Spaces:
Running
Running
James McCool
Enhanced data visualization by including 'Spread Diff' in the background gradient styling of the dataframe in app.py.
46cd261
import streamlit as st | |
import numpy as np | |
from numpy import where as np_where | |
import pandas as pd | |
import gspread | |
import plotly.express as px | |
import scipy.stats as stats | |
from pymongo import MongoClient | |
st.set_page_config(layout="wide") | |
def init_conn(): | |
uri = st.secrets['mongo_uri'] | |
client = MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=100000) | |
dfs_db = client["NCAAF_Database"] | |
props_db = client["Props_DB"] | |
return props_db, dfs_db | |
props_db, dfs_db = init_conn() | |
game_format = {'Win%': '{:.2%}', 'Vegas': '{:.2%}', 'Win% Diff': '{:.2%}'} | |
american_format = {'First Inning Lead Percentage': '{:.2%}', 'Fifth Inning Lead Percentage': '{:.2%}'} | |
def init_baselines(): | |
collection = dfs_db["NCAAF_GameModel"] | |
cursor = collection.find() | |
raw_display = pd.DataFrame(list(cursor)) | |
game_model = raw_display[['Team', 'Opp', 'Win%', 'Vegas', 'Win% Diff', 'Win Line', 'Vegas Line', 'Line Diff', 'PD Spread', 'Vegas Spread', 'Spread Diff', 'O/U']] | |
game_model = game_model.replace('', np.nan) | |
game_model = game_model.sort_values(by='O/U', ascending=False) | |
game_model.loc[:, ~game_model.columns.isin(['Team', 'Opp'])] = game_model.loc[:, ~game_model.columns.isin(['Team', 'Opp'])].apply(pd.to_numeric) | |
collection = props_db["NCAAF_Props"] | |
cursor = collection.find() | |
raw_display = pd.DataFrame(list(cursor)) | |
market_props = raw_display[['Name', 'Position', 'Projection', 'PropType', 'OddsType', 'over_pay', 'under_pay']] | |
market_props['over_prop'] = market_props['Projection'] | |
market_props['over_line'] = market_props['over_pay'].apply(lambda x: (x - 1) * 100 if x >= 2.0 else -100 / (x - 1)) | |
market_props['under_prop'] = market_props['Projection'] | |
market_props['under_line'] = market_props['under_pay'].apply(lambda x: (x - 1) * 100 if x >= 2.0 else -100 / (x - 1)) | |
return game_model, market_props | |
def convert_df_to_csv(df): | |
return df.to_csv().encode('utf-8') | |
def calculate_no_vig(row): | |
def implied_probability(american_odds): | |
if american_odds < 0: | |
return (-american_odds) / ((-american_odds) + 100) | |
else: | |
return 100 / (american_odds + 100) | |
over_line = row['over_line'] | |
under_line = row['under_line'] | |
over_prop = row['over_prop'] | |
over_prob = implied_probability(over_line) | |
under_prob = implied_probability(under_line) | |
total_prob = over_prob + under_prob | |
no_vig_prob = (over_prob / total_prob + 0.5) * over_prop | |
return no_vig_prob | |
prop_table_options = ['NCAAF_GAME_PLAYER_PASSING_ATTEMPTS', 'NCAAF_GAME_PLAYER_PASSING_COMPLETIONS', 'NCAAF_GAME_PLAYER_PASSING_INTERCEPTIONS', | |
'NCAAF_GAME_PLAYER_PASSING_RUSHING_YARDS', 'NCAAF_GAME_PLAYER_PASSING_TOUCHDOWNS', 'NCAAF_GAME_PLAYER_PASSING_YARDS', | |
'NCAAF_GAME_PLAYER_RECEIVING_RECEPTIONS', 'NCAAF_GAME_PLAYER_RECEIVING_TOUCHDOWNS', 'NCAAF_GAME_PLAYER_RECEIVING_YARDS', | |
'NCAAF_GAME_PLAYER_RUSHING_ATTEMPTS', 'NCAAF_GAME_PLAYER_RUSHING_RECEIVING_YARDS', 'NCAAF_GAME_PLAYER_RUSHING_TOUCHDOWNS', | |
'NCAAF_GAME_PLAYER_RUSHING_YARDS', 'NCAAF_GAME_PLAYER_SCORE_TOUCHDOWN'] | |
prop_format = {'L3 Success': '{:.2%}', 'L6_Success': '{:.2%}', 'L10_success': '{:.2%}', 'Trending Over': '{:.2%}', 'Trending Under': '{:.2%}', | |
'Implied Over': '{:.2%}', 'Implied Under': '{:.2%}', 'Over Edge': '{:.2%}', 'Under Edge': '{:.2%}'} | |
game_model, market_props = init_baselines() | |
tab1, tab2 = st.tabs(["Game Model", "Prop Market"]) | |
with tab1: | |
if st.button("Reset Data", key='reset1'): | |
st.cache_data.clear() | |
game_model, market_props = init_baselines() | |
line_var1 = st.radio('How would you like to display odds?', options = ['Percentage', 'American'], key='line_var1') | |
team_frame = game_model | |
if line_var1 == 'Percentage': | |
team_frame = team_frame[['Team', 'Opp', 'Win%', 'Vegas', 'Win% Diff', 'PD Spread', 'Vegas Spread', 'Spread Diff']] | |
team_frame = team_frame.set_index('Team') | |
try: | |
st.dataframe(team_frame.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').background_gradient(cmap='RdYlGn_r', subset=['PD Spread', 'Vegas Spread', 'Spread Diff']).format(game_format, precision=2), use_container_width = True) | |
except: | |
st.dataframe(team_frame.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').background_gradient(cmap='RdYlGn_r', subset=['PD Spread', 'Vegas Spread']).format(precision=2), use_container_width = True) | |
if line_var1 == 'American': | |
team_frame = team_frame[['Team', 'Opp', 'Win Line', 'Vegas Line', 'Line Diff', 'PD Spread', 'Vegas Spread', 'Spread Diff']] | |
team_frame = team_frame.set_index('Team') | |
st.dataframe(team_frame.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn_r').format(precision=2), height = 1000, use_container_width = True) | |
st.download_button( | |
label="Export Team Model", | |
data=convert_df_to_csv(team_frame), | |
file_name='NCAAF_team_betting_export.csv', | |
mime='text/csv', | |
key='team_export', | |
) | |
with tab2: | |
if st.button("Reset Data", key='reset4'): | |
st.cache_data.clear() | |
game_model, market_props = init_baselines() | |
market_type = st.selectbox('Select type of prop are you wanting to view', options = prop_table_options, key = 'market_type_key') | |
disp_market = market_props.copy() | |
disp_market = disp_market[disp_market['PropType'] == market_type] | |
disp_market['No_Vig_Prop'] = disp_market.apply(calculate_no_vig, axis=1) | |
fanduel_frame = disp_market[disp_market['OddsType'] == 'FANDUEL'] | |
fanduel_dict = dict(zip(fanduel_frame['Name'], fanduel_frame['No_Vig_Prop'])) | |
draftkings_frame = disp_market[disp_market['OddsType'] == 'DRAFTKINGS'] | |
draftkings_dict = dict(zip(draftkings_frame['Name'], draftkings_frame['No_Vig_Prop'])) | |
mgm_frame = disp_market[disp_market['OddsType'] == 'MGM'] | |
mgm_dict = dict(zip(mgm_frame['Name'], mgm_frame['No_Vig_Prop'])) | |
bet365_frame = disp_market[disp_market['OddsType'] == 'BET_365'] | |
bet365_dict = dict(zip(bet365_frame['Name'], bet365_frame['No_Vig_Prop'])) | |
disp_market['FANDUEL'] = disp_market['Name'].map(fanduel_dict) | |
disp_market['DRAFTKINGS'] = disp_market['Name'].map(draftkings_dict) | |
disp_market['MGM'] = disp_market['Name'].map(mgm_dict) | |
disp_market['BET365'] = disp_market['Name'].map(bet365_dict) | |
disp_market = disp_market[['Name', 'Position','FANDUEL', 'DRAFTKINGS', 'MGM', 'BET365']] | |
disp_market = disp_market.drop_duplicates(subset=['Name'], keep='first', ignore_index=True) | |
st.dataframe(disp_market.style.background_gradient(axis=1, subset=['FANDUEL', 'DRAFTKINGS', 'MGM', 'BET365'], cmap='RdYlGn').format(prop_format, precision=2), height = 1000, use_container_width = True) | |
st.download_button( | |
label="Export Market Props", | |
data=convert_df_to_csv(disp_market), | |
file_name='NCAAF_market_props_export.csv', | |
mime='text/csv', | |
) |