Spaces:
Running
Running
James McCool
commited on
Commit
·
8d589f1
1
Parent(s):
632ebd1
added connections and tabs
Browse files
app.py
CHANGED
@@ -37,12 +37,10 @@ def init_conn():
|
|
37 |
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
|
38 |
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
|
39 |
}
|
40 |
-
|
41 |
-
NFL_Data = st.secrets['NFL_Data']
|
42 |
|
43 |
uri = st.secrets['mongo_uri']
|
44 |
client = MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=100000)
|
45 |
-
dfs_db = client["
|
46 |
props_db = client["Props_DB"]
|
47 |
|
48 |
gc = gspread.service_account_from_dict(credentials)
|
@@ -57,44 +55,12 @@ american_format = {'First Inning Lead Percentage': '{:.2%}', 'Fifth Inning Lead
|
|
57 |
|
58 |
@st.cache_resource(ttl=600)
|
59 |
def init_baselines():
|
60 |
-
collection = dfs_db["
|
61 |
cursor = collection.find()
|
62 |
raw_display = pd.DataFrame(list(cursor))
|
63 |
game_model = raw_display[['Team', 'Opp', 'Win%', 'Vegas', 'Win% Diff', 'Win Line', 'Vegas Line', 'Line Diff', 'PD Spread', 'Vegas Spread', 'Spread Diff']]
|
64 |
-
|
65 |
-
collection = dfs_db["Player_Stats"]
|
66 |
-
cursor = collection.find()
|
67 |
-
raw_display = pd.DataFrame(list(cursor))
|
68 |
-
overall_stats = raw_display[['Player', 'Position', 'Team', 'Opp', 'rush_att', 'rec', 'dropbacks', 'rush_yards', 'rush_tds', 'rec_yards', 'rec_tds', 'pass_att', 'pass_yards', 'pass_tds', 'PPR', 'Half_PPR']]
|
69 |
-
|
70 |
-
collection = dfs_db["Prop_Trends"]
|
71 |
-
cursor = collection.find()
|
72 |
-
raw_display = pd.DataFrame(list(cursor))
|
73 |
-
prop_trends = raw_display[['Player', 'over_prop', 'over_line', 'under_prop', 'under_line', 'book', 'prop_type', 'No Vig', 'Team', 'L3 Success', 'L6_Success', 'L10_success', 'L6 Avg', 'Projection',
|
74 |
-
'Proj Diff', 'Implied Over', 'Trending Over', 'Over Edge', 'Implied Under', 'Trending Under', 'Under Edge']]
|
75 |
-
|
76 |
-
collection = dfs_db["DK_NFL_ROO"]
|
77 |
-
cursor = collection.find()
|
78 |
|
79 |
-
|
80 |
-
raw_display = raw_display[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%',
|
81 |
-
'Own', 'Small_Field_Own', 'Large_Field_Own', 'Cash_Field_Own', 'CPT_Own', 'LevX', 'version', 'slate', 'timestamp', 'player_id', 'site']]
|
82 |
-
load_display = raw_display[raw_display['Position'] != 'K']
|
83 |
-
timestamp = load_display['timestamp'][0]
|
84 |
-
|
85 |
-
collection = dfs_db["Prop_Trends"]
|
86 |
-
cursor = collection.find()
|
87 |
-
raw_display = pd.DataFrame(list(cursor))
|
88 |
-
prop_frame = raw_display[['Player', 'over_prop', 'over_line', 'under_prop', 'under_line', 'book', 'prop_type', 'No Vig', 'Team', 'L3 Success', 'L6_Success', 'L10_success', 'L6 Avg', 'Projection',
|
89 |
-
'Proj Diff', 'Implied Over', 'Trending Over', 'Over Edge', 'Implied Under', 'Trending Under', 'Under Edge']]
|
90 |
-
|
91 |
-
collection = dfs_db['Pick6_Trends']
|
92 |
-
cursor = collection.find()
|
93 |
-
raw_display = pd.DataFrame(list(cursor))
|
94 |
-
pick_frame = raw_display[['Player', 'over_prop', 'over_line', 'under_prop', 'under_line', 'book', 'prop_type', 'No Vig', 'Team', 'L3 Success', 'L6_Success', 'L10_success', 'L6 Avg', 'Projection',
|
95 |
-
'Proj Diff', 'Implied Over', 'Trending Over', 'Over Edge', 'Implied Under', 'Trending Under', 'Under Edge', 'last_name', 'P6_name', 'Full_name']]
|
96 |
-
|
97 |
-
collection = props_db["NFL_Props"]
|
98 |
cursor = collection.find()
|
99 |
|
100 |
raw_display = pd.DataFrame(list(cursor))
|
@@ -104,22 +70,41 @@ def init_baselines():
|
|
104 |
market_props['under_prop'] = market_props['Projection']
|
105 |
market_props['under_line'] = market_props['under_pay'].apply(lambda x: (x - 1) * 100 if x >= 2.0 else -100 / (x - 1))
|
106 |
|
107 |
-
return game_model,
|
108 |
|
109 |
def convert_df_to_csv(df):
|
110 |
return df.to_csv().encode('utf-8')
|
111 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
with tab1:
|
113 |
-
st.info(t_stamp)
|
114 |
if st.button("Reset Data", key='reset1'):
|
115 |
st.cache_data.clear()
|
116 |
-
game_model,
|
117 |
-
qb_stats = overall_stats[overall_stats['Position'] == 'QB']
|
118 |
-
qb_stats = qb_stats.drop_duplicates(subset=['Player', 'Position'])
|
119 |
-
non_qb_stats = overall_stats[overall_stats['Position'] != 'QB']
|
120 |
-
non_qb_stats = non_qb_stats.drop_duplicates(subset=['Player', 'Position'])
|
121 |
-
team_dict = dict(zip(prop_frame['Player'], prop_frame['Team']))
|
122 |
-
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
123 |
line_var1 = st.radio('How would you like to display odds?', options = ['Percentage', 'American'], key='line_var1')
|
124 |
team_frame = game_model
|
125 |
if line_var1 == 'Percentage':
|
@@ -137,7 +122,40 @@ with tab1:
|
|
137 |
st.download_button(
|
138 |
label="Export Team Model",
|
139 |
data=convert_df_to_csv(team_frame),
|
140 |
-
file_name='
|
141 |
mime='text/csv',
|
142 |
key='team_export',
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
)
|
|
|
37 |
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
|
38 |
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
|
39 |
}
|
|
|
|
|
40 |
|
41 |
uri = st.secrets['mongo_uri']
|
42 |
client = MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=100000)
|
43 |
+
dfs_db = client["NCAAF_Database"]
|
44 |
props_db = client["Props_DB"]
|
45 |
|
46 |
gc = gspread.service_account_from_dict(credentials)
|
|
|
55 |
|
56 |
@st.cache_resource(ttl=600)
|
57 |
def init_baselines():
|
58 |
+
collection = dfs_db["NCAAF_GameModel"]
|
59 |
cursor = collection.find()
|
60 |
raw_display = pd.DataFrame(list(cursor))
|
61 |
game_model = raw_display[['Team', 'Opp', 'Win%', 'Vegas', 'Win% Diff', 'Win Line', 'Vegas Line', 'Line Diff', 'PD Spread', 'Vegas Spread', 'Spread Diff']]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
+
collection = props_db["NCAAF_Props"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
cursor = collection.find()
|
65 |
|
66 |
raw_display = pd.DataFrame(list(cursor))
|
|
|
70 |
market_props['under_prop'] = market_props['Projection']
|
71 |
market_props['under_line'] = market_props['under_pay'].apply(lambda x: (x - 1) * 100 if x >= 2.0 else -100 / (x - 1))
|
72 |
|
73 |
+
return game_model, market_props
|
74 |
|
75 |
def convert_df_to_csv(df):
|
76 |
return df.to_csv().encode('utf-8')
|
77 |
|
78 |
+
def calculate_no_vig(row):
|
79 |
+
def implied_probability(american_odds):
|
80 |
+
if american_odds < 0:
|
81 |
+
return (-american_odds) / ((-american_odds) + 100)
|
82 |
+
else:
|
83 |
+
return 100 / (american_odds + 100)
|
84 |
+
|
85 |
+
over_line = row['over_line']
|
86 |
+
under_line = row['under_line']
|
87 |
+
over_prop = row['over_prop']
|
88 |
+
|
89 |
+
over_prob = implied_probability(over_line)
|
90 |
+
under_prob = implied_probability(under_line)
|
91 |
+
|
92 |
+
total_prob = over_prob + under_prob
|
93 |
+
no_vig_prob = (over_prob / total_prob + 0.5) * over_prop
|
94 |
+
|
95 |
+
return no_vig_prob
|
96 |
+
|
97 |
+
prop_table_options = ['NCAAF_GAME_PLAYER_PASSING_YARDS', 'NCAAF_GAME_PLAYER_RUSHING_YARDS', 'NCAAF_GAME_PLAYER_PASSING_ATTEMPTS', 'NCAAF_GAME_PLAYER_PASSING_TOUCHDOWNS', 'NCAAF_GAME_PLAYER_PASSING_COMPLETIONS', 'NCAAF_GAME_PLAYER_RUSHING_ATTEMPTS',
|
98 |
+
'NCAAF_GAME_PLAYER_RECEIVING_RECEPTIONS', 'NCAAF_GAME_PLAYER_RECEIVING_YARDS', 'NCAAF_GAME_PLAYER_RECEIVING_TOUCHDOWNS']
|
99 |
+
prop_format = {'L3 Success': '{:.2%}', 'L6_Success': '{:.2%}', 'L10_success': '{:.2%}', 'Trending Over': '{:.2%}', 'Trending Under': '{:.2%}',
|
100 |
+
'Implied Over': '{:.2%}', 'Implied Under': '{:.2%}', 'Over Edge': '{:.2%}', 'Under Edge': '{:.2%}'}
|
101 |
+
|
102 |
+
tab1, tab2 = st.tabs(["Game Model", "Prop Market"])
|
103 |
+
|
104 |
with tab1:
|
|
|
105 |
if st.button("Reset Data", key='reset1'):
|
106 |
st.cache_data.clear()
|
107 |
+
game_model, market_props = init_baselines()
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
line_var1 = st.radio('How would you like to display odds?', options = ['Percentage', 'American'], key='line_var1')
|
109 |
team_frame = game_model
|
110 |
if line_var1 == 'Percentage':
|
|
|
122 |
st.download_button(
|
123 |
label="Export Team Model",
|
124 |
data=convert_df_to_csv(team_frame),
|
125 |
+
file_name='NCAAF_team_betting_export.csv',
|
126 |
mime='text/csv',
|
127 |
key='team_export',
|
128 |
+
)
|
129 |
+
|
130 |
+
with tab2:
|
131 |
+
if st.button("Reset Data", key='reset4'):
|
132 |
+
st.cache_data.clear()
|
133 |
+
game_model, market_props = init_baselines()
|
134 |
+
market_type = st.selectbox('Select type of prop are you wanting to view', options = prop_table_options, key = 'market_type_key')
|
135 |
+
disp_market = market_props.copy()
|
136 |
+
disp_market = disp_market[disp_market['PropType'] == market_type]
|
137 |
+
disp_market['No_Vig_Prop'] = disp_market.apply(calculate_no_vig, axis=1)
|
138 |
+
fanduel_frame = disp_market[disp_market['OddsType'] == 'FANDUEL']
|
139 |
+
fanduel_dict = dict(zip(fanduel_frame['Name'], fanduel_frame['No_Vig_Prop']))
|
140 |
+
draftkings_frame = disp_market[disp_market['OddsType'] == 'DRAFTKINGS']
|
141 |
+
draftkings_dict = dict(zip(draftkings_frame['Name'], draftkings_frame['No_Vig_Prop']))
|
142 |
+
mgm_frame = disp_market[disp_market['OddsType'] == 'MGM']
|
143 |
+
mgm_dict = dict(zip(mgm_frame['Name'], mgm_frame['No_Vig_Prop']))
|
144 |
+
bet365_frame = disp_market[disp_market['OddsType'] == 'BET_365']
|
145 |
+
bet365_dict = dict(zip(bet365_frame['Name'], bet365_frame['No_Vig_Prop']))
|
146 |
+
|
147 |
+
disp_market['FANDUEL'] = disp_market['Name'].map(fanduel_dict)
|
148 |
+
disp_market['DRAFTKINGS'] = disp_market['Name'].map(draftkings_dict)
|
149 |
+
disp_market['MGM'] = disp_market['Name'].map(mgm_dict)
|
150 |
+
disp_market['BET365'] = disp_market['Name'].map(bet365_dict)
|
151 |
+
|
152 |
+
disp_market = disp_market[['Name', 'Position','FANDUEL', 'DRAFTKINGS', 'MGM', 'BET365']]
|
153 |
+
disp_market = disp_market.drop_duplicates(subset=['Name'], keep='first', ignore_index=True)
|
154 |
+
|
155 |
+
st.dataframe(disp_market.style.background_gradient(axis=1, subset=['FANDUEL', 'DRAFTKINGS', 'MGM', 'BET365'], cmap='RdYlGn').format(prop_format, precision=2), height = 1000, use_container_width = True)
|
156 |
+
st.download_button(
|
157 |
+
label="Export Market Props",
|
158 |
+
data=convert_df_to_csv(disp_market),
|
159 |
+
file_name='NCAAF_market_props_export.csv',
|
160 |
+
mime='text/csv',
|
161 |
)
|