Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -116,8 +116,17 @@ def create_stack_options(player_data, wr_var):
|
|
116 |
|
117 |
return correl_dict
|
118 |
|
119 |
-
def create_overall_dfs(pos_players, table_name, dict_name, pos):
|
120 |
-
if pos == "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
pos_players = pos_players.sort_values(by='Value', ascending=False)
|
122 |
table_name_raw = pos_players.reset_index(drop=True)
|
123 |
overall_table_name = table_name_raw.head(round(len(table_name_raw)))
|
@@ -126,6 +135,7 @@ def create_overall_dfs(pos_players, table_name, dict_name, pos):
|
|
126 |
|
127 |
del pos_players
|
128 |
del table_name_raw
|
|
|
129 |
elif pos != "FLEX":
|
130 |
table_name_raw = pos_players[pos_players['Position'].str.contains(pos)].reset_index(drop=True)
|
131 |
overall_table_name = table_name_raw.head(round(len(table_name_raw)))
|
@@ -140,14 +150,14 @@ def create_overall_dfs(pos_players, table_name, dict_name, pos):
|
|
140 |
|
141 |
def get_overall_merged_df():
|
142 |
ref_dict = {
|
143 |
-
'pos':['RB', 'WR', 'FLEX'],
|
144 |
-
'pos_dfs':['RB_Table', 'WR_Table', 'FLEX_Table'],
|
145 |
-
'pos_dicts':['rb_dict', 'wr_dict', 'flex_dict']
|
146 |
}
|
147 |
|
148 |
-
for i in range(0,
|
149 |
ref_dict['pos_dfs'][i], ref_dict['pos_dicts'][i] =\
|
150 |
-
create_overall_dfs(pos_players, ref_dict['pos_dfs'][i], ref_dict['pos_dicts'][i], ref_dict['pos'][i])
|
151 |
|
152 |
df_out = pd.concat(ref_dict['pos_dfs'], ignore_index=True)
|
153 |
|
@@ -168,29 +178,26 @@ def create_random_portfolio(Total_Sample_Size, raw_baselines):
|
|
168 |
ranges_dict = {}
|
169 |
|
170 |
# Calculate ranges
|
171 |
-
for df, dict_val, min_val, key in zip(ref_dict['pos_dfs'], ref_dict['pos_dicts'], [10, 20, 30], ['RB', 'WR', 'FLEX']):
|
172 |
-
count = create_overall_dfs(pos_players, df, dict_val, key)
|
173 |
ranges_dict[f"{key.lower()}_range"] = calculate_range_var(count, min_val, FieldStrength, field_growth_rounded)
|
174 |
if max_var <= 10:
|
175 |
ranges_dict['qb_range'] = round(max_var)
|
176 |
-
ranges_dict['dst_range'] = round(max_var)
|
177 |
elif max_var > 10 and max_var <= 16:
|
178 |
ranges_dict['qb_range'] = round(max_var / 1.5)
|
179 |
-
ranges_dict['dst_range'] = round(max_var)
|
180 |
elif max_var > 16:
|
181 |
ranges_dict['qb_range'] = round(max_var / 2)
|
182 |
-
ranges_dict['dst_range'] = round(max_var)
|
183 |
# Generate unique ranges
|
184 |
# for key, value in ranges_dict.items():
|
185 |
# ranges_dict[f"{key}_Uniques"] = list(range(0, value, 1))
|
186 |
|
187 |
# Generate random portfolios
|
188 |
rng = np.random.default_rng()
|
189 |
-
total_elements = [1,
|
190 |
-
keys = ['qb', 'rb', 'wr', 'flex', '
|
191 |
|
192 |
all_choices = [rng.choice(ranges_dict[f"{key}_range"], size=(Total_Sample_Size, elem)) for key, elem in zip(keys, total_elements)]
|
193 |
-
RandomPortfolio = pd.DataFrame(np.hstack(all_choices), columns=['QB', 'RB1', 'WR1', 'WR2', '
|
194 |
RandomPortfolio['User/Field'] = 0
|
195 |
|
196 |
del O_merge
|
@@ -207,14 +214,15 @@ def get_correlated_portfolio_for_sim(Total_Sample_Size):
|
|
207 |
|
208 |
RandomPortfolio['QB'] = pd.Series(list(RandomPortfolio['QB'].map(qb_dict)), dtype="string[pyarrow]")
|
209 |
RandomPortfolio['RB1'] = pd.Series(list(RandomPortfolio['RB1'].map(full_pos_player_dict['pos_dicts'][0])), dtype="string[pyarrow]")
|
|
|
210 |
RandomPortfolio['WR1'] = pd.Series(list(RandomPortfolio['QB'].map(stacking_dict)), dtype="string[pyarrow]")
|
211 |
RandomPortfolio['WR2'] = pd.Series(list(RandomPortfolio['WR2'].map(full_pos_player_dict['pos_dicts'][1])), dtype="string[pyarrow]")
|
212 |
-
RandomPortfolio['
|
213 |
-
RandomPortfolio['
|
214 |
-
RandomPortfolio['
|
215 |
RandomPortfolio['plyr_list'] = RandomPortfolio[RandomPortfolio.columns.values.tolist()].values.tolist()
|
216 |
RandomPortfolio['plyr_count'] = RandomPortfolio['plyr_list'].apply(lambda x: len(set(x)))
|
217 |
-
RandomPortfolio = RandomPortfolio[RandomPortfolio['plyr_count'] ==
|
218 |
reset_index(drop=True)
|
219 |
|
220 |
del sizesplit
|
@@ -225,38 +233,41 @@ def get_correlated_portfolio_for_sim(Total_Sample_Size):
|
|
225 |
|
226 |
RandomPortfolio['QBs'] = RandomPortfolio['QB'].map(maps_dict['Salary_map']).astype(np.int32)
|
227 |
RandomPortfolio['RB1s'] = RandomPortfolio['RB1'].map(maps_dict['Salary_map']).astype(np.int32)
|
|
|
228 |
RandomPortfolio['WR1s'] = RandomPortfolio['WR1'].map(maps_dict['Salary_map']).astype(np.int32)
|
229 |
RandomPortfolio['WR2s'] = RandomPortfolio['WR2'].map(maps_dict['Salary_map']).astype(np.int32)
|
230 |
-
RandomPortfolio['
|
231 |
-
RandomPortfolio['
|
232 |
-
RandomPortfolio['
|
233 |
|
234 |
RandomPortfolio['QBp'] = RandomPortfolio['QB'].map(maps_dict['Projection_map']).astype(np.float16)
|
235 |
RandomPortfolio['RB1p'] = RandomPortfolio['RB1'].map(maps_dict['Projection_map']).astype(np.float16)
|
|
|
236 |
RandomPortfolio['WR1p'] = RandomPortfolio['WR1'].map(maps_dict['Projection_map']).astype(np.float16)
|
237 |
RandomPortfolio['WR2p'] = RandomPortfolio['WR2'].map(maps_dict['Projection_map']).astype(np.float16)
|
238 |
-
RandomPortfolio['
|
239 |
-
RandomPortfolio['
|
240 |
-
RandomPortfolio['
|
241 |
|
242 |
RandomPortfolio['QBo'] = RandomPortfolio['QB'].map(maps_dict['Own_map']).astype(np.float16)
|
243 |
RandomPortfolio['RB1o'] = RandomPortfolio['RB1'].map(maps_dict['Own_map']).astype(np.float16)
|
|
|
244 |
RandomPortfolio['WR1o'] = RandomPortfolio['WR1'].map(maps_dict['Own_map']).astype(np.float16)
|
245 |
RandomPortfolio['WR2o'] = RandomPortfolio['WR2'].map(maps_dict['Own_map']).astype(np.float16)
|
246 |
-
RandomPortfolio['
|
247 |
-
RandomPortfolio['
|
248 |
-
RandomPortfolio['
|
249 |
|
250 |
RandomPortArray = RandomPortfolio.to_numpy()
|
251 |
del RandomPortfolio
|
252 |
|
253 |
-
RandomPortArray = np.c_[RandomPortArray, np.einsum('ij->i',RandomPortArray[:,
|
254 |
-
RandomPortArray = np.c_[RandomPortArray, np.einsum('ij->i',RandomPortArray[:,
|
255 |
-
RandomPortArray = np.c_[RandomPortArray, np.einsum('ij->i',RandomPortArray[:,
|
256 |
# st.write(RandomPortArray[:,:100])
|
257 |
-
RandomPortArrayOut = np.delete(RandomPortArray, np.s_[
|
258 |
# st.write(RandomPortArrayOut[:,:100])
|
259 |
-
RandomPortfolioDF = pd.DataFrame(RandomPortArrayOut, columns = ['QB', 'RB1', 'WR1', 'WR2', '
|
260 |
RandomPortfolioDF = RandomPortfolioDF.sort_values(by=Sim_function, ascending=False)
|
261 |
del RandomPortArray
|
262 |
del RandomPortArrayOut
|
@@ -264,29 +275,32 @@ def get_correlated_portfolio_for_sim(Total_Sample_Size):
|
|
264 |
if insert_port == 1:
|
265 |
CleanPortfolio['Salary'] = sum([CleanPortfolio['QB'].map(maps_dict['Salary_map']),
|
266 |
CleanPortfolio['RB1'].map(maps_dict['Salary_map']),
|
|
|
267 |
CleanPortfolio['WR1'].map(maps_dict['Salary_map']),
|
268 |
CleanPortfolio['WR2'].map(maps_dict['Salary_map']),
|
269 |
-
CleanPortfolio['
|
270 |
-
CleanPortfolio['
|
271 |
-
CleanPortfolio['
|
272 |
]).astype(np.int16)
|
273 |
if insert_port == 1:
|
274 |
CleanPortfolio['Projection'] = sum([CleanPortfolio['QB'].map(up_dict['Projection_map']),
|
275 |
CleanPortfolio['RB1'].map(up_dict['Projection_map']),
|
|
|
276 |
CleanPortfolio['WR1'].map(up_dict['Projection_map']),
|
277 |
CleanPortfolio['WR2'].map(up_dict['Projection_map']),
|
278 |
-
CleanPortfolio['
|
279 |
-
CleanPortfolio['
|
280 |
-
CleanPortfolio['
|
281 |
]).astype(np.float16)
|
282 |
if insert_port == 1:
|
283 |
CleanPortfolio['Own'] = sum([CleanPortfolio['QB'].map(maps_dict['Own_map']),
|
284 |
CleanPortfolio['RB1'].map(maps_dict['Own_map']),
|
|
|
285 |
CleanPortfolio['WR1'].map(maps_dict['Own_map']),
|
286 |
CleanPortfolio['WR2'].map(maps_dict['Own_map']),
|
287 |
-
CleanPortfolio['
|
288 |
-
CleanPortfolio['
|
289 |
-
CleanPortfolio['
|
290 |
]).astype(np.float16)
|
291 |
|
292 |
if site_var1 == 'Draftkings':
|
@@ -295,7 +309,7 @@ def get_correlated_portfolio_for_sim(Total_Sample_Size):
|
|
295 |
|
296 |
RandomPortfolio = RandomPortfolioDF.sort_values(by=Sim_function, ascending=False)
|
297 |
|
298 |
-
RandomPortfolio = RandomPortfolio[['QB', 'RB1', 'WR1', 'WR2', '
|
299 |
|
300 |
return RandomPortfolio, maps_dict
|
301 |
|
@@ -307,54 +321,58 @@ def get_uncorrelated_portfolio_for_sim(Total_Sample_Size):
|
|
307 |
|
308 |
RandomPortfolio['QB'] = pd.Series(list(RandomPortfolio['QB'].map(qb_dict)), dtype="string[pyarrow]")
|
309 |
RandomPortfolio['RB1'] = pd.Series(list(RandomPortfolio['RB1'].map(full_pos_player_dict['pos_dicts'][0])), dtype="string[pyarrow]")
|
|
|
310 |
RandomPortfolio['WR1'] = pd.Series(list(RandomPortfolio['WR1'].map(full_pos_player_dict['pos_dicts'][1])), dtype="string[pyarrow]")
|
311 |
RandomPortfolio['WR2'] = pd.Series(list(RandomPortfolio['WR2'].map(full_pos_player_dict['pos_dicts'][1])), dtype="string[pyarrow]")
|
312 |
-
RandomPortfolio['
|
313 |
-
RandomPortfolio['
|
314 |
-
RandomPortfolio['
|
315 |
RandomPortfolio['plyr_list'] = RandomPortfolio[RandomPortfolio.columns.values.tolist()].values.tolist()
|
316 |
RandomPortfolio['plyr_count'] = RandomPortfolio['plyr_list'].apply(lambda x: len(set(x)))
|
317 |
-
RandomPortfolio = RandomPortfolio[RandomPortfolio['plyr_count'] ==
|
318 |
reset_index(drop=True)
|
319 |
|
320 |
del sizesplit
|
321 |
del full_pos_player_dict
|
322 |
-
del ranges_dict
|
323 |
|
324 |
RandomPortfolio['QBs'] = RandomPortfolio['QB'].map(maps_dict['Salary_map']).astype(np.int32)
|
325 |
RandomPortfolio['RB1s'] = RandomPortfolio['RB1'].map(maps_dict['Salary_map']).astype(np.int32)
|
|
|
326 |
RandomPortfolio['WR1s'] = RandomPortfolio['WR1'].map(maps_dict['Salary_map']).astype(np.int32)
|
327 |
RandomPortfolio['WR2s'] = RandomPortfolio['WR2'].map(maps_dict['Salary_map']).astype(np.int32)
|
328 |
-
RandomPortfolio['
|
329 |
-
RandomPortfolio['
|
330 |
-
RandomPortfolio['
|
331 |
|
332 |
RandomPortfolio['QBp'] = RandomPortfolio['QB'].map(maps_dict['Projection_map']).astype(np.float16)
|
333 |
RandomPortfolio['RB1p'] = RandomPortfolio['RB1'].map(maps_dict['Projection_map']).astype(np.float16)
|
|
|
334 |
RandomPortfolio['WR1p'] = RandomPortfolio['WR1'].map(maps_dict['Projection_map']).astype(np.float16)
|
335 |
RandomPortfolio['WR2p'] = RandomPortfolio['WR2'].map(maps_dict['Projection_map']).astype(np.float16)
|
336 |
-
RandomPortfolio['
|
337 |
-
RandomPortfolio['
|
338 |
-
RandomPortfolio['
|
339 |
|
340 |
RandomPortfolio['QBo'] = RandomPortfolio['QB'].map(maps_dict['Own_map']).astype(np.float16)
|
341 |
RandomPortfolio['RB1o'] = RandomPortfolio['RB1'].map(maps_dict['Own_map']).astype(np.float16)
|
|
|
342 |
RandomPortfolio['WR1o'] = RandomPortfolio['WR1'].map(maps_dict['Own_map']).astype(np.float16)
|
343 |
RandomPortfolio['WR2o'] = RandomPortfolio['WR2'].map(maps_dict['Own_map']).astype(np.float16)
|
344 |
-
RandomPortfolio['
|
345 |
-
RandomPortfolio['
|
346 |
-
RandomPortfolio['
|
347 |
|
348 |
RandomPortArray = RandomPortfolio.to_numpy()
|
349 |
del RandomPortfolio
|
350 |
|
351 |
-
RandomPortArray = np.c_[RandomPortArray, np.einsum('ij->i',RandomPortArray[:,
|
352 |
-
RandomPortArray = np.c_[RandomPortArray, np.einsum('ij->i',RandomPortArray[:,
|
353 |
-
RandomPortArray = np.c_[RandomPortArray, np.einsum('ij->i',RandomPortArray[:,
|
354 |
# st.write(RandomPortArray[:,:100])
|
355 |
-
RandomPortArrayOut = np.delete(RandomPortArray, np.s_[
|
356 |
# st.write(RandomPortArrayOut[:,:100])
|
357 |
-
RandomPortfolioDF = pd.DataFrame(RandomPortArrayOut, columns = ['QB', 'RB1', 'WR1', 'WR2', '
|
358 |
RandomPortfolioDF = RandomPortfolioDF.sort_values(by=Sim_function, ascending=False)
|
359 |
del RandomPortArray
|
360 |
del RandomPortArrayOut
|
@@ -362,29 +380,32 @@ def get_uncorrelated_portfolio_for_sim(Total_Sample_Size):
|
|
362 |
if insert_port == 1:
|
363 |
CleanPortfolio['Salary'] = sum([CleanPortfolio['QB'].map(maps_dict['Salary_map']),
|
364 |
CleanPortfolio['RB1'].map(maps_dict['Salary_map']),
|
|
|
365 |
CleanPortfolio['WR1'].map(maps_dict['Salary_map']),
|
366 |
CleanPortfolio['WR2'].map(maps_dict['Salary_map']),
|
367 |
-
CleanPortfolio['
|
368 |
-
CleanPortfolio['
|
369 |
-
CleanPortfolio['
|
370 |
]).astype(np.int16)
|
371 |
if insert_port == 1:
|
372 |
CleanPortfolio['Projection'] = sum([CleanPortfolio['QB'].map(up_dict['Projection_map']),
|
373 |
CleanPortfolio['RB1'].map(up_dict['Projection_map']),
|
|
|
374 |
CleanPortfolio['WR1'].map(up_dict['Projection_map']),
|
375 |
CleanPortfolio['WR2'].map(up_dict['Projection_map']),
|
376 |
-
CleanPortfolio['
|
377 |
-
CleanPortfolio['
|
378 |
-
CleanPortfolio['
|
379 |
]).astype(np.float16)
|
380 |
if insert_port == 1:
|
381 |
CleanPortfolio['Own'] = sum([CleanPortfolio['QB'].map(maps_dict['Own_map']),
|
382 |
CleanPortfolio['RB1'].map(maps_dict['Own_map']),
|
|
|
383 |
CleanPortfolio['WR1'].map(maps_dict['Own_map']),
|
384 |
CleanPortfolio['WR2'].map(maps_dict['Own_map']),
|
385 |
-
CleanPortfolio['
|
386 |
-
CleanPortfolio['
|
387 |
-
CleanPortfolio['
|
388 |
]).astype(np.float16)
|
389 |
|
390 |
if site_var1 == 'Draftkings':
|
@@ -393,7 +414,7 @@ def get_uncorrelated_portfolio_for_sim(Total_Sample_Size):
|
|
393 |
|
394 |
RandomPortfolio = RandomPortfolioDF.sort_values(by=Sim_function, ascending=False)
|
395 |
|
396 |
-
RandomPortfolio = RandomPortfolio[['QB', 'RB1', 'WR1', 'WR2', '
|
397 |
|
398 |
return RandomPortfolio, maps_dict
|
399 |
|
@@ -435,7 +456,7 @@ with tab1:
|
|
435 |
player_team_dict = dict(zip(proj_dataframe.Player, proj_dataframe.Team))
|
436 |
|
437 |
with col2:
|
438 |
-
st.info("The Portfolio file must contain only columns in order and explicitly named: 'QB', 'RB1', 'WR1', 'WR2', '
|
439 |
portfolio_file = st.file_uploader("Upload Portfolio File", key = 'portfolio_uploader')
|
440 |
|
441 |
if portfolio_file is not None:
|
@@ -447,158 +468,173 @@ with tab1:
|
|
447 |
|
448 |
try:
|
449 |
try:
|
450 |
-
portfolio_dataframe.columns=["QB", "RB1", "WR1", "WR2", "
|
451 |
split_portfolio = portfolio_dataframe
|
452 |
split_portfolio[['QB', 'QB_ID']] = split_portfolio.QB.str.split("(", n=1, expand = True)
|
453 |
split_portfolio[['RB1', 'RB1_ID']] = split_portfolio.RB1.str.split("(", n=1, expand = True)
|
|
|
454 |
split_portfolio[['WR1', 'WR1_ID']] = split_portfolio.WR1.str.split("(", n=1, expand = True)
|
455 |
split_portfolio[['WR2', 'WR2_ID']] = split_portfolio.WR2.str.split("(", n=1, expand = True)
|
456 |
-
split_portfolio[['
|
457 |
-
split_portfolio[['
|
458 |
-
split_portfolio[['
|
459 |
|
460 |
split_portfolio['QB'] = split_portfolio['QB'].str.strip()
|
461 |
split_portfolio['RB1'] = split_portfolio['RB1'].str.strip()
|
|
|
462 |
split_portfolio['WR1'] = split_portfolio['WR1'].str.strip()
|
463 |
split_portfolio['WR2'] = split_portfolio['WR2'].str.strip()
|
464 |
-
split_portfolio['
|
465 |
-
split_portfolio['
|
466 |
-
split_portfolio['
|
467 |
|
468 |
st.table(split_portfolio.head(10))
|
469 |
|
470 |
split_portfolio['Salary'] = sum([split_portfolio['QB'].map(player_salary_dict),
|
471 |
split_portfolio['RB1'].map(player_salary_dict),
|
|
|
472 |
split_portfolio['WR1'].map(player_salary_dict),
|
473 |
split_portfolio['WR2'].map(player_salary_dict),
|
474 |
-
split_portfolio['
|
475 |
-
split_portfolio['
|
476 |
-
split_portfolio['
|
477 |
|
478 |
split_portfolio['Projection'] = sum([split_portfolio['QB'].map(player_proj_dict),
|
479 |
split_portfolio['RB1'].map(player_proj_dict),
|
|
|
480 |
split_portfolio['WR1'].map(player_proj_dict),
|
481 |
split_portfolio['WR2'].map(player_proj_dict),
|
482 |
-
split_portfolio['
|
483 |
-
split_portfolio['
|
484 |
-
split_portfolio['
|
485 |
|
486 |
split_portfolio['Ownership'] = sum([split_portfolio['QB'].map(player_own_dict),
|
487 |
split_portfolio['RB1'].map(player_own_dict),
|
|
|
488 |
split_portfolio['WR1'].map(player_own_dict),
|
489 |
split_portfolio['WR2'].map(player_own_dict),
|
490 |
-
split_portfolio['
|
491 |
-
split_portfolio['
|
492 |
-
split_portfolio['
|
493 |
|
494 |
split_portfolio['QB_team'] = split_portfolio['QB'].map(player_team_dict)
|
495 |
split_portfolio['RB1_team'] = split_portfolio['RB1'].map(player_team_dict)
|
|
|
496 |
split_portfolio['WR1_team'] = split_portfolio['WR1'].map(player_team_dict)
|
497 |
split_portfolio['WR2_team'] = split_portfolio['WR2'].map(player_team_dict)
|
498 |
-
split_portfolio['
|
499 |
-
split_portfolio['
|
500 |
-
split_portfolio['
|
501 |
|
502 |
-
split_portfolio = split_portfolio[['QB', 'RB1', 'WR1', 'WR2', '
|
503 |
-
'RB1_team', 'WR1_team', 'WR2_team', '
|
504 |
|
505 |
|
506 |
except:
|
507 |
-
portfolio_dataframe.columns=["QB", "RB1", "WR1", "WR2", "
|
508 |
|
509 |
split_portfolio = portfolio_dataframe
|
510 |
split_portfolio[['QB_ID', 'QB']] = split_portfolio.QB.str.split(":", n=1, expand = True)
|
511 |
split_portfolio[['RB1_ID', 'RB1']] = split_portfolio.RB1.str.split(":", n=1, expand = True)
|
|
|
512 |
split_portfolio[['WR1_ID', 'WR1']] = split_portfolio.WR1.str.split(":", n=1, expand = True)
|
513 |
split_portfolio[['WR2_ID', 'WR2']] = split_portfolio.WR2.str.split(":", n=1, expand = True)
|
514 |
-
split_portfolio[['
|
515 |
-
split_portfolio[['
|
516 |
-
split_portfolio[['
|
517 |
|
518 |
split_portfolio['QB'] = split_portfolio['QB'].str.strip()
|
519 |
split_portfolio['RB1'] = split_portfolio['RB1'].str.strip()
|
|
|
520 |
split_portfolio['WR1'] = split_portfolio['WR1'].str.strip()
|
521 |
split_portfolio['WR2'] = split_portfolio['WR2'].str.strip()
|
522 |
-
split_portfolio['
|
523 |
-
split_portfolio['
|
524 |
-
split_portfolio['
|
525 |
|
526 |
split_portfolio['Salary'] = sum([split_portfolio['QB'].map(player_salary_dict),
|
527 |
split_portfolio['RB1'].map(player_salary_dict),
|
|
|
528 |
split_portfolio['WR1'].map(player_salary_dict),
|
529 |
split_portfolio['WR2'].map(player_salary_dict),
|
530 |
-
split_portfolio['
|
531 |
-
split_portfolio['
|
532 |
-
split_portfolio['
|
533 |
|
534 |
split_portfolio['Projection'] = sum([split_portfolio['QB'].map(player_proj_dict),
|
535 |
split_portfolio['RB1'].map(player_proj_dict),
|
|
|
536 |
split_portfolio['WR1'].map(player_proj_dict),
|
537 |
split_portfolio['WR2'].map(player_proj_dict),
|
538 |
-
split_portfolio['
|
539 |
-
split_portfolio['
|
540 |
-
split_portfolio['
|
541 |
|
542 |
st.table(split_portfolio.head(10))
|
543 |
split_portfolio['Ownership'] = sum([split_portfolio['QB'].map(player_own_dict),
|
544 |
split_portfolio['RB1'].map(player_own_dict),
|
|
|
545 |
split_portfolio['WR1'].map(player_own_dict),
|
546 |
split_portfolio['WR2'].map(player_own_dict),
|
547 |
-
split_portfolio['
|
548 |
-
split_portfolio['
|
549 |
-
split_portfolio['
|
550 |
|
551 |
split_portfolio['QB_team'] = split_portfolio['QB'].map(player_team_dict)
|
552 |
split_portfolio['RB1_team'] = split_portfolio['RB1'].map(player_team_dict)
|
|
|
553 |
split_portfolio['WR1_team'] = split_portfolio['WR1'].map(player_team_dict)
|
554 |
split_portfolio['WR2_team'] = split_portfolio['WR2'].map(player_team_dict)
|
555 |
-
split_portfolio['
|
556 |
-
split_portfolio['
|
557 |
-
split_portfolio['
|
558 |
|
559 |
-
split_portfolio = split_portfolio[['QB', 'RB1', 'WR1', 'WR2', '
|
560 |
-
'RB1_team', 'WR1_team', 'WR2_team', '
|
561 |
|
562 |
except:
|
563 |
split_portfolio = portfolio_dataframe
|
564 |
|
565 |
split_portfolio['Salary'] = sum([split_portfolio['QB'].map(player_salary_dict),
|
566 |
split_portfolio['RB1'].map(player_salary_dict),
|
|
|
567 |
split_portfolio['WR1'].map(player_salary_dict),
|
568 |
split_portfolio['WR2'].map(player_salary_dict),
|
569 |
-
split_portfolio['
|
570 |
-
split_portfolio['
|
571 |
-
split_portfolio['
|
572 |
|
573 |
split_portfolio['Projection'] = sum([split_portfolio['QB'].map(player_proj_dict),
|
574 |
split_portfolio['RB1'].map(player_proj_dict),
|
|
|
575 |
split_portfolio['WR1'].map(player_proj_dict),
|
576 |
split_portfolio['WR2'].map(player_proj_dict),
|
577 |
-
split_portfolio['
|
578 |
-
split_portfolio['
|
579 |
-
split_portfolio['
|
580 |
|
581 |
split_portfolio['Ownership'] = sum([split_portfolio['QB'].map(player_own_dict),
|
582 |
split_portfolio['RB1'].map(player_own_dict),
|
|
|
583 |
split_portfolio['WR1'].map(player_own_dict),
|
584 |
split_portfolio['WR2'].map(player_own_dict),
|
585 |
-
split_portfolio['
|
586 |
-
split_portfolio['
|
587 |
-
split_portfolio['
|
588 |
|
589 |
split_portfolio['QB_team'] = split_portfolio['QB'].map(player_team_dict)
|
590 |
split_portfolio['RB1_team'] = split_portfolio['RB1'].map(player_team_dict)
|
|
|
591 |
split_portfolio['WR1_team'] = split_portfolio['WR1'].map(player_team_dict)
|
592 |
split_portfolio['WR2_team'] = split_portfolio['WR2'].map(player_team_dict)
|
593 |
split_portfolio['WR3_team'] = split_portfolio['WR3'].map(player_team_dict)
|
594 |
-
split_portfolio['
|
595 |
-
split_portfolio['
|
596 |
-
split_portfolio['DST_team'] = split_portfolio['DST'].map(player_team_dict)
|
597 |
|
598 |
-
split_portfolio = split_portfolio[['QB', 'RB1', 'WR1', 'WR2', '
|
599 |
-
'RB1_team', 'WR1_team', 'WR2_team', '
|
600 |
|
601 |
-
for player_cols in split_portfolio.iloc[:, :
|
602 |
static_col_raw = split_portfolio[player_cols].value_counts()
|
603 |
static_col = static_col_raw.to_frame()
|
604 |
static_col.reset_index(inplace=True)
|
@@ -619,7 +655,7 @@ with tab1:
|
|
619 |
if portfolio_file is not None:
|
620 |
split_portfolio = split_portfolio
|
621 |
|
622 |
-
for player_cols in split_portfolio.iloc[:, :
|
623 |
exposure_col_raw = split_portfolio[player_cols].value_counts()
|
624 |
exposure_col = exposure_col_raw.to_frame()
|
625 |
exposure_col.reset_index(inplace=True)
|
@@ -646,7 +682,7 @@ with tab1:
|
|
646 |
st.header('Portfolio View')
|
647 |
split_portfolio = split_portfolio.reset_index()
|
648 |
split_portfolio['Lineup'] = split_portfolio['index'] + 1
|
649 |
-
display_portfolio = split_portfolio[['Lineup', 'QB', 'RB1', 'WR1', 'WR2', '
|
650 |
display_portfolio = display_portfolio.set_index('Lineup')
|
651 |
st.dataframe(display_portfolio.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').background_gradient(cmap='RdYlGn_r', subset=['Ownership']).format(precision=2))
|
652 |
del split_portfolio
|
@@ -731,25 +767,25 @@ with tab2:
|
|
731 |
OwnFrame['Own%'] = np.where((OwnFrame['Position'] == 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (10 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean(), OwnFrame['Own'])
|
732 |
OwnFrame['Own%'] = np.where((OwnFrame['Position'] != 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (5 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean(), OwnFrame['Own%'])
|
733 |
OwnFrame['Own%'] = np.where(OwnFrame['Own%'] > 75, 75, OwnFrame['Own%'])
|
734 |
-
OwnFrame['Own'] = OwnFrame['Own%'] * (
|
735 |
if contest_var1 == 'Medium':
|
736 |
OwnFrame['Own%'] = np.where((OwnFrame['Position'] == 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (6 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean(), OwnFrame['Own'])
|
737 |
OwnFrame['Own%'] = np.where((OwnFrame['Position'] != 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (3 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean(), OwnFrame['Own%'])
|
738 |
OwnFrame['Own%'] = np.where(OwnFrame['Own%'] > 75, 75, OwnFrame['Own%'])
|
739 |
-
OwnFrame['Own'] = OwnFrame['Own%'] * (
|
740 |
if contest_var1 == 'Large':
|
741 |
OwnFrame['Own%'] = np.where((OwnFrame['Position'] == 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (3 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean(), OwnFrame['Own'])
|
742 |
OwnFrame['Own%'] = np.where((OwnFrame['Position'] != 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (1.5 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean(), OwnFrame['Own%'])
|
743 |
OwnFrame['Own%'] = np.where(OwnFrame['Own%'] > 75, 75, OwnFrame['Own%'])
|
744 |
-
OwnFrame['Own'] = OwnFrame['Own%'] * (
|
745 |
Overall_Proj = OwnFrame[['Player', 'Team', 'Position', 'Median', 'Own', 'Salary']]
|
746 |
|
747 |
del OwnFrame
|
748 |
|
749 |
if insert_port == 1:
|
750 |
-
UserPortfolio = portfolio_dataframe[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', '
|
751 |
elif insert_port == 0:
|
752 |
-
UserPortfolio = pd.DataFrame(columns = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', '
|
753 |
|
754 |
Overall_Proj.replace('', np.nan, inplace=True)
|
755 |
Overall_Proj = Overall_Proj.dropna(subset=['Median'])
|
@@ -819,6 +855,10 @@ with tab2:
|
|
819 |
pos_players.dropna(subset=['Median']).reset_index(drop=True)
|
820 |
pos_players = pos_players.reset_index(drop=True)
|
821 |
|
|
|
|
|
|
|
|
|
822 |
del qbs_raw
|
823 |
del defs_raw
|
824 |
del rbs_raw
|
@@ -830,7 +870,7 @@ with tab2:
|
|
830 |
Raw_Portfolio = pd.DataFrame()
|
831 |
|
832 |
# Loop through each position and split the data accordingly
|
833 |
-
positions = ['QB', 'RB1', 'WR1', 'WR2', '
|
834 |
for pos in positions:
|
835 |
temp_df = UserPortfolio[pos].str.split("(", n=1, expand=True)
|
836 |
temp_df.columns = [pos, 'Drop']
|
@@ -847,7 +887,7 @@ with tab2:
|
|
847 |
|
848 |
# Create frequency table for players
|
849 |
cleaport_players = pd.DataFrame(
|
850 |
-
np.column_stack(np.unique(CleanPortfolio.iloc[:, 0:
|
851 |
columns=['Player', 'Freq']
|
852 |
).sort_values('Freq', ascending=False).reset_index(drop=True)
|
853 |
cleaport_players['Freq'] = cleaport_players['Freq'].astype(int)
|
@@ -868,7 +908,7 @@ with tab2:
|
|
868 |
|
869 |
# Create frequency table for players
|
870 |
cleaport_players = pd.DataFrame(
|
871 |
-
np.column_stack(np.unique(CleanPortfolio.iloc[:, 0:
|
872 |
columns=['Player', 'Freq']
|
873 |
).sort_values('Freq', ascending=False).reset_index(drop=True)
|
874 |
cleaport_players['Freq'] = cleaport_players['Freq'].astype(int)
|
@@ -880,15 +920,15 @@ with tab2:
|
|
880 |
|
881 |
elif insert_port == 0:
|
882 |
CleanPortfolio = UserPortfolio
|
883 |
-
cleaport_players = pd.DataFrame(np.column_stack(np.unique(CleanPortfolio.iloc[:,0:
|
884 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
885 |
cleaport_players['Freq'] = cleaport_players['Freq'].astype(int)
|
886 |
nerf_frame = Overall_Proj
|
887 |
|
888 |
ref_dict = {
|
889 |
-
'pos':['RB', 'WR', 'FLEX'],
|
890 |
-
'pos_dfs':['RB_Table', 'WR_Table', 'FLEX_Table'],
|
891 |
-
'pos_dicts':['rb_dict', 'wr_dict', 'flex_dict']
|
892 |
}
|
893 |
|
894 |
maps_dict = {
|
@@ -966,7 +1006,7 @@ with tab2:
|
|
966 |
else:
|
967 |
sample_arrays = sample_arrays1
|
968 |
|
969 |
-
final_array = sample_arrays[sample_arrays[:,
|
970 |
best_lineup = final_array[final_array[:, -1].argsort(kind='stable')[::-1][:1]]
|
971 |
Sim_Winners.append(best_lineup)
|
972 |
SimVar += 1
|
@@ -993,9 +1033,9 @@ with tab2:
|
|
993 |
Sim_Winner_Export = Sim_Winner_Frame.copy()
|
994 |
|
995 |
# Conditional Replacement
|
996 |
-
columns_to_replace = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', '
|
997 |
|
998 |
-
player_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,0:
|
999 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1000 |
player_freq['Freq'] = player_freq['Freq'].astype(int)
|
1001 |
player_freq['Position'] = player_freq['Player'].map(maps_dict['Pos_map'])
|
@@ -1023,7 +1063,7 @@ with tab2:
|
|
1023 |
|
1024 |
qb_freq = qb_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
1025 |
|
1026 |
-
rb_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,1:
|
1027 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1028 |
rb_freq['Freq'] = rb_freq['Freq'].astype(int)
|
1029 |
rb_freq['Position'] = rb_freq['Player'].map(maps_dict['Pos_map'])
|
@@ -1037,7 +1077,7 @@ with tab2:
|
|
1037 |
|
1038 |
rb_freq = rb_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
1039 |
|
1040 |
-
wr_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,[
|
1041 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1042 |
wr_freq['Freq'] = wr_freq['Freq'].astype(int)
|
1043 |
wr_freq['Position'] = wr_freq['Player'].map(maps_dict['Pos_map'])
|
@@ -1051,7 +1091,7 @@ with tab2:
|
|
1051 |
|
1052 |
wr_freq = wr_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
1053 |
|
1054 |
-
flex_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,
|
1055 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1056 |
flex_freq['Freq'] = flex_freq['Freq'].astype(int)
|
1057 |
flex_freq['Position'] = flex_freq['Player'].map(maps_dict['Pos_map'])
|
@@ -1065,7 +1105,7 @@ with tab2:
|
|
1065 |
|
1066 |
flex_freq = flex_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
1067 |
|
1068 |
-
dst_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,
|
1069 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1070 |
dst_freq['Freq'] = dst_freq['Freq'].astype(int)
|
1071 |
dst_freq['Position'] = dst_freq['Player'].map(maps_dict['Pos_map'])
|
@@ -1092,7 +1132,7 @@ with tab2:
|
|
1092 |
|
1093 |
with st.container():
|
1094 |
freq_container = st.empty()
|
1095 |
-
tab1, tab2, tab3, tab4, tab5, tab6 = st.tabs(['Overall Exposures', 'QB Exposures', 'RB Exposures', 'WR Exposures', 'FLEX Exposures', '
|
1096 |
with tab1:
|
1097 |
st.dataframe(player_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
1098 |
st.download_button(
|
@@ -1138,6 +1178,6 @@ with tab2:
|
|
1138 |
st.download_button(
|
1139 |
label="Export Exposures",
|
1140 |
data=convert_df_to_csv(dst_freq),
|
1141 |
-
file_name='
|
1142 |
mime='text/csv',
|
1143 |
)
|
|
|
116 |
|
117 |
return correl_dict
|
118 |
|
119 |
+
def create_overall_dfs(s_pos_players, pos_players, table_name, dict_name, pos):
|
120 |
+
if pos == "S_FLEX":
|
121 |
+
table_name_raw = s_pos_players.reset_index(drop=True)
|
122 |
+
overall_table_name = table_name_raw.head(round(len(table_name_raw)))
|
123 |
+
overall_table_name = overall_table_name.assign(Var = range(0,len(overall_table_name)))
|
124 |
+
overall_dict_name = pd.Series(overall_table_name.Player.values, index=overall_table_name.Var).to_dict()
|
125 |
+
|
126 |
+
del pos_players
|
127 |
+
del table_name_raw
|
128 |
+
|
129 |
+
elif pos == "FLEX":
|
130 |
pos_players = pos_players.sort_values(by='Value', ascending=False)
|
131 |
table_name_raw = pos_players.reset_index(drop=True)
|
132 |
overall_table_name = table_name_raw.head(round(len(table_name_raw)))
|
|
|
135 |
|
136 |
del pos_players
|
137 |
del table_name_raw
|
138 |
+
|
139 |
elif pos != "FLEX":
|
140 |
table_name_raw = pos_players[pos_players['Position'].str.contains(pos)].reset_index(drop=True)
|
141 |
overall_table_name = table_name_raw.head(round(len(table_name_raw)))
|
|
|
150 |
|
151 |
def get_overall_merged_df():
|
152 |
ref_dict = {
|
153 |
+
'pos':['RB', 'WR', 'FLEX', 'S_FLEX'],
|
154 |
+
'pos_dfs':['RB_Table', 'WR_Table', 'FLEX_Table', 'S_FLEX_Table'],
|
155 |
+
'pos_dicts':['rb_dict', 'wr_dict', 'flex_dict', 's_flex_dict']
|
156 |
}
|
157 |
|
158 |
+
for i in range(0,4):
|
159 |
ref_dict['pos_dfs'][i], ref_dict['pos_dicts'][i] =\
|
160 |
+
create_overall_dfs(s_pos_players, pos_players, ref_dict['pos_dfs'][i], ref_dict['pos_dicts'][i], ref_dict['pos'][i])
|
161 |
|
162 |
df_out = pd.concat(ref_dict['pos_dfs'], ignore_index=True)
|
163 |
|
|
|
178 |
ranges_dict = {}
|
179 |
|
180 |
# Calculate ranges
|
181 |
+
for df, dict_val, min_val, key in zip(ref_dict['pos_dfs'], ref_dict['pos_dicts'], [10, 20, 30, 30], ['RB', 'WR', 'FLEX', 'S_FLEX']):
|
182 |
+
count = create_overall_dfs(s_pos_players, pos_players, df, dict_val, key)
|
183 |
ranges_dict[f"{key.lower()}_range"] = calculate_range_var(count, min_val, FieldStrength, field_growth_rounded)
|
184 |
if max_var <= 10:
|
185 |
ranges_dict['qb_range'] = round(max_var)
|
|
|
186 |
elif max_var > 10 and max_var <= 16:
|
187 |
ranges_dict['qb_range'] = round(max_var / 1.5)
|
|
|
188 |
elif max_var > 16:
|
189 |
ranges_dict['qb_range'] = round(max_var / 2)
|
|
|
190 |
# Generate unique ranges
|
191 |
# for key, value in ranges_dict.items():
|
192 |
# ranges_dict[f"{key}_Uniques"] = list(range(0, value, 1))
|
193 |
|
194 |
# Generate random portfolios
|
195 |
rng = np.random.default_rng()
|
196 |
+
total_elements = [1, 2, 3, 1, 1]
|
197 |
+
keys = ['qb', 'rb', 'wr', 'flex', 's_flex']
|
198 |
|
199 |
all_choices = [rng.choice(ranges_dict[f"{key}_range"], size=(Total_Sample_Size, elem)) for key, elem in zip(keys, total_elements)]
|
200 |
+
RandomPortfolio = pd.DataFrame(np.hstack(all_choices), columns=['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'FLEX', 'S_FLEX'])
|
201 |
RandomPortfolio['User/Field'] = 0
|
202 |
|
203 |
del O_merge
|
|
|
214 |
|
215 |
RandomPortfolio['QB'] = pd.Series(list(RandomPortfolio['QB'].map(qb_dict)), dtype="string[pyarrow]")
|
216 |
RandomPortfolio['RB1'] = pd.Series(list(RandomPortfolio['RB1'].map(full_pos_player_dict['pos_dicts'][0])), dtype="string[pyarrow]")
|
217 |
+
RandomPortfolio['RB2'] = pd.Series(list(RandomPortfolio['RB2'].map(full_pos_player_dict['pos_dicts'][0])), dtype="string[pyarrow]")
|
218 |
RandomPortfolio['WR1'] = pd.Series(list(RandomPortfolio['QB'].map(stacking_dict)), dtype="string[pyarrow]")
|
219 |
RandomPortfolio['WR2'] = pd.Series(list(RandomPortfolio['WR2'].map(full_pos_player_dict['pos_dicts'][1])), dtype="string[pyarrow]")
|
220 |
+
RandomPortfolio['WR3'] = pd.Series(list(RandomPortfolio['WR3'].map(full_pos_player_dict['pos_dicts'][1])), dtype="string[pyarrow]")
|
221 |
+
RandomPortfolio['FLEX'] = pd.Series(list(RandomPortfolio['FLEX'].map(full_pos_player_dict['pos_dicts'][2])), dtype="string[pyarrow]")
|
222 |
+
RandomPortfolio['S_FLEX'] = pd.Series(list(RandomPortfolio['S_FLEX'].map(full_pos_player_dict['pos_dicts'][3])), dtype="string[pyarrow]")
|
223 |
RandomPortfolio['plyr_list'] = RandomPortfolio[RandomPortfolio.columns.values.tolist()].values.tolist()
|
224 |
RandomPortfolio['plyr_count'] = RandomPortfolio['plyr_list'].apply(lambda x: len(set(x)))
|
225 |
+
RandomPortfolio = RandomPortfolio[RandomPortfolio['plyr_count'] == 9].drop(columns=['plyr_list','plyr_count']).\
|
226 |
reset_index(drop=True)
|
227 |
|
228 |
del sizesplit
|
|
|
233 |
|
234 |
RandomPortfolio['QBs'] = RandomPortfolio['QB'].map(maps_dict['Salary_map']).astype(np.int32)
|
235 |
RandomPortfolio['RB1s'] = RandomPortfolio['RB1'].map(maps_dict['Salary_map']).astype(np.int32)
|
236 |
+
RandomPortfolio['RB2s'] = RandomPortfolio['RB2'].map(maps_dict['Salary_map']).astype(np.int32)
|
237 |
RandomPortfolio['WR1s'] = RandomPortfolio['WR1'].map(maps_dict['Salary_map']).astype(np.int32)
|
238 |
RandomPortfolio['WR2s'] = RandomPortfolio['WR2'].map(maps_dict['Salary_map']).astype(np.int32)
|
239 |
+
RandomPortfolio['WR3s'] = RandomPortfolio['WR3'].map(maps_dict['Salary_map']).astype(np.int32)
|
240 |
+
RandomPortfolio['FLEXs'] = RandomPortfolio['FLEX'].map(maps_dict['Salary_map']).astype(np.int32)
|
241 |
+
RandomPortfolio['S_FLEXs'] = RandomPortfolio['S_FLEX'].map(maps_dict['Salary_map']).astype(np.int32)
|
242 |
|
243 |
RandomPortfolio['QBp'] = RandomPortfolio['QB'].map(maps_dict['Projection_map']).astype(np.float16)
|
244 |
RandomPortfolio['RB1p'] = RandomPortfolio['RB1'].map(maps_dict['Projection_map']).astype(np.float16)
|
245 |
+
RandomPortfolio['RB2p'] = RandomPortfolio['RB2'].map(maps_dict['Projection_map']).astype(np.float16)
|
246 |
RandomPortfolio['WR1p'] = RandomPortfolio['WR1'].map(maps_dict['Projection_map']).astype(np.float16)
|
247 |
RandomPortfolio['WR2p'] = RandomPortfolio['WR2'].map(maps_dict['Projection_map']).astype(np.float16)
|
248 |
+
RandomPortfolio['WR3p'] = RandomPortfolio['WR3'].map(maps_dict['Projection_map']).astype(np.float16)
|
249 |
+
RandomPortfolio['FLEXp'] = RandomPortfolio['FLEX'].map(maps_dict['Projection_map']).astype(np.float16)
|
250 |
+
RandomPortfolio['S_FLEXp'] = RandomPortfolio['S_FLEX'].map(maps_dict['Projection_map']).astype(np.float16)
|
251 |
|
252 |
RandomPortfolio['QBo'] = RandomPortfolio['QB'].map(maps_dict['Own_map']).astype(np.float16)
|
253 |
RandomPortfolio['RB1o'] = RandomPortfolio['RB1'].map(maps_dict['Own_map']).astype(np.float16)
|
254 |
+
RandomPortfolio['RB2o'] = RandomPortfolio['RB2'].map(maps_dict['Own_map']).astype(np.float16)
|
255 |
RandomPortfolio['WR1o'] = RandomPortfolio['WR1'].map(maps_dict['Own_map']).astype(np.float16)
|
256 |
RandomPortfolio['WR2o'] = RandomPortfolio['WR2'].map(maps_dict['Own_map']).astype(np.float16)
|
257 |
+
RandomPortfolio['WR3o'] = RandomPortfolio['WR3'].map(maps_dict['Own_map']).astype(np.float16)
|
258 |
+
RandomPortfolio['FLEXo'] = RandomPortfolio['FLEX'].map(maps_dict['Own_map']).astype(np.float16)
|
259 |
+
RandomPortfolio['S_FLEXo'] = RandomPortfolio['S_FLEX'].map(maps_dict['Own_map']).astype(np.float16)
|
260 |
|
261 |
RandomPortArray = RandomPortfolio.to_numpy()
|
262 |
del RandomPortfolio
|
263 |
|
264 |
+
RandomPortArray = np.c_[RandomPortArray, np.einsum('ij->i',RandomPortArray[:,9:17].astype(int))]
|
265 |
+
RandomPortArray = np.c_[RandomPortArray, np.einsum('ij->i',RandomPortArray[:,17:25].astype(np.double))]
|
266 |
+
RandomPortArray = np.c_[RandomPortArray, np.einsum('ij->i',RandomPortArray[:,25:33].astype(np.double))]
|
267 |
# st.write(RandomPortArray[:,:100])
|
268 |
+
RandomPortArrayOut = np.delete(RandomPortArray, np.s_[9:33], axis=1)
|
269 |
# st.write(RandomPortArrayOut[:,:100])
|
270 |
+
RandomPortfolioDF = pd.DataFrame(RandomPortArrayOut, columns = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'FLEX', 'S_FLEX', 'User/Field', 'Salary', 'Projection', 'Own'])
|
271 |
RandomPortfolioDF = RandomPortfolioDF.sort_values(by=Sim_function, ascending=False)
|
272 |
del RandomPortArray
|
273 |
del RandomPortArrayOut
|
|
|
275 |
if insert_port == 1:
|
276 |
CleanPortfolio['Salary'] = sum([CleanPortfolio['QB'].map(maps_dict['Salary_map']),
|
277 |
CleanPortfolio['RB1'].map(maps_dict['Salary_map']),
|
278 |
+
CleanPortfolio['RB2'].map(maps_dict['Salary_map']),
|
279 |
CleanPortfolio['WR1'].map(maps_dict['Salary_map']),
|
280 |
CleanPortfolio['WR2'].map(maps_dict['Salary_map']),
|
281 |
+
CleanPortfolio['WR3'].map(maps_dict['Salary_map']),
|
282 |
+
CleanPortfolio['FLEX'].map(maps_dict['Salary_map']),
|
283 |
+
CleanPortfolio['S_FLEX'].map(maps_dict['Salary_map'])
|
284 |
]).astype(np.int16)
|
285 |
if insert_port == 1:
|
286 |
CleanPortfolio['Projection'] = sum([CleanPortfolio['QB'].map(up_dict['Projection_map']),
|
287 |
CleanPortfolio['RB1'].map(up_dict['Projection_map']),
|
288 |
+
CleanPortfolio['RB2'].map(up_dict['Projection_map']),
|
289 |
CleanPortfolio['WR1'].map(up_dict['Projection_map']),
|
290 |
CleanPortfolio['WR2'].map(up_dict['Projection_map']),
|
291 |
+
CleanPortfolio['WR3'].map(up_dict['Projection_map']),
|
292 |
+
CleanPortfolio['FLEX'].map(up_dict['Projection_map']),
|
293 |
+
CleanPortfolio['S_FLEX'].map(up_dict['Projection_map'])
|
294 |
]).astype(np.float16)
|
295 |
if insert_port == 1:
|
296 |
CleanPortfolio['Own'] = sum([CleanPortfolio['QB'].map(maps_dict['Own_map']),
|
297 |
CleanPortfolio['RB1'].map(maps_dict['Own_map']),
|
298 |
+
CleanPortfolio['RB2'].map(maps_dict['Own_map']),
|
299 |
CleanPortfolio['WR1'].map(maps_dict['Own_map']),
|
300 |
CleanPortfolio['WR2'].map(maps_dict['Own_map']),
|
301 |
+
CleanPortfolio['WR3'].map(maps_dict['Own_map']),
|
302 |
+
CleanPortfolio['FLEX'].map(maps_dict['Own_map']),
|
303 |
+
CleanPortfolio['S_FLEX'].map(maps_dict['Own_map'])
|
304 |
]).astype(np.float16)
|
305 |
|
306 |
if site_var1 == 'Draftkings':
|
|
|
309 |
|
310 |
RandomPortfolio = RandomPortfolioDF.sort_values(by=Sim_function, ascending=False)
|
311 |
|
312 |
+
RandomPortfolio = RandomPortfolio[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'FLEX', 'S_FLEX', 'User/Field', 'Salary', 'Projection', 'Own']]
|
313 |
|
314 |
return RandomPortfolio, maps_dict
|
315 |
|
|
|
321 |
|
322 |
RandomPortfolio['QB'] = pd.Series(list(RandomPortfolio['QB'].map(qb_dict)), dtype="string[pyarrow]")
|
323 |
RandomPortfolio['RB1'] = pd.Series(list(RandomPortfolio['RB1'].map(full_pos_player_dict['pos_dicts'][0])), dtype="string[pyarrow]")
|
324 |
+
RandomPortfolio['RB2'] = pd.Series(list(RandomPortfolio['RB2'].map(full_pos_player_dict['pos_dicts'][0])), dtype="string[pyarrow]")
|
325 |
RandomPortfolio['WR1'] = pd.Series(list(RandomPortfolio['WR1'].map(full_pos_player_dict['pos_dicts'][1])), dtype="string[pyarrow]")
|
326 |
RandomPortfolio['WR2'] = pd.Series(list(RandomPortfolio['WR2'].map(full_pos_player_dict['pos_dicts'][1])), dtype="string[pyarrow]")
|
327 |
+
RandomPortfolio['WR3'] = pd.Series(list(RandomPortfolio['WR3'].map(full_pos_player_dict['pos_dicts'][1])), dtype="string[pyarrow]")
|
328 |
+
RandomPortfolio['FLEX'] = pd.Series(list(RandomPortfolio['FLEX'].map(full_pos_player_dict['pos_dicts'][2])), dtype="string[pyarrow]")
|
329 |
+
RandomPortfolio['S_FLEX'] = pd.Series(list(RandomPortfolio['S_FLEX'].map(full_pos_player_dict['pos_dicts'][3])), dtype="string[pyarrow]")
|
330 |
RandomPortfolio['plyr_list'] = RandomPortfolio[RandomPortfolio.columns.values.tolist()].values.tolist()
|
331 |
RandomPortfolio['plyr_count'] = RandomPortfolio['plyr_list'].apply(lambda x: len(set(x)))
|
332 |
+
RandomPortfolio = RandomPortfolio[RandomPortfolio['plyr_count'] == 9].drop(columns=['plyr_list','plyr_count']).\
|
333 |
reset_index(drop=True)
|
334 |
|
335 |
del sizesplit
|
336 |
del full_pos_player_dict
|
337 |
+
del ranges_dict
|
338 |
|
339 |
RandomPortfolio['QBs'] = RandomPortfolio['QB'].map(maps_dict['Salary_map']).astype(np.int32)
|
340 |
RandomPortfolio['RB1s'] = RandomPortfolio['RB1'].map(maps_dict['Salary_map']).astype(np.int32)
|
341 |
+
RandomPortfolio['RB2s'] = RandomPortfolio['RB2'].map(maps_dict['Salary_map']).astype(np.int32)
|
342 |
RandomPortfolio['WR1s'] = RandomPortfolio['WR1'].map(maps_dict['Salary_map']).astype(np.int32)
|
343 |
RandomPortfolio['WR2s'] = RandomPortfolio['WR2'].map(maps_dict['Salary_map']).astype(np.int32)
|
344 |
+
RandomPortfolio['WR3s'] = RandomPortfolio['WR3'].map(maps_dict['Salary_map']).astype(np.int32)
|
345 |
+
RandomPortfolio['FLEXs'] = RandomPortfolio['FLEX'].map(maps_dict['Salary_map']).astype(np.int32)
|
346 |
+
RandomPortfolio['S_FLEXs'] = RandomPortfolio['S_FLEX'].map(maps_dict['Salary_map']).astype(np.int32)
|
347 |
|
348 |
RandomPortfolio['QBp'] = RandomPortfolio['QB'].map(maps_dict['Projection_map']).astype(np.float16)
|
349 |
RandomPortfolio['RB1p'] = RandomPortfolio['RB1'].map(maps_dict['Projection_map']).astype(np.float16)
|
350 |
+
RandomPortfolio['RB2p'] = RandomPortfolio['RB2'].map(maps_dict['Projection_map']).astype(np.float16)
|
351 |
RandomPortfolio['WR1p'] = RandomPortfolio['WR1'].map(maps_dict['Projection_map']).astype(np.float16)
|
352 |
RandomPortfolio['WR2p'] = RandomPortfolio['WR2'].map(maps_dict['Projection_map']).astype(np.float16)
|
353 |
+
RandomPortfolio['WR3p'] = RandomPortfolio['WR3'].map(maps_dict['Projection_map']).astype(np.float16)
|
354 |
+
RandomPortfolio['FLEXp'] = RandomPortfolio['FLEX'].map(maps_dict['Projection_map']).astype(np.float16)
|
355 |
+
RandomPortfolio['S_FLEXp'] = RandomPortfolio['S_FLEX'].map(maps_dict['Projection_map']).astype(np.float16)
|
356 |
|
357 |
RandomPortfolio['QBo'] = RandomPortfolio['QB'].map(maps_dict['Own_map']).astype(np.float16)
|
358 |
RandomPortfolio['RB1o'] = RandomPortfolio['RB1'].map(maps_dict['Own_map']).astype(np.float16)
|
359 |
+
RandomPortfolio['RB2o'] = RandomPortfolio['RB2'].map(maps_dict['Own_map']).astype(np.float16)
|
360 |
RandomPortfolio['WR1o'] = RandomPortfolio['WR1'].map(maps_dict['Own_map']).astype(np.float16)
|
361 |
RandomPortfolio['WR2o'] = RandomPortfolio['WR2'].map(maps_dict['Own_map']).astype(np.float16)
|
362 |
+
RandomPortfolio['WR3o'] = RandomPortfolio['WR3'].map(maps_dict['Own_map']).astype(np.float16)
|
363 |
+
RandomPortfolio['FLEXo'] = RandomPortfolio['FLEX'].map(maps_dict['Own_map']).astype(np.float16)
|
364 |
+
RandomPortfolio['S_FLEXo'] = RandomPortfolio['S_FLEX'].map(maps_dict['Own_map']).astype(np.float16)
|
365 |
|
366 |
RandomPortArray = RandomPortfolio.to_numpy()
|
367 |
del RandomPortfolio
|
368 |
|
369 |
+
RandomPortArray = np.c_[RandomPortArray, np.einsum('ij->i',RandomPortArray[:,9:17].astype(int))]
|
370 |
+
RandomPortArray = np.c_[RandomPortArray, np.einsum('ij->i',RandomPortArray[:,17:25].astype(np.double))]
|
371 |
+
RandomPortArray = np.c_[RandomPortArray, np.einsum('ij->i',RandomPortArray[:,25:33].astype(np.double))]
|
372 |
# st.write(RandomPortArray[:,:100])
|
373 |
+
RandomPortArrayOut = np.delete(RandomPortArray, np.s_[9:33], axis=1)
|
374 |
# st.write(RandomPortArrayOut[:,:100])
|
375 |
+
RandomPortfolioDF = pd.DataFrame(RandomPortArrayOut, columns = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'FLEX', 'S_FLEX', 'User/Field', 'Salary', 'Projection', 'Own'])
|
376 |
RandomPortfolioDF = RandomPortfolioDF.sort_values(by=Sim_function, ascending=False)
|
377 |
del RandomPortArray
|
378 |
del RandomPortArrayOut
|
|
|
380 |
if insert_port == 1:
|
381 |
CleanPortfolio['Salary'] = sum([CleanPortfolio['QB'].map(maps_dict['Salary_map']),
|
382 |
CleanPortfolio['RB1'].map(maps_dict['Salary_map']),
|
383 |
+
CleanPortfolio['RB2'].map(maps_dict['Salary_map']),
|
384 |
CleanPortfolio['WR1'].map(maps_dict['Salary_map']),
|
385 |
CleanPortfolio['WR2'].map(maps_dict['Salary_map']),
|
386 |
+
CleanPortfolio['WR3'].map(maps_dict['Salary_map']),
|
387 |
+
CleanPortfolio['FLEX'].map(maps_dict['Salary_map']),
|
388 |
+
CleanPortfolio['S_FLEX'].map(maps_dict['Salary_map'])
|
389 |
]).astype(np.int16)
|
390 |
if insert_port == 1:
|
391 |
CleanPortfolio['Projection'] = sum([CleanPortfolio['QB'].map(up_dict['Projection_map']),
|
392 |
CleanPortfolio['RB1'].map(up_dict['Projection_map']),
|
393 |
+
CleanPortfolio['RB2'].map(up_dict['Projection_map']),
|
394 |
CleanPortfolio['WR1'].map(up_dict['Projection_map']),
|
395 |
CleanPortfolio['WR2'].map(up_dict['Projection_map']),
|
396 |
+
CleanPortfolio['WR3'].map(up_dict['Projection_map']),
|
397 |
+
CleanPortfolio['FLEX'].map(up_dict['Projection_map']),
|
398 |
+
CleanPortfolio['S_FLEX'].map(up_dict['Projection_map'])
|
399 |
]).astype(np.float16)
|
400 |
if insert_port == 1:
|
401 |
CleanPortfolio['Own'] = sum([CleanPortfolio['QB'].map(maps_dict['Own_map']),
|
402 |
CleanPortfolio['RB1'].map(maps_dict['Own_map']),
|
403 |
+
CleanPortfolio['RB2'].map(maps_dict['Own_map']),
|
404 |
CleanPortfolio['WR1'].map(maps_dict['Own_map']),
|
405 |
CleanPortfolio['WR2'].map(maps_dict['Own_map']),
|
406 |
+
CleanPortfolio['WR3'].map(maps_dict['Own_map']),
|
407 |
+
CleanPortfolio['FLEX'].map(maps_dict['Own_map']),
|
408 |
+
CleanPortfolio['S_FLEX'].map(maps_dict['Own_map'])
|
409 |
]).astype(np.float16)
|
410 |
|
411 |
if site_var1 == 'Draftkings':
|
|
|
414 |
|
415 |
RandomPortfolio = RandomPortfolioDF.sort_values(by=Sim_function, ascending=False)
|
416 |
|
417 |
+
RandomPortfolio = RandomPortfolio[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'FLEX', 'S_FLEX', 'User/Field', 'Salary', 'Projection', 'Own']]
|
418 |
|
419 |
return RandomPortfolio, maps_dict
|
420 |
|
|
|
456 |
player_team_dict = dict(zip(proj_dataframe.Player, proj_dataframe.Team))
|
457 |
|
458 |
with col2:
|
459 |
+
st.info("The Portfolio file must contain only columns in order and explicitly named: 'QB', 'RB1', RB2, 'WR1', 'WR2', 'WR3', 'FLEX', and 'S_FLEX'. Upload your projections first to avoid an error message.")
|
460 |
portfolio_file = st.file_uploader("Upload Portfolio File", key = 'portfolio_uploader')
|
461 |
|
462 |
if portfolio_file is not None:
|
|
|
468 |
|
469 |
try:
|
470 |
try:
|
471 |
+
portfolio_dataframe.columns=["QB", "RB1", "RB2", "WR1", "WR2", "WR3", "FLEX", "S_FLEX"]
|
472 |
split_portfolio = portfolio_dataframe
|
473 |
split_portfolio[['QB', 'QB_ID']] = split_portfolio.QB.str.split("(", n=1, expand = True)
|
474 |
split_portfolio[['RB1', 'RB1_ID']] = split_portfolio.RB1.str.split("(", n=1, expand = True)
|
475 |
+
split_portfolio[['RB2', 'RB2_ID']] = split_portfolio.RB2.str.split("(", n=1, expand = True)
|
476 |
split_portfolio[['WR1', 'WR1_ID']] = split_portfolio.WR1.str.split("(", n=1, expand = True)
|
477 |
split_portfolio[['WR2', 'WR2_ID']] = split_portfolio.WR2.str.split("(", n=1, expand = True)
|
478 |
+
split_portfolio[['WR3', 'WR3_ID']] = split_portfolio.WR3.str.split("(", n=1, expand = True)
|
479 |
+
split_portfolio[['FLEX', 'FLEX_ID']] = split_portfolio.FLEX.str.split("(", n=1, expand = True)
|
480 |
+
split_portfolio[['S_FLEX', 'S_FLEX_ID']] = split_portfolio.S_FLEX.str.split("(", n=1, expand = True)
|
481 |
|
482 |
split_portfolio['QB'] = split_portfolio['QB'].str.strip()
|
483 |
split_portfolio['RB1'] = split_portfolio['RB1'].str.strip()
|
484 |
+
split_portfolio['RB2'] = split_portfolio['RB2'].str.strip()
|
485 |
split_portfolio['WR1'] = split_portfolio['WR1'].str.strip()
|
486 |
split_portfolio['WR2'] = split_portfolio['WR2'].str.strip()
|
487 |
+
split_portfolio['WR3'] = split_portfolio['WR3'].str.strip()
|
488 |
+
split_portfolio['FLEX'] = split_portfolio['FLEX'].str.strip()
|
489 |
+
split_portfolio['S_FLEX'] = split_portfolio['S_FLEX'].str.strip()
|
490 |
|
491 |
st.table(split_portfolio.head(10))
|
492 |
|
493 |
split_portfolio['Salary'] = sum([split_portfolio['QB'].map(player_salary_dict),
|
494 |
split_portfolio['RB1'].map(player_salary_dict),
|
495 |
+
split_portfolio['RB2'].map(player_salary_dict),
|
496 |
split_portfolio['WR1'].map(player_salary_dict),
|
497 |
split_portfolio['WR2'].map(player_salary_dict),
|
498 |
+
split_portfolio['WR3'].map(player_salary_dict),
|
499 |
+
split_portfolio['FLEX'].map(player_salary_dict),
|
500 |
+
split_portfolio['S_FLEX'].map(player_salary_dict)])
|
501 |
|
502 |
split_portfolio['Projection'] = sum([split_portfolio['QB'].map(player_proj_dict),
|
503 |
split_portfolio['RB1'].map(player_proj_dict),
|
504 |
+
split_portfolio['RB2'].map(player_proj_dict),
|
505 |
split_portfolio['WR1'].map(player_proj_dict),
|
506 |
split_portfolio['WR2'].map(player_proj_dict),
|
507 |
+
split_portfolio['WR3'].map(player_proj_dict),
|
508 |
+
split_portfolio['FLEX'].map(player_proj_dict),
|
509 |
+
split_portfolio['S_FLEX'].map(player_proj_dict)])
|
510 |
|
511 |
split_portfolio['Ownership'] = sum([split_portfolio['QB'].map(player_own_dict),
|
512 |
split_portfolio['RB1'].map(player_own_dict),
|
513 |
+
split_portfolio['RB2'].map(player_own_dict),
|
514 |
split_portfolio['WR1'].map(player_own_dict),
|
515 |
split_portfolio['WR2'].map(player_own_dict),
|
516 |
+
split_portfolio['WR3'].map(player_own_dict),
|
517 |
+
split_portfolio['FLEX'].map(player_own_dict),
|
518 |
+
split_portfolio['S_FLEX'].map(player_own_dict)])
|
519 |
|
520 |
split_portfolio['QB_team'] = split_portfolio['QB'].map(player_team_dict)
|
521 |
split_portfolio['RB1_team'] = split_portfolio['RB1'].map(player_team_dict)
|
522 |
+
split_portfolio['RB2_team'] = split_portfolio['RB2'].map(player_team_dict)
|
523 |
split_portfolio['WR1_team'] = split_portfolio['WR1'].map(player_team_dict)
|
524 |
split_portfolio['WR2_team'] = split_portfolio['WR2'].map(player_team_dict)
|
525 |
+
split_portfolio['WR3_team'] = split_portfolio['WR3'].map(player_team_dict)
|
526 |
+
split_portfolio['FLEX_team'] = split_portfolio['FLEX'].map(player_team_dict)
|
527 |
+
split_portfolio['S_FLEX_team'] = split_portfolio['S_FLEX'].map(player_team_dict)
|
528 |
|
529 |
+
split_portfolio = split_portfolio[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'FLEX', 'S_FLEX', 'Salary', 'Projection', 'Ownership', 'QB_team',
|
530 |
+
'RB1_team', 'RB2_team', 'WR1_team', 'WR2_team', 'W32_team', 'FLEX_team', 'S_FLEX_team']]
|
531 |
|
532 |
|
533 |
except:
|
534 |
+
portfolio_dataframe.columns=["QB", "RB1", "RB2", "WR1", "WR2", "WR3", "FLEX", "S_FLEX"]
|
535 |
|
536 |
split_portfolio = portfolio_dataframe
|
537 |
split_portfolio[['QB_ID', 'QB']] = split_portfolio.QB.str.split(":", n=1, expand = True)
|
538 |
split_portfolio[['RB1_ID', 'RB1']] = split_portfolio.RB1.str.split(":", n=1, expand = True)
|
539 |
+
split_portfolio[['RB2_ID', 'RB2']] = split_portfolio.RB2.str.split(":", n=1, expand = True)
|
540 |
split_portfolio[['WR1_ID', 'WR1']] = split_portfolio.WR1.str.split(":", n=1, expand = True)
|
541 |
split_portfolio[['WR2_ID', 'WR2']] = split_portfolio.WR2.str.split(":", n=1, expand = True)
|
542 |
+
split_portfolio[['WR3_ID', 'WR3']] = split_portfolio.WR3.str.split(":", n=1, expand = True)
|
543 |
+
split_portfolio[['FLEX_ID', 'FLEX']] = split_portfolio.FLEX.str.split(":", n=1, expand = True)
|
544 |
+
split_portfolio[['S_FLEX_ID', 'S_FLEX']] = split_portfolio.S_FLEX.str.split(":", n=1, expand = True)
|
545 |
|
546 |
split_portfolio['QB'] = split_portfolio['QB'].str.strip()
|
547 |
split_portfolio['RB1'] = split_portfolio['RB1'].str.strip()
|
548 |
+
split_portfolio['RB2'] = split_portfolio['RB2'].str.strip()
|
549 |
split_portfolio['WR1'] = split_portfolio['WR1'].str.strip()
|
550 |
split_portfolio['WR2'] = split_portfolio['WR2'].str.strip()
|
551 |
+
split_portfolio['WR3'] = split_portfolio['WR3'].str.strip()
|
552 |
+
split_portfolio['FLEX'] = split_portfolio['FLEX'].str.strip()
|
553 |
+
split_portfolio['S_FLEX'] = split_portfolio['S_FLEX'].str.strip()
|
554 |
|
555 |
split_portfolio['Salary'] = sum([split_portfolio['QB'].map(player_salary_dict),
|
556 |
split_portfolio['RB1'].map(player_salary_dict),
|
557 |
+
split_portfolio['RB2'].map(player_salary_dict),
|
558 |
split_portfolio['WR1'].map(player_salary_dict),
|
559 |
split_portfolio['WR2'].map(player_salary_dict),
|
560 |
+
split_portfolio['WR3'].map(player_salary_dict),
|
561 |
+
split_portfolio['FLEX'].map(player_salary_dict),
|
562 |
+
split_portfolio['S_FLEX'].map(player_salary_dict)])
|
563 |
|
564 |
split_portfolio['Projection'] = sum([split_portfolio['QB'].map(player_proj_dict),
|
565 |
split_portfolio['RB1'].map(player_proj_dict),
|
566 |
+
split_portfolio['RB2'].map(player_proj_dict),
|
567 |
split_portfolio['WR1'].map(player_proj_dict),
|
568 |
split_portfolio['WR2'].map(player_proj_dict),
|
569 |
+
split_portfolio['WR3'].map(player_proj_dict),
|
570 |
+
split_portfolio['FLEX'].map(player_proj_dict),
|
571 |
+
split_portfolio['S_FLEX'].map(player_proj_dict)])
|
572 |
|
573 |
st.table(split_portfolio.head(10))
|
574 |
split_portfolio['Ownership'] = sum([split_portfolio['QB'].map(player_own_dict),
|
575 |
split_portfolio['RB1'].map(player_own_dict),
|
576 |
+
split_portfolio['RB2'].map(player_own_dict),
|
577 |
split_portfolio['WR1'].map(player_own_dict),
|
578 |
split_portfolio['WR2'].map(player_own_dict),
|
579 |
+
split_portfolio['WR3'].map(player_own_dict),
|
580 |
+
split_portfolio['FLEX'].map(player_own_dict),
|
581 |
+
split_portfolio['S_FLEX'].map(player_own_dict)])
|
582 |
|
583 |
split_portfolio['QB_team'] = split_portfolio['QB'].map(player_team_dict)
|
584 |
split_portfolio['RB1_team'] = split_portfolio['RB1'].map(player_team_dict)
|
585 |
+
split_portfolio['RB2_team'] = split_portfolio['RB2'].map(player_team_dict)
|
586 |
split_portfolio['WR1_team'] = split_portfolio['WR1'].map(player_team_dict)
|
587 |
split_portfolio['WR2_team'] = split_portfolio['WR2'].map(player_team_dict)
|
588 |
+
split_portfolio['WR3_team'] = split_portfolio['WR3'].map(player_team_dict)
|
589 |
+
split_portfolio['FLEX_team'] = split_portfolio['FLEX'].map(player_team_dict)
|
590 |
+
split_portfolio['S_FLEX_team'] = split_portfolio['S_FLEX'].map(player_team_dict)
|
591 |
|
592 |
+
split_portfolio = split_portfolio[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'FLEX', 'S_FLEX', 'Salary', 'Projection', 'Ownership', 'QB_team',
|
593 |
+
'RB1_team', 'RB2_team', 'WR1_team', 'WR2_team', 'WR3_team', 'FLEX_team', 'S_FLEX_team']]
|
594 |
|
595 |
except:
|
596 |
split_portfolio = portfolio_dataframe
|
597 |
|
598 |
split_portfolio['Salary'] = sum([split_portfolio['QB'].map(player_salary_dict),
|
599 |
split_portfolio['RB1'].map(player_salary_dict),
|
600 |
+
split_portfolio['RB2'].map(player_salary_dict),
|
601 |
split_portfolio['WR1'].map(player_salary_dict),
|
602 |
split_portfolio['WR2'].map(player_salary_dict),
|
603 |
+
split_portfolio['WR3'].map(player_salary_dict),
|
604 |
+
split_portfolio['FLEX'].map(player_salary_dict),
|
605 |
+
split_portfolio['S_FLEX'].map(player_salary_dict)])
|
606 |
|
607 |
split_portfolio['Projection'] = sum([split_portfolio['QB'].map(player_proj_dict),
|
608 |
split_portfolio['RB1'].map(player_proj_dict),
|
609 |
+
split_portfolio['RB2'].map(player_proj_dict),
|
610 |
split_portfolio['WR1'].map(player_proj_dict),
|
611 |
split_portfolio['WR2'].map(player_proj_dict),
|
612 |
+
split_portfolio['WR3'].map(player_proj_dict),
|
613 |
+
split_portfolio['FLEX'].map(player_proj_dict),
|
614 |
+
split_portfolio['S_FLEX'].map(player_proj_dict)])
|
615 |
|
616 |
split_portfolio['Ownership'] = sum([split_portfolio['QB'].map(player_own_dict),
|
617 |
split_portfolio['RB1'].map(player_own_dict),
|
618 |
+
split_portfolio['RB2'].map(player_own_dict),
|
619 |
split_portfolio['WR1'].map(player_own_dict),
|
620 |
split_portfolio['WR2'].map(player_own_dict),
|
621 |
+
split_portfolio['WR3'].map(player_own_dict),
|
622 |
+
split_portfolio['FLEX'].map(player_own_dict),
|
623 |
+
split_portfolio['S_FLEX'].map(player_own_dict)])
|
624 |
|
625 |
split_portfolio['QB_team'] = split_portfolio['QB'].map(player_team_dict)
|
626 |
split_portfolio['RB1_team'] = split_portfolio['RB1'].map(player_team_dict)
|
627 |
+
split_portfolio['RB2_team'] = split_portfolio['RB2'].map(player_team_dict)
|
628 |
split_portfolio['WR1_team'] = split_portfolio['WR1'].map(player_team_dict)
|
629 |
split_portfolio['WR2_team'] = split_portfolio['WR2'].map(player_team_dict)
|
630 |
split_portfolio['WR3_team'] = split_portfolio['WR3'].map(player_team_dict)
|
631 |
+
split_portfolio['FLEX_team'] = split_portfolio['FLEX'].map(player_team_dict)
|
632 |
+
split_portfolio['S_FLEX_team'] = split_portfolio['S_FLEX'].map(player_team_dict)
|
|
|
633 |
|
634 |
+
split_portfolio = split_portfolio[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'FLEX', 'S_FLEX', 'Salary', 'Projection', 'Ownership', 'QB_team',
|
635 |
+
'RB1_team', 'RB2_team', 'WR1_team', 'WR2_team', 'WR3_team', 'FLEX_team', 'S_FLEX_team']]
|
636 |
|
637 |
+
for player_cols in split_portfolio.iloc[:, :8]:
|
638 |
static_col_raw = split_portfolio[player_cols].value_counts()
|
639 |
static_col = static_col_raw.to_frame()
|
640 |
static_col.reset_index(inplace=True)
|
|
|
655 |
if portfolio_file is not None:
|
656 |
split_portfolio = split_portfolio
|
657 |
|
658 |
+
for player_cols in split_portfolio.iloc[:, :8]:
|
659 |
exposure_col_raw = split_portfolio[player_cols].value_counts()
|
660 |
exposure_col = exposure_col_raw.to_frame()
|
661 |
exposure_col.reset_index(inplace=True)
|
|
|
682 |
st.header('Portfolio View')
|
683 |
split_portfolio = split_portfolio.reset_index()
|
684 |
split_portfolio['Lineup'] = split_portfolio['index'] + 1
|
685 |
+
display_portfolio = split_portfolio[['Lineup', 'QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'FLEX', 'S_FLEX', 'Salary', 'Projection', 'Ownership']]
|
686 |
display_portfolio = display_portfolio.set_index('Lineup')
|
687 |
st.dataframe(display_portfolio.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').background_gradient(cmap='RdYlGn_r', subset=['Ownership']).format(precision=2))
|
688 |
del split_portfolio
|
|
|
767 |
OwnFrame['Own%'] = np.where((OwnFrame['Position'] == 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (10 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean(), OwnFrame['Own'])
|
768 |
OwnFrame['Own%'] = np.where((OwnFrame['Position'] != 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (5 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean(), OwnFrame['Own%'])
|
769 |
OwnFrame['Own%'] = np.where(OwnFrame['Own%'] > 75, 75, OwnFrame['Own%'])
|
770 |
+
OwnFrame['Own'] = OwnFrame['Own%'] * (800 / OwnFrame['Own%'].sum())
|
771 |
if contest_var1 == 'Medium':
|
772 |
OwnFrame['Own%'] = np.where((OwnFrame['Position'] == 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (6 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean(), OwnFrame['Own'])
|
773 |
OwnFrame['Own%'] = np.where((OwnFrame['Position'] != 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (3 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean(), OwnFrame['Own%'])
|
774 |
OwnFrame['Own%'] = np.where(OwnFrame['Own%'] > 75, 75, OwnFrame['Own%'])
|
775 |
+
OwnFrame['Own'] = OwnFrame['Own%'] * (800 / OwnFrame['Own%'].sum())
|
776 |
if contest_var1 == 'Large':
|
777 |
OwnFrame['Own%'] = np.where((OwnFrame['Position'] == 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (3 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean(), OwnFrame['Own'])
|
778 |
OwnFrame['Own%'] = np.where((OwnFrame['Position'] != 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (1.5 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean(), OwnFrame['Own%'])
|
779 |
OwnFrame['Own%'] = np.where(OwnFrame['Own%'] > 75, 75, OwnFrame['Own%'])
|
780 |
+
OwnFrame['Own'] = OwnFrame['Own%'] * (800 / OwnFrame['Own%'].sum())
|
781 |
Overall_Proj = OwnFrame[['Player', 'Team', 'Position', 'Median', 'Own', 'Salary']]
|
782 |
|
783 |
del OwnFrame
|
784 |
|
785 |
if insert_port == 1:
|
786 |
+
UserPortfolio = portfolio_dataframe[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'FLEX', 'S_FLEX']]
|
787 |
elif insert_port == 0:
|
788 |
+
UserPortfolio = pd.DataFrame(columns = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'FLEX', 'S_FLEX'])
|
789 |
|
790 |
Overall_Proj.replace('', np.nan, inplace=True)
|
791 |
Overall_Proj = Overall_Proj.dropna(subset=['Median'])
|
|
|
855 |
pos_players.dropna(subset=['Median']).reset_index(drop=True)
|
856 |
pos_players = pos_players.reset_index(drop=True)
|
857 |
|
858 |
+
s_pos_players = pd.concat([qbs_raw, rbs_raw, wrs_raw])
|
859 |
+
pos_players.dropna(subset=['Median']).reset_index(drop=True)
|
860 |
+
pos_players = pos_players.reset_index(drop=True)
|
861 |
+
|
862 |
del qbs_raw
|
863 |
del defs_raw
|
864 |
del rbs_raw
|
|
|
870 |
Raw_Portfolio = pd.DataFrame()
|
871 |
|
872 |
# Loop through each position and split the data accordingly
|
873 |
+
positions = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'FLEX', 'S_FLEX']
|
874 |
for pos in positions:
|
875 |
temp_df = UserPortfolio[pos].str.split("(", n=1, expand=True)
|
876 |
temp_df.columns = [pos, 'Drop']
|
|
|
887 |
|
888 |
# Create frequency table for players
|
889 |
cleaport_players = pd.DataFrame(
|
890 |
+
np.column_stack(np.unique(CleanPortfolio.iloc[:, 0:8].values, return_counts=True)),
|
891 |
columns=['Player', 'Freq']
|
892 |
).sort_values('Freq', ascending=False).reset_index(drop=True)
|
893 |
cleaport_players['Freq'] = cleaport_players['Freq'].astype(int)
|
|
|
908 |
|
909 |
# Create frequency table for players
|
910 |
cleaport_players = pd.DataFrame(
|
911 |
+
np.column_stack(np.unique(CleanPortfolio.iloc[:, 0:8].values, return_counts=True)),
|
912 |
columns=['Player', 'Freq']
|
913 |
).sort_values('Freq', ascending=False).reset_index(drop=True)
|
914 |
cleaport_players['Freq'] = cleaport_players['Freq'].astype(int)
|
|
|
920 |
|
921 |
elif insert_port == 0:
|
922 |
CleanPortfolio = UserPortfolio
|
923 |
+
cleaport_players = pd.DataFrame(np.column_stack(np.unique(CleanPortfolio.iloc[:,0:8].values, return_counts=True)),
|
924 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
925 |
cleaport_players['Freq'] = cleaport_players['Freq'].astype(int)
|
926 |
nerf_frame = Overall_Proj
|
927 |
|
928 |
ref_dict = {
|
929 |
+
'pos':['RB', 'WR', 'FLEX', 'S_FLEX'],
|
930 |
+
'pos_dfs':['RB_Table', 'WR_Table', 'FLEX_Table', 'S_FLEX_Table'],
|
931 |
+
'pos_dicts':['rb_dict', 'wr_dict', 'flex_dict', 's_flex_table']
|
932 |
}
|
933 |
|
934 |
maps_dict = {
|
|
|
1006 |
else:
|
1007 |
sample_arrays = sample_arrays1
|
1008 |
|
1009 |
+
final_array = sample_arrays[sample_arrays[:, 9].argsort()[::-1]]
|
1010 |
best_lineup = final_array[final_array[:, -1].argsort(kind='stable')[::-1][:1]]
|
1011 |
Sim_Winners.append(best_lineup)
|
1012 |
SimVar += 1
|
|
|
1033 |
Sim_Winner_Export = Sim_Winner_Frame.copy()
|
1034 |
|
1035 |
# Conditional Replacement
|
1036 |
+
columns_to_replace = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'FLEX', 'S_FLEX']
|
1037 |
|
1038 |
+
player_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,0:8].values, return_counts=True)),
|
1039 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1040 |
player_freq['Freq'] = player_freq['Freq'].astype(int)
|
1041 |
player_freq['Position'] = player_freq['Player'].map(maps_dict['Pos_map'])
|
|
|
1063 |
|
1064 |
qb_freq = qb_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
1065 |
|
1066 |
+
rb_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,1:3].values, return_counts=True)),
|
1067 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1068 |
rb_freq['Freq'] = rb_freq['Freq'].astype(int)
|
1069 |
rb_freq['Position'] = rb_freq['Player'].map(maps_dict['Pos_map'])
|
|
|
1077 |
|
1078 |
rb_freq = rb_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
1079 |
|
1080 |
+
wr_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,[3, 4, 5]].values, return_counts=True)),
|
1081 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1082 |
wr_freq['Freq'] = wr_freq['Freq'].astype(int)
|
1083 |
wr_freq['Position'] = wr_freq['Player'].map(maps_dict['Pos_map'])
|
|
|
1091 |
|
1092 |
wr_freq = wr_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
1093 |
|
1094 |
+
flex_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,5:6].values, return_counts=True)),
|
1095 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1096 |
flex_freq['Freq'] = flex_freq['Freq'].astype(int)
|
1097 |
flex_freq['Position'] = flex_freq['Player'].map(maps_dict['Pos_map'])
|
|
|
1105 |
|
1106 |
flex_freq = flex_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
1107 |
|
1108 |
+
dst_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,6:7].values, return_counts=True)),
|
1109 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1110 |
dst_freq['Freq'] = dst_freq['Freq'].astype(int)
|
1111 |
dst_freq['Position'] = dst_freq['Player'].map(maps_dict['Pos_map'])
|
|
|
1132 |
|
1133 |
with st.container():
|
1134 |
freq_container = st.empty()
|
1135 |
+
tab1, tab2, tab3, tab4, tab5, tab6 = st.tabs(['Overall Exposures', 'QB Exposures', 'RB Exposures', 'WR Exposures', 'FLEX Exposures', 'S_FLEX Exposures'])
|
1136 |
with tab1:
|
1137 |
st.dataframe(player_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
1138 |
st.download_button(
|
|
|
1178 |
st.download_button(
|
1179 |
label="Export Exposures",
|
1180 |
data=convert_df_to_csv(dst_freq),
|
1181 |
+
file_name='s_flex_freq_export.csv',
|
1182 |
mime='text/csv',
|
1183 |
)
|