Season Ceiling', 'Season FD_Fantasy', 'Season FD_Ceiling', 'L10 MIN', 'L10 Fantasy', 'L10 FPPM', 'L10 Ceiling', 'L10 FD_Fantasy',
|
51 |
'L10 FD_Ceiling', 'L5 MIN', 'L5 Fantasy', 'L5 FPPM', 'L5 Ceiling', 'L5 FD_Fantasy', 'L5 FD_Ceiling', 'L3 MIN', 'L3 Fantasy',
|
52 |
'L3 FPPM', 'L3 Ceiling', 'L3 FD_Fantasy', 'L3 FD_Ceiling', 'Trend Min', 'Trend Median', 'Trend FPPM', 'DK_Proj', 'Adj Median', 'Adj Ceiling',
|
53 |
'Trend FD_Median', 'FD_Proj', 'Adj FD_Median', 'Adj FD_Ceiling', 'DK_Salary', 'DK_Avg_Val', 'DK_Ceiling_Value',
|
|
|
58 |
data_cols = trend_table.columns.drop(['PLAYER_NAME', 'Team', 'Position', 'FD_Position'])
|
59 |
trend_table[data_cols] = trend_table[data_cols].apply(pd.to_numeric, errors='coerce')
|
60 |
|
61 |
+
dk_minutes_table = trend_table[['PLAYER_NAME', 'Team', 'Season MIN', 'L10 MIN', 'L5 MIN', 'L3 MIN', 'Trend Min']]
|
62 |
|
63 |
+
fd_minutes_table = trend_table[['PLAYER_NAME', 'Team', 'Season MIN', 'L10 MIN', 'L5 MIN', 'L3 MIN', 'Trend Min']]
|
64 |
|
65 |
+
dk_medians_table = trend_table[['PLAYER_NAME', 'Team', 'Season Fantasy', 'L10 Fantasy', 'L5 Fantasy', 'L3 Fantasy', 'Trend Median']]
|
66 |
|
67 |
+
fd_medians_table = trend_table[['PLAYER_NAME', 'Team', 'Season FD_Fantasy', 'L10 FD_Fantasy', 'L5 FD_Fantasy', 'L3 FD_Fantasy', 'Trend FD_Median']]
|
68 |
|
69 |
+
dk_fppm_table = trend_table[['PLAYER_NAME', 'Team', 'Season FPPM', 'L10 FPPM', 'L5 FPPM', 'L3 FPPM', 'Trend FPPM']]
|
70 |
|
71 |
+
fd_fppm_table = trend_table[['PLAYER_NAME', 'Team', 'Season FPPM', 'L10 FPPM', 'L5 FPPM', 'L3 FPPM', 'Trend FPPM']]
|
72 |
|
73 |
dk_proj_medians_table = trend_table[['PLAYER_NAME', 'Team', 'Position', 'DK_Salary', 'DK_Proj', 'Adj Median', 'DK_Avg_Val', 'Adj Ceiling', 'DK_Ceiling_Value']]
|
74 |
|
|
|
89 |
split_var1 = st.radio("What table would you like to view?", ('Minutes Trends', 'Fantasy Trends', 'FPPM Trends', 'Slate specific', 'Overall'), key='split_var1')
|
90 |
site_var1 = st.radio("What site would you like to view?", ('Draftkings', 'Fanduel'), key='site_var1')
|
91 |
if site_var1 == 'Draftkings':
|
92 |
+
trend_table = trend_table[['PLAYER_NAME', 'Team', 'Position', 'Season MIN', 'L10 MIN', 'L5 MIN', 'L3 MIN', 'Trend Min', 'Season Fantasy', 'L10 Fantasy', 'L5 Fantasy', 'L3 Fantasy',
|
93 |
+
'Trend Median', 'Season FPPM', 'L10 FPPM', 'L5 FPPM', 'L3 FPPM', 'Trend FPPM', 'DK_Proj', 'Adj Median', 'Adj Ceiling',
|
|
|
94 |
'DK_Salary', 'DK_Avg_Val', 'DK_Ceiling_Value']]
|
95 |
minutes_table = dk_minutes_table
|
96 |
medians_table = dk_medians_table
|
97 |
fppm_table = dk_fppm_table
|
98 |
proj_medians_table = dk_proj_medians_table
|
99 |
elif site_var1 == 'Fanduel':
|
100 |
+
trend_table = trend_table[['PLAYER_NAME', 'Team', 'FD_Position', 'Season MIN', 'L10 MIN', 'L5 MIN', 'L3 MIN', 'Trend Min', 'Season FD_Fantasy', 'L10 FD_Fantasy', 'L5 FD_Fantasy', 'L3 FD_Fantasy',
|
101 |
+
'Trend FD_Median', 'Season FPPM', 'L10 FPPM', 'L5 FPPM', 'L3 FPPM', 'Trend FPPM', 'FD_Proj', 'Adj FD_Median', 'Adj FD_Ceiling',
|
|
|
102 |
'FD_Salary', 'FD_Avg_Val', 'FD_Ceiling_Value']]
|
103 |
minutes_table = fd_minutes_table
|
104 |
medians_table = fd_medians_table
|
105 |
fppm_table = fd_fppm_table
|
106 |
proj_medians_table = fd_proj_medians_table
|
107 |
+
trend_table = trend_table.set_axis(['PLAYER_NAME', 'Team', 'Position', 'Season MIN', 'L10 MIN', 'L5 MIN', 'L3 MIN', 'Trend Min', 'Season Fantasy', 'L10 Fantasy', 'L5 Fantasy', 'L3 Fantasy',
|
108 |
+
'Trend Median', 'Season FPPM', 'L10 FPPM', 'L5 FPPM', 'L3 FPPM', 'Trend FPPM', 'DK_Proj', 'Adj Median', 'Adj Ceiling',
|
109 |
+
'DK_Salary', 'DK_Avg_Val', 'DK_Ceiling_Value', 'FD_Proj', 'Adj FD_Median', 'Adj FD_Ceiling',
|
110 |
'FD_Salary', 'FD_Avg_Val', 'FD_Ceiling_Value'], axis=1)
|
111 |
+
minutes_table = minutes_table.set_axis(['PLAYER_NAME', 'Team', 'Season MIN', 'L10 MIN', 'L5 MIN', 'L3 MIN', 'Trend Min'], axis=1)
|
112 |
+
medians_table = medians_table.set_axis(['PLAYER_NAME', 'Team', 'Season Fantasy', 'L10 Fantasy', 'L5 Fantasy', 'L3 Fantasy', 'Trend Median'], axis=1)
|
113 |
+
fppm_table = fppm_table.set_axis(['PLAYER_NAME', 'Team', 'Season FPPM', 'L10 FPPM', 'L5 FPPM', 'L3 FPPM', 'Trend FPPM'], axis=1)
|
114 |
+
proj_medians_table = proj_medians_table.set_axis(['PLAYER_NAME', 'Team', 'Position', 'DK_Salary', 'DK_Proj', 'Adj Median', 'DK_Avg_Val', 'Adj Ceiling', 'DK_Ceiling_Value',
|
115 |
+
'FD_Salary', 'FD_Proj', 'Adj FD_Median', 'FD_Avg_Val', 'Adj FD_Ceiling', 'FD_Ceiling_Value'], axis=1)
|
116 |
if split_var1 == 'Overall':
|
117 |
view_var1 = trend_table.Team.values.tolist()
|
118 |
split_var2 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var2')
|