Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -46,64 +46,6 @@ player_roo_format = {'Top_finish': '{:.2%}','Top_5_finish': '{:.2%}', 'Top_10_fi
|
|
46 |
|
47 |
freq_format = {'Proj Own': '{:.2%}', 'Exposure': '{:.2%}', 'Edge': '{:.2%}'}
|
48 |
|
49 |
-
@st.cache_resource(ttl = 60)
|
50 |
-
def set_slate_teams():
|
51 |
-
sh = gc.open_by_url('https://docs.google.com/spreadsheets/d/1I_1Ve3F4tftgfLQQoRKOJ351XfEG48s36OxXUKxmgS8/edit#gid=1391856348')
|
52 |
-
worksheet = sh.worksheet('Site_Info')
|
53 |
-
raw_display = pd.DataFrame(worksheet.get_all_records())
|
54 |
-
|
55 |
-
return raw_display
|
56 |
-
|
57 |
-
@st.cache_resource(ttl = 60)
|
58 |
-
def player_stat_table():
|
59 |
-
sh = gc.open_by_url('https://docs.google.com/spreadsheets/d/1I_1Ve3F4tftgfLQQoRKOJ351XfEG48s36OxXUKxmgS8/edit#gid=1391856348')
|
60 |
-
worksheet = sh.worksheet('Player_Projections')
|
61 |
-
raw_display = pd.DataFrame(worksheet.get_all_records())
|
62 |
-
|
63 |
-
return raw_display
|
64 |
-
|
65 |
-
@st.cache_resource(ttl = 60)
|
66 |
-
def load_dk_player_projections():
|
67 |
-
sh = gc.open_by_url('https://docs.google.com/spreadsheets/d/1I_1Ve3F4tftgfLQQoRKOJ351XfEG48s36OxXUKxmgS8/edit#gid=1391856348')
|
68 |
-
worksheet = sh.worksheet('DK_ROO')
|
69 |
-
load_display = pd.DataFrame(worksheet.get_all_records())
|
70 |
-
load_display.replace('', np.nan, inplace=True)
|
71 |
-
raw_display = load_display.dropna(subset=['Median'])
|
72 |
-
del load_display
|
73 |
-
|
74 |
-
return raw_display
|
75 |
-
|
76 |
-
@st.cache_resource(ttl = 60)
|
77 |
-
def load_fd_player_projections():
|
78 |
-
sh = gc.open_by_url('https://docs.google.com/spreadsheets/d/1I_1Ve3F4tftgfLQQoRKOJ351XfEG48s36OxXUKxmgS8/edit#gid=1391856348')
|
79 |
-
worksheet = sh.worksheet('FD_ROO')
|
80 |
-
load_display = pd.DataFrame(worksheet.get_all_records())
|
81 |
-
load_display.replace('', np.nan, inplace=True)
|
82 |
-
raw_display = load_display.dropna(subset=['Median'])
|
83 |
-
del load_display
|
84 |
-
|
85 |
-
return raw_display
|
86 |
-
|
87 |
-
@st.cache_resource(ttl = 60)
|
88 |
-
def set_export_ids():
|
89 |
-
sh = gc.open_by_url('https://docs.google.com/spreadsheets/d/1I_1Ve3F4tftgfLQQoRKOJ351XfEG48s36OxXUKxmgS8/edit#gid=1391856348')
|
90 |
-
worksheet = sh.worksheet('DK_ROO')
|
91 |
-
load_display = pd.DataFrame(worksheet.get_all_records())
|
92 |
-
load_display.replace('', np.nan, inplace=True)
|
93 |
-
raw_display = load_display.dropna(subset=['Median'])
|
94 |
-
dk_ids = dict(zip(raw_display['Player'], raw_display['player_id']))
|
95 |
-
|
96 |
-
worksheet = sh.worksheet('FD_ROO')
|
97 |
-
load_display = pd.DataFrame(worksheet.get_all_records())
|
98 |
-
load_display.replace('', np.nan, inplace=True)
|
99 |
-
raw_display = load_display.dropna(subset=['Median'])
|
100 |
-
fd_ids = dict(zip(raw_display['Player'], raw_display['player_id']))
|
101 |
-
|
102 |
-
del load_display
|
103 |
-
del raw_display
|
104 |
-
|
105 |
-
return dk_ids, fd_ids
|
106 |
-
|
107 |
@st.cache_data
|
108 |
def convert_df_to_csv(df):
|
109 |
return df.to_csv().encode('utf-8')
|
@@ -198,12 +140,12 @@ def create_overall_dfs(pos_players, table_name, dict_name, pos):
|
|
198 |
|
199 |
def get_overall_merged_df():
|
200 |
ref_dict = {
|
201 |
-
'pos':['RB', 'WR', '
|
202 |
-
'pos_dfs':['RB_Table', 'WR_Table', '
|
203 |
-
'pos_dicts':['rb_dict', 'wr_dict', '
|
204 |
}
|
205 |
|
206 |
-
for i in range(0,
|
207 |
ref_dict['pos_dfs'][i], ref_dict['pos_dicts'][i] =\
|
208 |
create_overall_dfs(pos_players, ref_dict['pos_dfs'][i], ref_dict['pos_dicts'][i], ref_dict['pos'][i])
|
209 |
|
@@ -226,7 +168,7 @@ def create_random_portfolio(Total_Sample_Size, raw_baselines):
|
|
226 |
ranges_dict = {}
|
227 |
|
228 |
# Calculate ranges
|
229 |
-
for df, dict_val, min_val, key in zip(ref_dict['pos_dfs'], ref_dict['pos_dicts'], [10, 20, 30
|
230 |
count = create_overall_dfs(pos_players, df, dict_val, key)
|
231 |
ranges_dict[f"{key.lower()}_range"] = calculate_range_var(count, min_val, FieldStrength, field_growth_rounded)
|
232 |
if max_var <= 10:
|
@@ -244,11 +186,11 @@ def create_random_portfolio(Total_Sample_Size, raw_baselines):
|
|
244 |
|
245 |
# Generate random portfolios
|
246 |
rng = np.random.default_rng()
|
247 |
-
total_elements = [1,
|
248 |
-
keys = ['qb', 'rb', 'wr', '
|
249 |
|
250 |
all_choices = [rng.choice(ranges_dict[f"{key}_range"], size=(Total_Sample_Size, elem)) for key, elem in zip(keys, total_elements)]
|
251 |
-
RandomPortfolio = pd.DataFrame(np.hstack(all_choices), columns=['QB', 'RB1', '
|
252 |
RandomPortfolio['User/Field'] = 0
|
253 |
|
254 |
del O_merge
|
@@ -263,40 +205,16 @@ def get_correlated_portfolio_for_sim(Total_Sample_Size):
|
|
263 |
stack_num = random.randint(1, 3)
|
264 |
stacking_dict = create_stack_options(raw_baselines, stack_num)
|
265 |
|
266 |
-
# # Create a dictionary for mapping positions to their corresponding dictionaries
|
267 |
-
# dict_map = {
|
268 |
-
# 'QB': qb_dict,
|
269 |
-
# 'RB1': full_pos_player_dict['pos_dicts'][0],
|
270 |
-
# 'RB2': full_pos_player_dict['pos_dicts'][0],
|
271 |
-
# 'WR1': full_pos_player_dict['pos_dicts'][1],
|
272 |
-
# 'WR2': full_pos_player_dict['pos_dicts'][1],
|
273 |
-
# 'WR3': full_pos_player_dict['pos_dicts'][1],
|
274 |
-
# 'TE': full_pos_player_dict['pos_dicts'][2],
|
275 |
-
# 'FLEX': full_pos_player_dict['pos_dicts'][3],
|
276 |
-
# 'DST': def_dict
|
277 |
-
# }
|
278 |
-
|
279 |
-
# # Apply mapping for each position
|
280 |
-
# for pos, mapping in dict_map.items():
|
281 |
-
# RandomPortfolio[pos] = RandomPortfolio[pos].map(mapping).astype("string[pyarrow]")
|
282 |
-
|
283 |
-
# # This part appears to be for filtering. Consider if it can be optimized depending on the data characteristics
|
284 |
-
# RandomPortfolio['plyr_list'] = RandomPortfolio.values.tolist()
|
285 |
-
# RandomPortfolio['plyr_count'] = RandomPortfolio['plyr_list'].apply(lambda x: len(set(x)))
|
286 |
-
# RandomPortfolio = RandomPortfolio[RandomPortfolio['plyr_count'] == 10].drop(columns=['plyr_list','plyr_count']).reset_index(drop=True)
|
287 |
-
|
288 |
RandomPortfolio['QB'] = pd.Series(list(RandomPortfolio['QB'].map(qb_dict)), dtype="string[pyarrow]")
|
289 |
RandomPortfolio['RB1'] = pd.Series(list(RandomPortfolio['RB1'].map(full_pos_player_dict['pos_dicts'][0])), dtype="string[pyarrow]")
|
290 |
-
RandomPortfolio['RB2'] = pd.Series(list(RandomPortfolio['RB2'].map(full_pos_player_dict['pos_dicts'][0])), dtype="string[pyarrow]")
|
291 |
RandomPortfolio['WR1'] = pd.Series(list(RandomPortfolio['QB'].map(stacking_dict)), dtype="string[pyarrow]")
|
292 |
RandomPortfolio['WR2'] = pd.Series(list(RandomPortfolio['WR2'].map(full_pos_player_dict['pos_dicts'][1])), dtype="string[pyarrow]")
|
293 |
-
RandomPortfolio['
|
294 |
-
RandomPortfolio['
|
295 |
-
RandomPortfolio['FLEX'] = pd.Series(list(RandomPortfolio['FLEX'].map(full_pos_player_dict['pos_dicts'][3])), dtype="string[pyarrow]")
|
296 |
RandomPortfolio['DST'] = pd.Series(list(RandomPortfolio['DST'].map(def_dict)), dtype="string[pyarrow]")
|
297 |
RandomPortfolio['plyr_list'] = RandomPortfolio[RandomPortfolio.columns.values.tolist()].values.tolist()
|
298 |
RandomPortfolio['plyr_count'] = RandomPortfolio['plyr_list'].apply(lambda x: len(set(x)))
|
299 |
-
RandomPortfolio = RandomPortfolio[RandomPortfolio['plyr_count'] ==
|
300 |
reset_index(drop=True)
|
301 |
|
302 |
del sizesplit
|
@@ -304,48 +222,40 @@ def get_correlated_portfolio_for_sim(Total_Sample_Size):
|
|
304 |
del ranges_dict
|
305 |
del stack_num
|
306 |
del stacking_dict
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
RandomPortfolio['QBs'] = RandomPortfolio['QB'].map(maps_dict['Salary_map']).astype(np.int32)
|
311 |
RandomPortfolio['RB1s'] = RandomPortfolio['RB1'].map(maps_dict['Salary_map']).astype(np.int32)
|
312 |
-
RandomPortfolio['RB2s'] = RandomPortfolio['RB2'].map(maps_dict['Salary_map']).astype(np.int32)
|
313 |
RandomPortfolio['WR1s'] = RandomPortfolio['WR1'].map(maps_dict['Salary_map']).astype(np.int32)
|
314 |
RandomPortfolio['WR2s'] = RandomPortfolio['WR2'].map(maps_dict['Salary_map']).astype(np.int32)
|
315 |
-
RandomPortfolio['
|
316 |
-
RandomPortfolio['
|
317 |
-
RandomPortfolio['FLEXs'] = RandomPortfolio['FLEX'].map(maps_dict['Salary_map']).astype(np.int32)
|
318 |
RandomPortfolio['DSTs'] = RandomPortfolio['DST'].map(maps_dict['Salary_map']).astype(np.int32)
|
319 |
|
320 |
RandomPortfolio['QBp'] = RandomPortfolio['QB'].map(maps_dict['Projection_map']).astype(np.float16)
|
321 |
RandomPortfolio['RB1p'] = RandomPortfolio['RB1'].map(maps_dict['Projection_map']).astype(np.float16)
|
322 |
-
RandomPortfolio['RB2p'] = RandomPortfolio['RB2'].map(maps_dict['Projection_map']).astype(np.float16)
|
323 |
RandomPortfolio['WR1p'] = RandomPortfolio['WR1'].map(maps_dict['Projection_map']).astype(np.float16)
|
324 |
RandomPortfolio['WR2p'] = RandomPortfolio['WR2'].map(maps_dict['Projection_map']).astype(np.float16)
|
325 |
-
RandomPortfolio['
|
326 |
-
RandomPortfolio['
|
327 |
-
RandomPortfolio['FLEXp'] = RandomPortfolio['FLEX'].map(maps_dict['Projection_map']).astype(np.float16)
|
328 |
RandomPortfolio['DSTp'] = RandomPortfolio['DST'].map(maps_dict['Projection_map']).astype(np.float16)
|
329 |
|
330 |
RandomPortfolio['QBo'] = RandomPortfolio['QB'].map(maps_dict['Own_map']).astype(np.float16)
|
331 |
RandomPortfolio['RB1o'] = RandomPortfolio['RB1'].map(maps_dict['Own_map']).astype(np.float16)
|
332 |
-
RandomPortfolio['RB2o'] = RandomPortfolio['RB2'].map(maps_dict['Own_map']).astype(np.float16)
|
333 |
RandomPortfolio['WR1o'] = RandomPortfolio['WR1'].map(maps_dict['Own_map']).astype(np.float16)
|
334 |
RandomPortfolio['WR2o'] = RandomPortfolio['WR2'].map(maps_dict['Own_map']).astype(np.float16)
|
335 |
-
RandomPortfolio['
|
336 |
-
RandomPortfolio['
|
337 |
-
RandomPortfolio['FLEXo'] = RandomPortfolio['FLEX'].map(maps_dict['Own_map']).astype(np.float16)
|
338 |
RandomPortfolio['DSTo'] = RandomPortfolio['DST'].map(maps_dict['Own_map']).astype(np.float16)
|
339 |
|
340 |
RandomPortArray = RandomPortfolio.to_numpy()
|
341 |
del RandomPortfolio
|
342 |
|
343 |
-
RandomPortArray = np.c_[RandomPortArray, np.einsum('ij->i',RandomPortArray[:,
|
344 |
-
RandomPortArray = np.c_[RandomPortArray, np.einsum('ij->i',RandomPortArray[:,
|
345 |
-
RandomPortArray = np.c_[RandomPortArray, np.einsum('ij->i',RandomPortArray[:,
|
346 |
|
347 |
-
RandomPortArrayOut = np.delete(RandomPortArray, np.s_[
|
348 |
-
RandomPortfolioDF = pd.DataFrame(RandomPortArrayOut, columns = ['QB', 'RB1', '
|
349 |
RandomPortfolioDF = RandomPortfolioDF.sort_values(by=Sim_function, ascending=False)
|
350 |
del RandomPortArray
|
351 |
del RandomPortArrayOut
|
@@ -353,47 +263,38 @@ def get_correlated_portfolio_for_sim(Total_Sample_Size):
|
|
353 |
if insert_port == 1:
|
354 |
CleanPortfolio['Salary'] = sum([CleanPortfolio['QB'].map(maps_dict['Salary_map']),
|
355 |
CleanPortfolio['RB1'].map(maps_dict['Salary_map']),
|
356 |
-
CleanPortfolio['RB2'].map(maps_dict['Salary_map']),
|
357 |
CleanPortfolio['WR1'].map(maps_dict['Salary_map']),
|
358 |
CleanPortfolio['WR2'].map(maps_dict['Salary_map']),
|
359 |
-
CleanPortfolio['
|
360 |
-
CleanPortfolio['
|
361 |
-
CleanPortfolio['FLEX'].map(maps_dict['Salary_map']),
|
362 |
CleanPortfolio['DST'].map(maps_dict['Salary_map'])
|
363 |
]).astype(np.int16)
|
364 |
if insert_port == 1:
|
365 |
CleanPortfolio['Projection'] = sum([CleanPortfolio['QB'].map(up_dict['Projection_map']),
|
366 |
CleanPortfolio['RB1'].map(up_dict['Projection_map']),
|
367 |
-
CleanPortfolio['RB2'].map(up_dict['Projection_map']),
|
368 |
CleanPortfolio['WR1'].map(up_dict['Projection_map']),
|
369 |
CleanPortfolio['WR2'].map(up_dict['Projection_map']),
|
370 |
-
CleanPortfolio['
|
371 |
-
CleanPortfolio['
|
372 |
-
CleanPortfolio['FLEX'].map(up_dict['Projection_map']),
|
373 |
CleanPortfolio['DST'].map(up_dict['Projection_map'])
|
374 |
]).astype(np.float16)
|
375 |
if insert_port == 1:
|
376 |
CleanPortfolio['Own'] = sum([CleanPortfolio['QB'].map(maps_dict['Own_map']),
|
377 |
CleanPortfolio['RB1'].map(maps_dict['Own_map']),
|
378 |
-
CleanPortfolio['RB2'].map(maps_dict['Own_map']),
|
379 |
CleanPortfolio['WR1'].map(maps_dict['Own_map']),
|
380 |
CleanPortfolio['WR2'].map(maps_dict['Own_map']),
|
381 |
-
CleanPortfolio['
|
382 |
-
CleanPortfolio['
|
383 |
-
CleanPortfolio['FLEX'].map(maps_dict['Own_map']),
|
384 |
CleanPortfolio['DST'].map(maps_dict['Own_map'])
|
385 |
]).astype(np.float16)
|
386 |
|
387 |
if site_var1 == 'Draftkings':
|
388 |
RandomPortfolioDF = RandomPortfolioDF[RandomPortfolioDF['Salary'] <= 50000].reset_index(drop=True)
|
389 |
RandomPortfolioDF = RandomPortfolioDF[RandomPortfolioDF['Salary'] >= (49500 - (5000 * (1 - (len(Teams_used) / 32)))) - (FieldStrength * 1000)].reset_index(drop=True)
|
390 |
-
elif site_var1 == 'Fanduel':
|
391 |
-
RandomPortfolioDF = RandomPortfolioDF[RandomPortfolioDF['Salary'] <= 60000].reset_index(drop=True)
|
392 |
-
RandomPortfolioDF = RandomPortfolioDF[RandomPortfolioDF['Salary'] >= (59500 - (5000 * (1 - (len(Teams_used) / 32)))) - (FieldStrength * 1000)].reset_index(drop=True)
|
393 |
|
394 |
RandomPortfolio = RandomPortfolioDF.sort_values(by=Sim_function, ascending=False)
|
395 |
|
396 |
-
RandomPortfolio = RandomPortfolio[['QB', 'RB1', '
|
397 |
|
398 |
return RandomPortfolio, maps_dict
|
399 |
|
@@ -405,120 +306,95 @@ def get_uncorrelated_portfolio_for_sim(Total_Sample_Size):
|
|
405 |
|
406 |
RandomPortfolio['QB'] = pd.Series(list(RandomPortfolio['QB'].map(qb_dict)), dtype="string[pyarrow]")
|
407 |
RandomPortfolio['RB1'] = pd.Series(list(RandomPortfolio['RB1'].map(full_pos_player_dict['pos_dicts'][0])), dtype="string[pyarrow]")
|
408 |
-
RandomPortfolio['RB2'] = pd.Series(list(RandomPortfolio['RB2'].map(full_pos_player_dict['pos_dicts'][0])), dtype="string[pyarrow]")
|
409 |
RandomPortfolio['WR1'] = pd.Series(list(RandomPortfolio['WR1'].map(full_pos_player_dict['pos_dicts'][1])), dtype="string[pyarrow]")
|
410 |
RandomPortfolio['WR2'] = pd.Series(list(RandomPortfolio['WR2'].map(full_pos_player_dict['pos_dicts'][1])), dtype="string[pyarrow]")
|
411 |
-
RandomPortfolio['
|
412 |
-
RandomPortfolio['
|
413 |
-
RandomPortfolio['FLEX'] = pd.Series(list(RandomPortfolio['FLEX'].map(full_pos_player_dict['pos_dicts'][3])), dtype="string[pyarrow]")
|
414 |
RandomPortfolio['DST'] = pd.Series(list(RandomPortfolio['DST'].map(def_dict)), dtype="string[pyarrow]")
|
415 |
RandomPortfolio['plyr_list'] = RandomPortfolio[RandomPortfolio.columns.values.tolist()].values.tolist()
|
416 |
RandomPortfolio['plyr_count'] = RandomPortfolio['plyr_list'].apply(lambda x: len(set(x)))
|
417 |
-
RandomPortfolio = RandomPortfolio[RandomPortfolio['plyr_count'] ==
|
418 |
reset_index(drop=True)
|
419 |
|
420 |
del sizesplit
|
421 |
del full_pos_player_dict
|
422 |
-
del ranges_dict
|
423 |
-
|
424 |
RandomPortfolio['QBs'] = RandomPortfolio['QB'].map(maps_dict['Salary_map']).astype(np.int32)
|
425 |
RandomPortfolio['RB1s'] = RandomPortfolio['RB1'].map(maps_dict['Salary_map']).astype(np.int32)
|
426 |
-
RandomPortfolio['RB2s'] = RandomPortfolio['RB2'].map(maps_dict['Salary_map']).astype(np.int32)
|
427 |
RandomPortfolio['WR1s'] = RandomPortfolio['WR1'].map(maps_dict['Salary_map']).astype(np.int32)
|
428 |
RandomPortfolio['WR2s'] = RandomPortfolio['WR2'].map(maps_dict['Salary_map']).astype(np.int32)
|
429 |
-
RandomPortfolio['
|
430 |
-
RandomPortfolio['
|
431 |
-
RandomPortfolio['FLEXs'] = RandomPortfolio['FLEX'].map(maps_dict['Salary_map']).astype(np.int32)
|
432 |
RandomPortfolio['DSTs'] = RandomPortfolio['DST'].map(maps_dict['Salary_map']).astype(np.int32)
|
433 |
|
434 |
RandomPortfolio['QBp'] = RandomPortfolio['QB'].map(maps_dict['Projection_map']).astype(np.float16)
|
435 |
RandomPortfolio['RB1p'] = RandomPortfolio['RB1'].map(maps_dict['Projection_map']).astype(np.float16)
|
436 |
-
RandomPortfolio['RB2p'] = RandomPortfolio['RB2'].map(maps_dict['Projection_map']).astype(np.float16)
|
437 |
RandomPortfolio['WR1p'] = RandomPortfolio['WR1'].map(maps_dict['Projection_map']).astype(np.float16)
|
438 |
RandomPortfolio['WR2p'] = RandomPortfolio['WR2'].map(maps_dict['Projection_map']).astype(np.float16)
|
439 |
-
RandomPortfolio['
|
440 |
-
RandomPortfolio['
|
441 |
-
RandomPortfolio['FLEXp'] = RandomPortfolio['FLEX'].map(maps_dict['Projection_map']).astype(np.float16)
|
442 |
RandomPortfolio['DSTp'] = RandomPortfolio['DST'].map(maps_dict['Projection_map']).astype(np.float16)
|
443 |
|
444 |
RandomPortfolio['QBo'] = RandomPortfolio['QB'].map(maps_dict['Own_map']).astype(np.float16)
|
445 |
RandomPortfolio['RB1o'] = RandomPortfolio['RB1'].map(maps_dict['Own_map']).astype(np.float16)
|
446 |
-
RandomPortfolio['RB2o'] = RandomPortfolio['RB2'].map(maps_dict['Own_map']).astype(np.float16)
|
447 |
RandomPortfolio['WR1o'] = RandomPortfolio['WR1'].map(maps_dict['Own_map']).astype(np.float16)
|
448 |
RandomPortfolio['WR2o'] = RandomPortfolio['WR2'].map(maps_dict['Own_map']).astype(np.float16)
|
449 |
-
RandomPortfolio['
|
450 |
-
RandomPortfolio['
|
451 |
-
RandomPortfolio['FLEXo'] = RandomPortfolio['FLEX'].map(maps_dict['Own_map']).astype(np.float16)
|
452 |
RandomPortfolio['DSTo'] = RandomPortfolio['DST'].map(maps_dict['Own_map']).astype(np.float16)
|
453 |
|
454 |
RandomPortArray = RandomPortfolio.to_numpy()
|
455 |
del RandomPortfolio
|
456 |
|
457 |
-
RandomPortArray = np.c_[RandomPortArray, np.einsum('ij->i',RandomPortArray[:,
|
458 |
-
RandomPortArray = np.c_[RandomPortArray, np.einsum('ij->i',RandomPortArray[:,
|
459 |
-
RandomPortArray = np.c_[RandomPortArray, np.einsum('ij->i',RandomPortArray[:,
|
460 |
|
461 |
-
RandomPortArrayOut = np.delete(RandomPortArray, np.s_[
|
462 |
-
RandomPortfolioDF = pd.DataFrame(RandomPortArrayOut, columns = ['QB', 'RB1', '
|
463 |
RandomPortfolioDF = RandomPortfolioDF.sort_values(by=Sim_function, ascending=False)
|
464 |
del RandomPortArray
|
465 |
del RandomPortArrayOut
|
466 |
-
|
467 |
-
|
468 |
if insert_port == 1:
|
469 |
CleanPortfolio['Salary'] = sum([CleanPortfolio['QB'].map(maps_dict['Salary_map']),
|
470 |
CleanPortfolio['RB1'].map(maps_dict['Salary_map']),
|
471 |
-
CleanPortfolio['RB2'].map(maps_dict['Salary_map']),
|
472 |
CleanPortfolio['WR1'].map(maps_dict['Salary_map']),
|
473 |
CleanPortfolio['WR2'].map(maps_dict['Salary_map']),
|
474 |
-
CleanPortfolio['
|
475 |
-
CleanPortfolio['
|
476 |
-
CleanPortfolio['FLEX'].map(maps_dict['Salary_map']),
|
477 |
CleanPortfolio['DST'].map(maps_dict['Salary_map'])
|
478 |
]).astype(np.int16)
|
479 |
if insert_port == 1:
|
480 |
CleanPortfolio['Projection'] = sum([CleanPortfolio['QB'].map(up_dict['Projection_map']),
|
481 |
CleanPortfolio['RB1'].map(up_dict['Projection_map']),
|
482 |
-
CleanPortfolio['RB2'].map(up_dict['Projection_map']),
|
483 |
CleanPortfolio['WR1'].map(up_dict['Projection_map']),
|
484 |
CleanPortfolio['WR2'].map(up_dict['Projection_map']),
|
485 |
-
CleanPortfolio['
|
486 |
-
CleanPortfolio['
|
487 |
-
CleanPortfolio['FLEX'].map(up_dict['Projection_map']),
|
488 |
CleanPortfolio['DST'].map(up_dict['Projection_map'])
|
489 |
]).astype(np.float16)
|
490 |
if insert_port == 1:
|
491 |
CleanPortfolio['Own'] = sum([CleanPortfolio['QB'].map(maps_dict['Own_map']),
|
492 |
CleanPortfolio['RB1'].map(maps_dict['Own_map']),
|
493 |
-
CleanPortfolio['RB2'].map(maps_dict['Own_map']),
|
494 |
CleanPortfolio['WR1'].map(maps_dict['Own_map']),
|
495 |
CleanPortfolio['WR2'].map(maps_dict['Own_map']),
|
496 |
-
CleanPortfolio['
|
497 |
-
CleanPortfolio['
|
498 |
-
CleanPortfolio['FLEX'].map(maps_dict['Own_map']),
|
499 |
CleanPortfolio['DST'].map(maps_dict['Own_map'])
|
500 |
]).astype(np.float16)
|
501 |
|
502 |
if site_var1 == 'Draftkings':
|
503 |
RandomPortfolioDF = RandomPortfolioDF[RandomPortfolioDF['Salary'] <= 50000].reset_index(drop=True)
|
504 |
RandomPortfolioDF = RandomPortfolioDF[RandomPortfolioDF['Salary'] >= (49500 - (5000 * (1 - (len(Teams_used) / 32)))) - (FieldStrength * 1000)].reset_index(drop=True)
|
505 |
-
elif site_var1 == 'Fanduel':
|
506 |
-
RandomPortfolioDF = RandomPortfolioDF[RandomPortfolioDF['Salary'] <= 60000].reset_index(drop=True)
|
507 |
-
RandomPortfolioDF = RandomPortfolioDF[RandomPortfolioDF['Salary'] >= (59500 - (5000 * (1 - (len(Teams_used) / 32)))) - (FieldStrength * 1000)].reset_index(drop=True)
|
508 |
|
509 |
RandomPortfolio = RandomPortfolioDF.sort_values(by=Sim_function, ascending=False)
|
510 |
|
511 |
-
RandomPortfolio = RandomPortfolio[['QB', 'RB1', '
|
512 |
|
513 |
return RandomPortfolio, maps_dict
|
514 |
|
515 |
-
player_stats = player_stat_table()
|
516 |
-
dk_roo_raw = load_dk_player_projections()
|
517 |
-
fd_roo_raw = load_fd_player_projections()
|
518 |
-
t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST"
|
519 |
-
site_slates = set_slate_teams()
|
520 |
-
dkid_dict, fdid_dict = set_export_ids()
|
521 |
-
|
522 |
static_exposure = pd.DataFrame(columns=['Player', 'count'])
|
523 |
overall_exposure = pd.DataFrame(columns=['Player', 'count'])
|
524 |
|
@@ -557,7 +433,7 @@ with tab1:
|
|
557 |
player_team_dict = dict(zip(proj_dataframe.Player, proj_dataframe.Team))
|
558 |
|
559 |
with col2:
|
560 |
-
st.info("The Portfolio file must contain only columns in order and explicitly named: 'QB', 'RB1', '
|
561 |
portfolio_file = st.file_uploader("Upload Portfolio File", key = 'portfolio_uploader')
|
562 |
|
563 |
if portfolio_file is not None:
|
@@ -569,201 +445,158 @@ with tab1:
|
|
569 |
|
570 |
try:
|
571 |
try:
|
572 |
-
portfolio_dataframe.columns=["QB", "RB1", "
|
573 |
split_portfolio = portfolio_dataframe
|
574 |
split_portfolio[['QB', 'QB_ID']] = split_portfolio.QB.str.split("(", n=1, expand = True)
|
575 |
split_portfolio[['RB1', 'RB1_ID']] = split_portfolio.RB1.str.split("(", n=1, expand = True)
|
576 |
-
split_portfolio[['RB2', 'RB2_ID']] = split_portfolio.RB2.str.split("(", n=1, expand = True)
|
577 |
split_portfolio[['WR1', 'WR1_ID']] = split_portfolio.WR1.str.split("(", n=1, expand = True)
|
578 |
split_portfolio[['WR2', 'WR2_ID']] = split_portfolio.WR2.str.split("(", n=1, expand = True)
|
579 |
-
split_portfolio[['
|
580 |
-
split_portfolio[['
|
581 |
-
split_portfolio[['FLEX', 'FLEX_ID']] = split_portfolio.FLEX.str.split("(", n=1, expand = True)
|
582 |
split_portfolio[['DST', 'DST_ID']] = split_portfolio.DST.str.split("(", n=1, expand = True)
|
583 |
|
584 |
split_portfolio['QB'] = split_portfolio['QB'].str.strip()
|
585 |
split_portfolio['RB1'] = split_portfolio['RB1'].str.strip()
|
586 |
-
split_portfolio['RB2'] = split_portfolio['RB2'].str.strip()
|
587 |
split_portfolio['WR1'] = split_portfolio['WR1'].str.strip()
|
588 |
split_portfolio['WR2'] = split_portfolio['WR2'].str.strip()
|
589 |
-
split_portfolio['
|
590 |
-
split_portfolio['
|
591 |
-
split_portfolio['FLEX'] = split_portfolio['FLEX'].str.strip()
|
592 |
split_portfolio['DST'] = split_portfolio['DST'].str.strip()
|
593 |
|
594 |
st.table(split_portfolio.head(10))
|
595 |
|
596 |
split_portfolio['Salary'] = sum([split_portfolio['QB'].map(player_salary_dict),
|
597 |
split_portfolio['RB1'].map(player_salary_dict),
|
598 |
-
split_portfolio['RB2'].map(player_salary_dict),
|
599 |
split_portfolio['WR1'].map(player_salary_dict),
|
600 |
split_portfolio['WR2'].map(player_salary_dict),
|
601 |
-
split_portfolio['
|
602 |
-
split_portfolio['
|
603 |
-
split_portfolio['FLEX'].map(player_salary_dict),
|
604 |
split_portfolio['DST'].map(player_salary_dict)])
|
605 |
|
606 |
split_portfolio['Projection'] = sum([split_portfolio['QB'].map(player_proj_dict),
|
607 |
split_portfolio['RB1'].map(player_proj_dict),
|
608 |
-
split_portfolio['RB2'].map(player_proj_dict),
|
609 |
split_portfolio['WR1'].map(player_proj_dict),
|
610 |
split_portfolio['WR2'].map(player_proj_dict),
|
611 |
-
split_portfolio['
|
612 |
-
split_portfolio['
|
613 |
-
split_portfolio['FLEX'].map(player_proj_dict),
|
614 |
split_portfolio['DST'].map(player_proj_dict)])
|
615 |
|
616 |
split_portfolio['Ownership'] = sum([split_portfolio['QB'].map(player_own_dict),
|
617 |
split_portfolio['RB1'].map(player_own_dict),
|
618 |
-
split_portfolio['RB2'].map(player_own_dict),
|
619 |
split_portfolio['WR1'].map(player_own_dict),
|
620 |
split_portfolio['WR2'].map(player_own_dict),
|
621 |
-
split_portfolio['
|
622 |
-
split_portfolio['
|
623 |
-
split_portfolio['FLEX'].map(player_own_dict),
|
624 |
split_portfolio['DST'].map(player_own_dict)])
|
625 |
|
626 |
split_portfolio['QB_team'] = split_portfolio['QB'].map(player_team_dict)
|
627 |
split_portfolio['RB1_team'] = split_portfolio['RB1'].map(player_team_dict)
|
628 |
-
split_portfolio['RB2_team'] = split_portfolio['RB2'].map(player_team_dict)
|
629 |
split_portfolio['WR1_team'] = split_portfolio['WR1'].map(player_team_dict)
|
630 |
split_portfolio['WR2_team'] = split_portfolio['WR2'].map(player_team_dict)
|
631 |
-
split_portfolio['
|
632 |
-
split_portfolio['
|
633 |
-
split_portfolio['FLEX_team'] = split_portfolio['FLEX'].map(player_team_dict)
|
634 |
split_portfolio['DST_team'] = split_portfolio['DST'].map(player_team_dict)
|
635 |
|
636 |
-
split_portfolio = split_portfolio[['QB', 'RB1', '
|
637 |
-
'RB1_team', '
|
638 |
-
|
639 |
-
split_portfolio['Main_Stack'] = split_portfolio.iloc[:, 15:19].apply(lambda row: row.value_counts().nlargest(2).index[0],axis=1)
|
640 |
-
split_portfolio['Main_Stack_Size'] = split_portfolio.iloc[:, 15:19].apply(lambda row: row.value_counts().nlargest(2).values[0],axis=1)
|
641 |
-
split_portfolio['Main_Stack_Size'] = split_portfolio['Main_Stack_Size'] - 1
|
642 |
|
643 |
|
644 |
except:
|
645 |
-
portfolio_dataframe.columns=["QB", "RB1", "
|
646 |
|
647 |
split_portfolio = portfolio_dataframe
|
648 |
split_portfolio[['QB_ID', 'QB']] = split_portfolio.QB.str.split(":", n=1, expand = True)
|
649 |
split_portfolio[['RB1_ID', 'RB1']] = split_portfolio.RB1.str.split(":", n=1, expand = True)
|
650 |
-
split_portfolio[['RB2_ID', 'RB2']] = split_portfolio.RB2.str.split(":", n=1, expand = True)
|
651 |
split_portfolio[['WR1_ID', 'WR1']] = split_portfolio.WR1.str.split(":", n=1, expand = True)
|
652 |
split_portfolio[['WR2_ID', 'WR2']] = split_portfolio.WR2.str.split(":", n=1, expand = True)
|
653 |
-
split_portfolio[['
|
654 |
-
split_portfolio[['
|
655 |
-
split_portfolio[['FLEX_ID', 'FLEX']] = split_portfolio.FLEX.str.split(":", n=1, expand = True)
|
656 |
split_portfolio[['DST_ID', 'DST']] = split_portfolio.DST.str.split(":", n=1, expand = True)
|
657 |
|
658 |
split_portfolio['QB'] = split_portfolio['QB'].str.strip()
|
659 |
split_portfolio['RB1'] = split_portfolio['RB1'].str.strip()
|
660 |
-
split_portfolio['RB2'] = split_portfolio['RB2'].str.strip()
|
661 |
split_portfolio['WR1'] = split_portfolio['WR1'].str.strip()
|
662 |
split_portfolio['WR2'] = split_portfolio['WR2'].str.strip()
|
663 |
-
split_portfolio['
|
664 |
-
split_portfolio['
|
665 |
-
split_portfolio['FLEX'] = split_portfolio['FLEX'].str.strip()
|
666 |
split_portfolio['DST'] = split_portfolio['DST'].str.strip()
|
667 |
|
668 |
split_portfolio['Salary'] = sum([split_portfolio['QB'].map(player_salary_dict),
|
669 |
split_portfolio['RB1'].map(player_salary_dict),
|
670 |
-
split_portfolio['RB2'].map(player_salary_dict),
|
671 |
split_portfolio['WR1'].map(player_salary_dict),
|
672 |
split_portfolio['WR2'].map(player_salary_dict),
|
673 |
-
split_portfolio['
|
674 |
-
split_portfolio['
|
675 |
-
split_portfolio['FLEX'].map(player_salary_dict),
|
676 |
split_portfolio['DST'].map(player_salary_dict)])
|
677 |
|
678 |
split_portfolio['Projection'] = sum([split_portfolio['QB'].map(player_proj_dict),
|
679 |
split_portfolio['RB1'].map(player_proj_dict),
|
680 |
-
split_portfolio['RB2'].map(player_proj_dict),
|
681 |
split_portfolio['WR1'].map(player_proj_dict),
|
682 |
split_portfolio['WR2'].map(player_proj_dict),
|
683 |
-
split_portfolio['
|
684 |
-
split_portfolio['
|
685 |
-
split_portfolio['FLEX'].map(player_proj_dict),
|
686 |
split_portfolio['DST'].map(player_proj_dict)])
|
687 |
|
688 |
st.table(split_portfolio.head(10))
|
689 |
split_portfolio['Ownership'] = sum([split_portfolio['QB'].map(player_own_dict),
|
690 |
split_portfolio['RB1'].map(player_own_dict),
|
691 |
-
split_portfolio['RB2'].map(player_own_dict),
|
692 |
split_portfolio['WR1'].map(player_own_dict),
|
693 |
split_portfolio['WR2'].map(player_own_dict),
|
694 |
-
split_portfolio['
|
695 |
-
split_portfolio['
|
696 |
-
split_portfolio['FLEX'].map(player_own_dict),
|
697 |
split_portfolio['DST'].map(player_own_dict)])
|
698 |
|
699 |
split_portfolio['QB_team'] = split_portfolio['QB'].map(player_team_dict)
|
700 |
split_portfolio['RB1_team'] = split_portfolio['RB1'].map(player_team_dict)
|
701 |
-
split_portfolio['RB2_team'] = split_portfolio['RB2'].map(player_team_dict)
|
702 |
split_portfolio['WR1_team'] = split_portfolio['WR1'].map(player_team_dict)
|
703 |
split_portfolio['WR2_team'] = split_portfolio['WR2'].map(player_team_dict)
|
704 |
-
split_portfolio['
|
705 |
-
split_portfolio['
|
706 |
-
split_portfolio['FLEX_team'] = split_portfolio['FLEX'].map(player_team_dict)
|
707 |
split_portfolio['DST_team'] = split_portfolio['DST'].map(player_team_dict)
|
708 |
|
709 |
-
split_portfolio = split_portfolio[['QB', 'RB1', '
|
710 |
-
'RB1_team', '
|
711 |
-
|
712 |
-
split_portfolio['Main_Stack'] = split_portfolio.iloc[:, 15:19].apply(lambda row: row.value_counts().nlargest(2).index[0],axis=1)
|
713 |
-
split_portfolio['Main_Stack_Size'] = split_portfolio.iloc[:, 15:19].apply(lambda row: row.value_counts().nlargest(2).values[0],axis=1)
|
714 |
-
split_portfolio['Main_Stack_Size'] = split_portfolio['Main_Stack_Size'] - 1
|
715 |
|
716 |
except:
|
717 |
split_portfolio = portfolio_dataframe
|
718 |
|
719 |
split_portfolio['Salary'] = sum([split_portfolio['QB'].map(player_salary_dict),
|
720 |
split_portfolio['RB1'].map(player_salary_dict),
|
721 |
-
split_portfolio['RB2'].map(player_salary_dict),
|
722 |
split_portfolio['WR1'].map(player_salary_dict),
|
723 |
split_portfolio['WR2'].map(player_salary_dict),
|
724 |
-
split_portfolio['
|
725 |
-
split_portfolio['
|
726 |
-
split_portfolio['FLEX'].map(player_salary_dict),
|
727 |
split_portfolio['DST'].map(player_salary_dict)])
|
728 |
|
729 |
split_portfolio['Projection'] = sum([split_portfolio['QB'].map(player_proj_dict),
|
730 |
split_portfolio['RB1'].map(player_proj_dict),
|
731 |
-
split_portfolio['RB2'].map(player_proj_dict),
|
732 |
split_portfolio['WR1'].map(player_proj_dict),
|
733 |
split_portfolio['WR2'].map(player_proj_dict),
|
734 |
-
split_portfolio['
|
735 |
-
split_portfolio['
|
736 |
-
split_portfolio['FLEX'].map(player_proj_dict),
|
737 |
split_portfolio['DST'].map(player_proj_dict)])
|
738 |
|
739 |
split_portfolio['Ownership'] = sum([split_portfolio['QB'].map(player_own_dict),
|
740 |
split_portfolio['RB1'].map(player_own_dict),
|
741 |
-
split_portfolio['RB2'].map(player_own_dict),
|
742 |
split_portfolio['WR1'].map(player_own_dict),
|
743 |
split_portfolio['WR2'].map(player_own_dict),
|
744 |
-
split_portfolio['
|
745 |
-
split_portfolio['
|
746 |
-
split_portfolio['FLEX'].map(player_own_dict),
|
747 |
split_portfolio['DST'].map(player_own_dict)])
|
748 |
|
749 |
split_portfolio['QB_team'] = split_portfolio['QB'].map(player_team_dict)
|
750 |
split_portfolio['RB1_team'] = split_portfolio['RB1'].map(player_team_dict)
|
751 |
-
split_portfolio['RB2_team'] = split_portfolio['RB2'].map(player_team_dict)
|
752 |
split_portfolio['WR1_team'] = split_portfolio['WR1'].map(player_team_dict)
|
753 |
split_portfolio['WR2_team'] = split_portfolio['WR2'].map(player_team_dict)
|
754 |
split_portfolio['WR3_team'] = split_portfolio['WR3'].map(player_team_dict)
|
755 |
-
split_portfolio['
|
756 |
-
split_portfolio['
|
757 |
split_portfolio['DST_team'] = split_portfolio['DST'].map(player_team_dict)
|
758 |
|
759 |
-
split_portfolio = split_portfolio[['QB', 'RB1', '
|
760 |
-
'RB1_team', '
|
761 |
-
|
762 |
-
split_portfolio['Main_Stack'] = split_portfolio.iloc[:, 15:19].apply(lambda row: row.value_counts().nlargest(2).index[0],axis=1)
|
763 |
-
split_portfolio['Main_Stack_Size'] = split_portfolio.iloc[:, 15:19].apply(lambda row: row.value_counts().nlargest(2).values[0],axis=1)
|
764 |
-
split_portfolio['Main_Stack_Size'] = split_portfolio['Main_Stack_Size'] - 1
|
765 |
|
766 |
-
for player_cols in split_portfolio.iloc[:, :
|
767 |
static_col_raw = split_portfolio[player_cols].value_counts()
|
768 |
static_col = static_col_raw.to_frame()
|
769 |
static_col.reset_index(inplace=True)
|
@@ -782,26 +615,9 @@ with tab1:
|
|
782 |
col1, col2 = st.columns([3, 3])
|
783 |
|
784 |
if portfolio_file is not None:
|
785 |
-
|
786 |
-
team_split_var1 = st.radio("Are you wanting to isolate any lineups with specific main stacks?", ('Full Portfolio', 'Specific Stacks'))
|
787 |
-
if team_split_var1 == 'Specific Stacks':
|
788 |
-
team_var1 = st.multiselect('Which main stacks would you like to include in the Portfolio?', options = split_portfolio['Main_Stack'].unique())
|
789 |
-
elif team_split_var1 == 'Full Portfolio':
|
790 |
-
team_var1 = split_portfolio.Main_Stack.values.tolist()
|
791 |
-
with col2:
|
792 |
-
player_split_var1 = st.radio("Are you wanting to isolate any lineups with specific players?", ('Full Players', 'Specific Players'))
|
793 |
-
if player_split_var1 == 'Specific Players':
|
794 |
-
find_var1 = st.multiselect('Which players must be included in the lineups?', options = static_exposure['Player'].unique())
|
795 |
-
elif player_split_var1 == 'Full Players':
|
796 |
-
find_var1 = static_exposure.Player.values.tolist()
|
797 |
-
|
798 |
-
split_portfolio = split_portfolio[split_portfolio['Main_Stack'].isin(team_var1)]
|
799 |
-
if player_split_var1 == 'Specific Players':
|
800 |
-
split_portfolio = split_portfolio[np.equal.outer(split_portfolio.to_numpy(copy=False), find_var1).any(axis=1).all(axis=1)]
|
801 |
-
elif player_split_var1 == 'Full Players':
|
802 |
-
split_portfolio = split_portfolio
|
803 |
|
804 |
-
for player_cols in split_portfolio.iloc[:, :
|
805 |
exposure_col_raw = split_portfolio[player_cols].value_counts()
|
806 |
exposure_col = exposure_col_raw.to_frame()
|
807 |
exposure_col.reset_index(inplace=True)
|
@@ -828,7 +644,7 @@ with tab1:
|
|
828 |
st.header('Portfolio View')
|
829 |
split_portfolio = split_portfolio.reset_index()
|
830 |
split_portfolio['Lineup'] = split_portfolio['index'] + 1
|
831 |
-
display_portfolio = split_portfolio[['Lineup', 'QB', 'RB1', '
|
832 |
display_portfolio = display_portfolio.set_index('Lineup')
|
833 |
st.dataframe(display_portfolio.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').background_gradient(cmap='RdYlGn_r', subset=['Ownership']).format(precision=2))
|
834 |
del split_portfolio
|
@@ -837,29 +653,10 @@ with tab1:
|
|
837 |
with tab2:
|
838 |
col1, col2 = st.columns([1, 7])
|
839 |
with col1:
|
840 |
-
st.info(t_stamp)
|
841 |
-
if st.button("Load/Reset Data", key='reset1'):
|
842 |
-
st.cache_data.clear()
|
843 |
-
dk_roo_raw = load_dk_player_projections()
|
844 |
-
fd_roo_raw = load_fd_player_projections()
|
845 |
-
t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST"
|
846 |
-
site_slates = set_slate_teams()
|
847 |
-
dkid_dict, fdid_dict = set_export_ids()
|
848 |
|
849 |
-
slate_var1 =
|
850 |
-
site_var1 =
|
851 |
-
|
852 |
-
if slate_var1 == 'User':
|
853 |
-
raw_baselines = proj_dataframe[['Player', 'Salary', 'Position', 'Team', 'Opp', 'Median', 'Own']]
|
854 |
-
elif slate_var1 != 'User':
|
855 |
-
raw_baselines = dk_roo_raw[dk_roo_raw['slate'] == str(slate_var1)]
|
856 |
-
raw_baselines = raw_baselines[raw_baselines['version'] == 'overall']
|
857 |
-
elif site_var1 == 'Fanduel':
|
858 |
-
if slate_var1 == 'User':
|
859 |
-
raw_baselines = proj_dataframe
|
860 |
-
elif slate_var1 != 'User':
|
861 |
-
raw_baselines = fd_roo_raw[fd_roo_raw['slate'] == str(slate_var1)]
|
862 |
-
raw_baselines = raw_baselines[raw_baselines['version'] == 'overall']
|
863 |
st.info("If you are uploading a portfolio, note that there is an adjustments to projections and deviation mapping to prevent 'Projection Bias' and create a fair simulation")
|
864 |
insert_port1 = st.selectbox("Are you uploading a portfolio?", ('No', 'Yes'), key='insert_port1')
|
865 |
if insert_port1 == 'Yes':
|
@@ -931,45 +728,20 @@ with tab2:
|
|
931 |
OwnFrame['Own%'] = np.where((OwnFrame['Position'] == 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (10 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean(), OwnFrame['Own'])
|
932 |
OwnFrame['Own%'] = np.where((OwnFrame['Position'] != 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (5 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean(), OwnFrame['Own%'])
|
933 |
OwnFrame['Own%'] = np.where(OwnFrame['Own%'] > 75, 75, OwnFrame['Own%'])
|
934 |
-
OwnFrame['Own'] = OwnFrame['Own%'] * (
|
935 |
if contest_var1 == 'Medium':
|
936 |
OwnFrame['Own%'] = np.where((OwnFrame['Position'] == 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (6 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean(), OwnFrame['Own'])
|
937 |
OwnFrame['Own%'] = np.where((OwnFrame['Position'] != 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (3 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean(), OwnFrame['Own%'])
|
938 |
OwnFrame['Own%'] = np.where(OwnFrame['Own%'] > 75, 75, OwnFrame['Own%'])
|
939 |
-
OwnFrame['Own'] = OwnFrame['Own%'] * (
|
940 |
if contest_var1 == 'Large':
|
941 |
OwnFrame['Own%'] = np.where((OwnFrame['Position'] == 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (3 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean(), OwnFrame['Own'])
|
942 |
OwnFrame['Own%'] = np.where((OwnFrame['Position'] != 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (1.5 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean(), OwnFrame['Own%'])
|
943 |
OwnFrame['Own%'] = np.where(OwnFrame['Own%'] > 75, 75, OwnFrame['Own%'])
|
944 |
-
OwnFrame['Own'] = OwnFrame['Own%'] * (
|
945 |
Overall_Proj = OwnFrame[['Player', 'Team', 'Position', 'Median', 'Own', 'Salary']]
|
946 |
|
947 |
del OwnFrame
|
948 |
-
|
949 |
-
elif slate_var1 != 'User':
|
950 |
-
initial_proj = raw_baselines
|
951 |
-
drop_frame = initial_proj.drop_duplicates(subset = 'Player',keep = 'first')
|
952 |
-
OwnFrame = drop_frame[['Player', 'Team', 'Position', 'Median', 'Own', 'Floor', 'Ceiling', 'Salary']]
|
953 |
-
if contest_var1 == 'Small':
|
954 |
-
OwnFrame['Own%'] = np.where((OwnFrame['Position'] == 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (10 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean(), OwnFrame['Own'])
|
955 |
-
OwnFrame['Own%'] = np.where((OwnFrame['Position'] != 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (5 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean(), OwnFrame['Own%'])
|
956 |
-
OwnFrame['Own%'] = np.where(OwnFrame['Own%'] > 75, 75, OwnFrame['Own%'])
|
957 |
-
OwnFrame['Own'] = OwnFrame['Own%'] * (900 / OwnFrame['Own%'].sum())
|
958 |
-
if contest_var1 == 'Medium':
|
959 |
-
OwnFrame['Own%'] = np.where((OwnFrame['Position'] == 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (6 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean(), OwnFrame['Own'])
|
960 |
-
OwnFrame['Own%'] = np.where((OwnFrame['Position'] != 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (3 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean(), OwnFrame['Own%'])
|
961 |
-
OwnFrame['Own%'] = np.where(OwnFrame['Own%'] > 75, 75, OwnFrame['Own%'])
|
962 |
-
OwnFrame['Own'] = OwnFrame['Own%'] * (900 / OwnFrame['Own%'].sum())
|
963 |
-
if contest_var1 == 'Large':
|
964 |
-
OwnFrame['Own%'] = np.where((OwnFrame['Position'] == 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (3 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean(), OwnFrame['Own'])
|
965 |
-
OwnFrame['Own%'] = np.where((OwnFrame['Position'] != 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (1.5 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean(), OwnFrame['Own%'])
|
966 |
-
OwnFrame['Own%'] = np.where(OwnFrame['Own%'] > 75, 75, OwnFrame['Own%'])
|
967 |
-
OwnFrame['Own'] = OwnFrame['Own%'] * (900 / OwnFrame['Own%'].sum())
|
968 |
-
Overall_Proj = OwnFrame[['Player', 'Team', 'Position', 'Median', 'Own', 'Salary']]
|
969 |
-
|
970 |
-
del initial_proj
|
971 |
-
del drop_frame
|
972 |
-
del OwnFrame
|
973 |
|
974 |
if insert_port == 1:
|
975 |
UserPortfolio = portfolio_dataframe[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST']]
|
@@ -1039,13 +811,8 @@ with tab2:
|
|
1039 |
wrs_raw.dropna(subset=['Median']).reset_index(drop=True)
|
1040 |
wrs_raw = wrs_raw.reset_index(drop=True)
|
1041 |
wrs_raw = wrs_raw.sort_values(by=['Own', 'Median'], ascending=False)
|
1042 |
-
|
1043 |
-
tes_raw = Overall_Proj[Overall_Proj.Position == 'TE']
|
1044 |
-
tes_raw.dropna(subset=['Median']).reset_index(drop=True)
|
1045 |
-
tes_raw = tes_raw.reset_index(drop=True)
|
1046 |
-
tes_raw = tes_raw.sort_values(by=['Own', 'Value'], ascending=False)
|
1047 |
|
1048 |
-
pos_players = pd.concat([rbs_raw, wrs_raw
|
1049 |
pos_players.dropna(subset=['Median']).reset_index(drop=True)
|
1050 |
pos_players = pos_players.reset_index(drop=True)
|
1051 |
|
@@ -1053,7 +820,6 @@ with tab2:
|
|
1053 |
del defs_raw
|
1054 |
del rbs_raw
|
1055 |
del wrs_raw
|
1056 |
-
del tes_raw
|
1057 |
|
1058 |
if insert_port == 1:
|
1059 |
try:
|
@@ -1061,7 +827,7 @@ with tab2:
|
|
1061 |
Raw_Portfolio = pd.DataFrame()
|
1062 |
|
1063 |
# Loop through each position and split the data accordingly
|
1064 |
-
positions = ['QB', 'RB1', '
|
1065 |
for pos in positions:
|
1066 |
temp_df = UserPortfolio[pos].str.split("(", n=1, expand=True)
|
1067 |
temp_df.columns = [pos, 'Drop']
|
@@ -1078,7 +844,7 @@ with tab2:
|
|
1078 |
|
1079 |
# Create frequency table for players
|
1080 |
cleaport_players = pd.DataFrame(
|
1081 |
-
np.column_stack(np.unique(CleanPortfolio.iloc[:, 0:
|
1082 |
columns=['Player', 'Freq']
|
1083 |
).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1084 |
cleaport_players['Freq'] = cleaport_players['Freq'].astype(int)
|
@@ -1099,7 +865,7 @@ with tab2:
|
|
1099 |
|
1100 |
# Create frequency table for players
|
1101 |
cleaport_players = pd.DataFrame(
|
1102 |
-
np.column_stack(np.unique(CleanPortfolio.iloc[:, 0:
|
1103 |
columns=['Player', 'Freq']
|
1104 |
).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1105 |
cleaport_players['Freq'] = cleaport_players['Freq'].astype(int)
|
@@ -1111,15 +877,15 @@ with tab2:
|
|
1111 |
|
1112 |
elif insert_port == 0:
|
1113 |
CleanPortfolio = UserPortfolio
|
1114 |
-
cleaport_players = pd.DataFrame(np.column_stack(np.unique(CleanPortfolio.iloc[:,0:
|
1115 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1116 |
cleaport_players['Freq'] = cleaport_players['Freq'].astype(int)
|
1117 |
nerf_frame = Overall_Proj
|
1118 |
|
1119 |
ref_dict = {
|
1120 |
-
'pos':['RB', 'WR', '
|
1121 |
-
'pos_dfs':['RB_Table', 'WR_Table', '
|
1122 |
-
'pos_dicts':['rb_dict', 'wr_dict', '
|
1123 |
}
|
1124 |
|
1125 |
maps_dict = {
|
@@ -1197,7 +963,7 @@ with tab2:
|
|
1197 |
else:
|
1198 |
sample_arrays = sample_arrays1
|
1199 |
|
1200 |
-
final_array = sample_arrays[sample_arrays[:,
|
1201 |
best_lineup = final_array[final_array[:, -1].argsort(kind='stable')[::-1][:1]]
|
1202 |
Sim_Winners.append(best_lineup)
|
1203 |
SimVar += 1
|
@@ -1226,16 +992,7 @@ with tab2:
|
|
1226 |
# Conditional Replacement
|
1227 |
columns_to_replace = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST']
|
1228 |
|
1229 |
-
|
1230 |
-
replace_dict = dkid_dict
|
1231 |
-
elif site_var1 == 'Fanduel':
|
1232 |
-
replace_dict = fdid_dict
|
1233 |
-
|
1234 |
-
for col in columns_to_replace:
|
1235 |
-
Sim_Winner_Export[col].replace(replace_dict, inplace=True)
|
1236 |
-
|
1237 |
-
|
1238 |
-
player_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,0:9].values, return_counts=True)),
|
1239 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1240 |
player_freq['Freq'] = player_freq['Freq'].astype(int)
|
1241 |
player_freq['Position'] = player_freq['Player'].map(maps_dict['Pos_map'])
|
@@ -1263,7 +1020,7 @@ with tab2:
|
|
1263 |
|
1264 |
qb_freq = qb_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
1265 |
|
1266 |
-
rb_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,
|
1267 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1268 |
rb_freq['Freq'] = rb_freq['Freq'].astype(int)
|
1269 |
rb_freq['Position'] = rb_freq['Player'].map(maps_dict['Pos_map'])
|
@@ -1277,7 +1034,7 @@ with tab2:
|
|
1277 |
|
1278 |
rb_freq = rb_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
1279 |
|
1280 |
-
wr_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,[
|
1281 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1282 |
wr_freq['Freq'] = wr_freq['Freq'].astype(int)
|
1283 |
wr_freq['Position'] = wr_freq['Player'].map(maps_dict['Pos_map'])
|
@@ -1291,21 +1048,7 @@ with tab2:
|
|
1291 |
|
1292 |
wr_freq = wr_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
1293 |
|
1294 |
-
|
1295 |
-
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1296 |
-
te_freq['Freq'] = te_freq['Freq'].astype(int)
|
1297 |
-
te_freq['Position'] = te_freq['Player'].map(maps_dict['Pos_map'])
|
1298 |
-
te_freq['Salary'] = te_freq['Player'].map(maps_dict['Salary_map'])
|
1299 |
-
te_freq['Proj Own'] = te_freq['Player'].map(maps_dict['Own_map']) / 100
|
1300 |
-
te_freq['Exposure'] = te_freq['Freq']/Sim_size
|
1301 |
-
te_freq['Edge'] = te_freq['Exposure'] - te_freq['Proj Own']
|
1302 |
-
te_freq['Team'] = te_freq['Player'].map(maps_dict['Team_map'])
|
1303 |
-
for checkVar in range(len(team_list)):
|
1304 |
-
te_freq['Team'] = te_freq['Team'].replace(item_list, team_list)
|
1305 |
-
|
1306 |
-
te_freq = te_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
1307 |
-
|
1308 |
-
flex_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,[7]].values, return_counts=True)),
|
1309 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1310 |
flex_freq['Freq'] = flex_freq['Freq'].astype(int)
|
1311 |
flex_freq['Position'] = flex_freq['Player'].map(maps_dict['Pos_map'])
|
@@ -1319,7 +1062,7 @@ with tab2:
|
|
1319 |
|
1320 |
flex_freq = flex_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
1321 |
|
1322 |
-
dst_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,
|
1323 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1324 |
dst_freq['Freq'] = dst_freq['Freq'].astype(int)
|
1325 |
dst_freq['Position'] = dst_freq['Player'].map(maps_dict['Pos_map'])
|
@@ -1346,7 +1089,7 @@ with tab2:
|
|
1346 |
|
1347 |
with st.container():
|
1348 |
freq_container = st.empty()
|
1349 |
-
tab1, tab2, tab3, tab4, tab5, tab6
|
1350 |
with tab1:
|
1351 |
st.dataframe(player_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
1352 |
st.download_button(
|
@@ -1380,14 +1123,6 @@ with tab2:
|
|
1380 |
mime='text/csv',
|
1381 |
)
|
1382 |
with tab5:
|
1383 |
-
st.dataframe(te_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
1384 |
-
st.download_button(
|
1385 |
-
label="Export Exposures",
|
1386 |
-
data=convert_df_to_csv(te_freq),
|
1387 |
-
file_name='te_freq_export.csv',
|
1388 |
-
mime='text/csv',
|
1389 |
-
)
|
1390 |
-
with tab6:
|
1391 |
st.dataframe(flex_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
1392 |
st.download_button(
|
1393 |
label="Export Exposures",
|
@@ -1395,7 +1130,7 @@ with tab2:
|
|
1395 |
file_name='flex_freq_export.csv',
|
1396 |
mime='text/csv',
|
1397 |
)
|
1398 |
-
with
|
1399 |
st.dataframe(dst_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
1400 |
st.download_button(
|
1401 |
label="Export Exposures",
|
|
|
46 |
|
47 |
freq_format = {'Proj Own': '{:.2%}', 'Exposure': '{:.2%}', 'Edge': '{:.2%}'}
|
48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
@st.cache_data
|
50 |
def convert_df_to_csv(df):
|
51 |
return df.to_csv().encode('utf-8')
|
|
|
140 |
|
141 |
def get_overall_merged_df():
|
142 |
ref_dict = {
|
143 |
+
'pos':['RB', 'WR', 'FLEX'],
|
144 |
+
'pos_dfs':['RB_Table', 'WR_Table', 'FLEX_Table'],
|
145 |
+
'pos_dicts':['rb_dict', 'wr_dict', 'flex_dict']
|
146 |
}
|
147 |
|
148 |
+
for i in range(0,3):
|
149 |
ref_dict['pos_dfs'][i], ref_dict['pos_dicts'][i] =\
|
150 |
create_overall_dfs(pos_players, ref_dict['pos_dfs'][i], ref_dict['pos_dicts'][i], ref_dict['pos'][i])
|
151 |
|
|
|
168 |
ranges_dict = {}
|
169 |
|
170 |
# Calculate ranges
|
171 |
+
for df, dict_val, min_val, key in zip(ref_dict['pos_dfs'], ref_dict['pos_dicts'], [10, 20, 30], ['RB', 'WR', 'FLEX']):
|
172 |
count = create_overall_dfs(pos_players, df, dict_val, key)
|
173 |
ranges_dict[f"{key.lower()}_range"] = calculate_range_var(count, min_val, FieldStrength, field_growth_rounded)
|
174 |
if max_var <= 10:
|
|
|
186 |
|
187 |
# Generate random portfolios
|
188 |
rng = np.random.default_rng()
|
189 |
+
total_elements = [1, 1, 2, 2, 1]
|
190 |
+
keys = ['qb', 'rb', 'wr', 'flex', 'dst']
|
191 |
|
192 |
all_choices = [rng.choice(ranges_dict[f"{key}_range"], size=(Total_Sample_Size, elem)) for key, elem in zip(keys, total_elements)]
|
193 |
+
RandomPortfolio = pd.DataFrame(np.hstack(all_choices), columns=['QB', 'RB1', 'WR1', 'WR2', 'FLEX1', 'FLEX2', 'DST'])
|
194 |
RandomPortfolio['User/Field'] = 0
|
195 |
|
196 |
del O_merge
|
|
|
205 |
stack_num = random.randint(1, 3)
|
206 |
stacking_dict = create_stack_options(raw_baselines, stack_num)
|
207 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
RandomPortfolio['QB'] = pd.Series(list(RandomPortfolio['QB'].map(qb_dict)), dtype="string[pyarrow]")
|
209 |
RandomPortfolio['RB1'] = pd.Series(list(RandomPortfolio['RB1'].map(full_pos_player_dict['pos_dicts'][0])), dtype="string[pyarrow]")
|
|
|
210 |
RandomPortfolio['WR1'] = pd.Series(list(RandomPortfolio['QB'].map(stacking_dict)), dtype="string[pyarrow]")
|
211 |
RandomPortfolio['WR2'] = pd.Series(list(RandomPortfolio['WR2'].map(full_pos_player_dict['pos_dicts'][1])), dtype="string[pyarrow]")
|
212 |
+
RandomPortfolio['FLEX1'] = pd.Series(list(RandomPortfolio['FLEX1'].map(full_pos_player_dict['pos_dicts'][2])), dtype="string[pyarrow]")
|
213 |
+
RandomPortfolio['FLEX2'] = pd.Series(list(RandomPortfolio['FLEX2'].map(full_pos_player_dict['pos_dicts'][2])), dtype="string[pyarrow]")
|
|
|
214 |
RandomPortfolio['DST'] = pd.Series(list(RandomPortfolio['DST'].map(def_dict)), dtype="string[pyarrow]")
|
215 |
RandomPortfolio['plyr_list'] = RandomPortfolio[RandomPortfolio.columns.values.tolist()].values.tolist()
|
216 |
RandomPortfolio['plyr_count'] = RandomPortfolio['plyr_list'].apply(lambda x: len(set(x)))
|
217 |
+
RandomPortfolio = RandomPortfolio[RandomPortfolio['plyr_count'] == 8].drop(columns=['plyr_list','plyr_count']).\
|
218 |
reset_index(drop=True)
|
219 |
|
220 |
del sizesplit
|
|
|
222 |
del ranges_dict
|
223 |
del stack_num
|
224 |
del stacking_dict
|
225 |
+
|
|
|
|
|
226 |
RandomPortfolio['QBs'] = RandomPortfolio['QB'].map(maps_dict['Salary_map']).astype(np.int32)
|
227 |
RandomPortfolio['RB1s'] = RandomPortfolio['RB1'].map(maps_dict['Salary_map']).astype(np.int32)
|
|
|
228 |
RandomPortfolio['WR1s'] = RandomPortfolio['WR1'].map(maps_dict['Salary_map']).astype(np.int32)
|
229 |
RandomPortfolio['WR2s'] = RandomPortfolio['WR2'].map(maps_dict['Salary_map']).astype(np.int32)
|
230 |
+
RandomPortfolio['FLEX1s'] = RandomPortfolio['FLEX1'].map(maps_dict['Salary_map']).astype(np.int32)
|
231 |
+
RandomPortfolio['FLEX2s'] = RandomPortfolio['FLEX2'].map(maps_dict['Salary_map']).astype(np.int32)
|
|
|
232 |
RandomPortfolio['DSTs'] = RandomPortfolio['DST'].map(maps_dict['Salary_map']).astype(np.int32)
|
233 |
|
234 |
RandomPortfolio['QBp'] = RandomPortfolio['QB'].map(maps_dict['Projection_map']).astype(np.float16)
|
235 |
RandomPortfolio['RB1p'] = RandomPortfolio['RB1'].map(maps_dict['Projection_map']).astype(np.float16)
|
|
|
236 |
RandomPortfolio['WR1p'] = RandomPortfolio['WR1'].map(maps_dict['Projection_map']).astype(np.float16)
|
237 |
RandomPortfolio['WR2p'] = RandomPortfolio['WR2'].map(maps_dict['Projection_map']).astype(np.float16)
|
238 |
+
RandomPortfolio['FLEX1p'] = RandomPortfolio['FLEX1'].map(maps_dict['Projection_map']).astype(np.float16)
|
239 |
+
RandomPortfolio['FLEX2p'] = RandomPortfolio['FLEX2'].map(maps_dict['Projection_map']).astype(np.float16)
|
|
|
240 |
RandomPortfolio['DSTp'] = RandomPortfolio['DST'].map(maps_dict['Projection_map']).astype(np.float16)
|
241 |
|
242 |
RandomPortfolio['QBo'] = RandomPortfolio['QB'].map(maps_dict['Own_map']).astype(np.float16)
|
243 |
RandomPortfolio['RB1o'] = RandomPortfolio['RB1'].map(maps_dict['Own_map']).astype(np.float16)
|
|
|
244 |
RandomPortfolio['WR1o'] = RandomPortfolio['WR1'].map(maps_dict['Own_map']).astype(np.float16)
|
245 |
RandomPortfolio['WR2o'] = RandomPortfolio['WR2'].map(maps_dict['Own_map']).astype(np.float16)
|
246 |
+
RandomPortfolio['FLEX1o'] = RandomPortfolio['FLEX1'].map(maps_dict['Own_map']).astype(np.float16)
|
247 |
+
RandomPortfolio['FLEX2o'] = RandomPortfolio['FLEX2'].map(maps_dict['Own_map']).astype(np.float16)
|
|
|
248 |
RandomPortfolio['DSTo'] = RandomPortfolio['DST'].map(maps_dict['Own_map']).astype(np.float16)
|
249 |
|
250 |
RandomPortArray = RandomPortfolio.to_numpy()
|
251 |
del RandomPortfolio
|
252 |
|
253 |
+
RandomPortArray = np.c_[RandomPortArray, np.einsum('ij->i',RandomPortArray[:,8:17].astype(int))]
|
254 |
+
RandomPortArray = np.c_[RandomPortArray, np.einsum('ij->i',RandomPortArray[:,17:26].astype(np.double))]
|
255 |
+
RandomPortArray = np.c_[RandomPortArray, np.einsum('ij->i',RandomPortArray[:,26:35].astype(np.double))]
|
256 |
|
257 |
+
RandomPortArrayOut = np.delete(RandomPortArray, np.s_[8:35], axis=1)
|
258 |
+
RandomPortfolioDF = pd.DataFrame(RandomPortArrayOut, columns = ['QB', 'RB1', 'WR1', 'WR2', 'FLEX1', 'FLEX2', 'DST', 'User/Field', 'Salary', 'Projection', 'Own'])
|
259 |
RandomPortfolioDF = RandomPortfolioDF.sort_values(by=Sim_function, ascending=False)
|
260 |
del RandomPortArray
|
261 |
del RandomPortArrayOut
|
|
|
263 |
if insert_port == 1:
|
264 |
CleanPortfolio['Salary'] = sum([CleanPortfolio['QB'].map(maps_dict['Salary_map']),
|
265 |
CleanPortfolio['RB1'].map(maps_dict['Salary_map']),
|
|
|
266 |
CleanPortfolio['WR1'].map(maps_dict['Salary_map']),
|
267 |
CleanPortfolio['WR2'].map(maps_dict['Salary_map']),
|
268 |
+
CleanPortfolio['FLEX1'].map(maps_dict['Salary_map']),
|
269 |
+
CleanPortfolio['FLEX2'].map(maps_dict['Salary_map']),
|
|
|
270 |
CleanPortfolio['DST'].map(maps_dict['Salary_map'])
|
271 |
]).astype(np.int16)
|
272 |
if insert_port == 1:
|
273 |
CleanPortfolio['Projection'] = sum([CleanPortfolio['QB'].map(up_dict['Projection_map']),
|
274 |
CleanPortfolio['RB1'].map(up_dict['Projection_map']),
|
|
|
275 |
CleanPortfolio['WR1'].map(up_dict['Projection_map']),
|
276 |
CleanPortfolio['WR2'].map(up_dict['Projection_map']),
|
277 |
+
CleanPortfolio['FLEX1'].map(up_dict['Projection_map']),
|
278 |
+
CleanPortfolio['FLEX2'].map(up_dict['Projection_map']),
|
|
|
279 |
CleanPortfolio['DST'].map(up_dict['Projection_map'])
|
280 |
]).astype(np.float16)
|
281 |
if insert_port == 1:
|
282 |
CleanPortfolio['Own'] = sum([CleanPortfolio['QB'].map(maps_dict['Own_map']),
|
283 |
CleanPortfolio['RB1'].map(maps_dict['Own_map']),
|
|
|
284 |
CleanPortfolio['WR1'].map(maps_dict['Own_map']),
|
285 |
CleanPortfolio['WR2'].map(maps_dict['Own_map']),
|
286 |
+
CleanPortfolio['FLEX1'].map(maps_dict['Own_map']),
|
287 |
+
CleanPortfolio['FLEX2'].map(maps_dict['Own_map']),
|
|
|
288 |
CleanPortfolio['DST'].map(maps_dict['Own_map'])
|
289 |
]).astype(np.float16)
|
290 |
|
291 |
if site_var1 == 'Draftkings':
|
292 |
RandomPortfolioDF = RandomPortfolioDF[RandomPortfolioDF['Salary'] <= 50000].reset_index(drop=True)
|
293 |
RandomPortfolioDF = RandomPortfolioDF[RandomPortfolioDF['Salary'] >= (49500 - (5000 * (1 - (len(Teams_used) / 32)))) - (FieldStrength * 1000)].reset_index(drop=True)
|
|
|
|
|
|
|
294 |
|
295 |
RandomPortfolio = RandomPortfolioDF.sort_values(by=Sim_function, ascending=False)
|
296 |
|
297 |
+
RandomPortfolio = RandomPortfolio[['QB', 'RB1', 'WR1', 'WR2', 'FLEX1', 'FLEX2', 'DST', 'User/Field', 'Salary', 'Projection', 'Own']]
|
298 |
|
299 |
return RandomPortfolio, maps_dict
|
300 |
|
|
|
306 |
|
307 |
RandomPortfolio['QB'] = pd.Series(list(RandomPortfolio['QB'].map(qb_dict)), dtype="string[pyarrow]")
|
308 |
RandomPortfolio['RB1'] = pd.Series(list(RandomPortfolio['RB1'].map(full_pos_player_dict['pos_dicts'][0])), dtype="string[pyarrow]")
|
|
|
309 |
RandomPortfolio['WR1'] = pd.Series(list(RandomPortfolio['WR1'].map(full_pos_player_dict['pos_dicts'][1])), dtype="string[pyarrow]")
|
310 |
RandomPortfolio['WR2'] = pd.Series(list(RandomPortfolio['WR2'].map(full_pos_player_dict['pos_dicts'][1])), dtype="string[pyarrow]")
|
311 |
+
RandomPortfolio['FLEX1'] = pd.Series(list(RandomPortfolio['FLEX1'].map(full_pos_player_dict['pos_dicts'][2])), dtype="string[pyarrow]")
|
312 |
+
RandomPortfolio['FLEX2'] = pd.Series(list(RandomPortfolio['FLEX2'].map(full_pos_player_dict['pos_dicts'][2])), dtype="string[pyarrow]")
|
|
|
313 |
RandomPortfolio['DST'] = pd.Series(list(RandomPortfolio['DST'].map(def_dict)), dtype="string[pyarrow]")
|
314 |
RandomPortfolio['plyr_list'] = RandomPortfolio[RandomPortfolio.columns.values.tolist()].values.tolist()
|
315 |
RandomPortfolio['plyr_count'] = RandomPortfolio['plyr_list'].apply(lambda x: len(set(x)))
|
316 |
+
RandomPortfolio = RandomPortfolio[RandomPortfolio['plyr_count'] == 8].drop(columns=['plyr_list','plyr_count']).\
|
317 |
reset_index(drop=True)
|
318 |
|
319 |
del sizesplit
|
320 |
del full_pos_player_dict
|
321 |
+
del ranges_dict
|
322 |
+
|
323 |
RandomPortfolio['QBs'] = RandomPortfolio['QB'].map(maps_dict['Salary_map']).astype(np.int32)
|
324 |
RandomPortfolio['RB1s'] = RandomPortfolio['RB1'].map(maps_dict['Salary_map']).astype(np.int32)
|
|
|
325 |
RandomPortfolio['WR1s'] = RandomPortfolio['WR1'].map(maps_dict['Salary_map']).astype(np.int32)
|
326 |
RandomPortfolio['WR2s'] = RandomPortfolio['WR2'].map(maps_dict['Salary_map']).astype(np.int32)
|
327 |
+
RandomPortfolio['FLEX1s'] = RandomPortfolio['FLEX1'].map(maps_dict['Salary_map']).astype(np.int32)
|
328 |
+
RandomPortfolio['FLEX2s'] = RandomPortfolio['FLEX2'].map(maps_dict['Salary_map']).astype(np.int32)
|
|
|
329 |
RandomPortfolio['DSTs'] = RandomPortfolio['DST'].map(maps_dict['Salary_map']).astype(np.int32)
|
330 |
|
331 |
RandomPortfolio['QBp'] = RandomPortfolio['QB'].map(maps_dict['Projection_map']).astype(np.float16)
|
332 |
RandomPortfolio['RB1p'] = RandomPortfolio['RB1'].map(maps_dict['Projection_map']).astype(np.float16)
|
|
|
333 |
RandomPortfolio['WR1p'] = RandomPortfolio['WR1'].map(maps_dict['Projection_map']).astype(np.float16)
|
334 |
RandomPortfolio['WR2p'] = RandomPortfolio['WR2'].map(maps_dict['Projection_map']).astype(np.float16)
|
335 |
+
RandomPortfolio['FLEX1p'] = RandomPortfolio['FLEX1'].map(maps_dict['Projection_map']).astype(np.float16)
|
336 |
+
RandomPortfolio['FLEX2p'] = RandomPortfolio['FLEX2'].map(maps_dict['Projection_map']).astype(np.float16)
|
|
|
337 |
RandomPortfolio['DSTp'] = RandomPortfolio['DST'].map(maps_dict['Projection_map']).astype(np.float16)
|
338 |
|
339 |
RandomPortfolio['QBo'] = RandomPortfolio['QB'].map(maps_dict['Own_map']).astype(np.float16)
|
340 |
RandomPortfolio['RB1o'] = RandomPortfolio['RB1'].map(maps_dict['Own_map']).astype(np.float16)
|
|
|
341 |
RandomPortfolio['WR1o'] = RandomPortfolio['WR1'].map(maps_dict['Own_map']).astype(np.float16)
|
342 |
RandomPortfolio['WR2o'] = RandomPortfolio['WR2'].map(maps_dict['Own_map']).astype(np.float16)
|
343 |
+
RandomPortfolio['FLEX1o'] = RandomPortfolio['FLEX1'].map(maps_dict['Own_map']).astype(np.float16)
|
344 |
+
RandomPortfolio['FLEX2o'] = RandomPortfolio['FLEX2'].map(maps_dict['Own_map']).astype(np.float16)
|
|
|
345 |
RandomPortfolio['DSTo'] = RandomPortfolio['DST'].map(maps_dict['Own_map']).astype(np.float16)
|
346 |
|
347 |
RandomPortArray = RandomPortfolio.to_numpy()
|
348 |
del RandomPortfolio
|
349 |
|
350 |
+
RandomPortArray = np.c_[RandomPortArray, np.einsum('ij->i',RandomPortArray[:,8:17].astype(int))]
|
351 |
+
RandomPortArray = np.c_[RandomPortArray, np.einsum('ij->i',RandomPortArray[:,17:26].astype(np.double))]
|
352 |
+
RandomPortArray = np.c_[RandomPortArray, np.einsum('ij->i',RandomPortArray[:,26:35].astype(np.double))]
|
353 |
|
354 |
+
RandomPortArrayOut = np.delete(RandomPortArray, np.s_[8:35], axis=1)
|
355 |
+
RandomPortfolioDF = pd.DataFrame(RandomPortArrayOut, columns = ['QB', 'RB1', 'WR1', 'WR2', 'FLEX1', 'FLEX2', 'DST', 'User/Field', 'Salary', 'Projection', 'Own'])
|
356 |
RandomPortfolioDF = RandomPortfolioDF.sort_values(by=Sim_function, ascending=False)
|
357 |
del RandomPortArray
|
358 |
del RandomPortArrayOut
|
359 |
+
|
|
|
360 |
if insert_port == 1:
|
361 |
CleanPortfolio['Salary'] = sum([CleanPortfolio['QB'].map(maps_dict['Salary_map']),
|
362 |
CleanPortfolio['RB1'].map(maps_dict['Salary_map']),
|
|
|
363 |
CleanPortfolio['WR1'].map(maps_dict['Salary_map']),
|
364 |
CleanPortfolio['WR2'].map(maps_dict['Salary_map']),
|
365 |
+
CleanPortfolio['FLEX1'].map(maps_dict['Salary_map']),
|
366 |
+
CleanPortfolio['FLEX2'].map(maps_dict['Salary_map']),
|
|
|
367 |
CleanPortfolio['DST'].map(maps_dict['Salary_map'])
|
368 |
]).astype(np.int16)
|
369 |
if insert_port == 1:
|
370 |
CleanPortfolio['Projection'] = sum([CleanPortfolio['QB'].map(up_dict['Projection_map']),
|
371 |
CleanPortfolio['RB1'].map(up_dict['Projection_map']),
|
|
|
372 |
CleanPortfolio['WR1'].map(up_dict['Projection_map']),
|
373 |
CleanPortfolio['WR2'].map(up_dict['Projection_map']),
|
374 |
+
CleanPortfolio['FLEX1'].map(up_dict['Projection_map']),
|
375 |
+
CleanPortfolio['FLEX2'].map(up_dict['Projection_map']),
|
|
|
376 |
CleanPortfolio['DST'].map(up_dict['Projection_map'])
|
377 |
]).astype(np.float16)
|
378 |
if insert_port == 1:
|
379 |
CleanPortfolio['Own'] = sum([CleanPortfolio['QB'].map(maps_dict['Own_map']),
|
380 |
CleanPortfolio['RB1'].map(maps_dict['Own_map']),
|
|
|
381 |
CleanPortfolio['WR1'].map(maps_dict['Own_map']),
|
382 |
CleanPortfolio['WR2'].map(maps_dict['Own_map']),
|
383 |
+
CleanPortfolio['FLEX1'].map(maps_dict['Own_map']),
|
384 |
+
CleanPortfolio['FLEX2'].map(maps_dict['Own_map']),
|
|
|
385 |
CleanPortfolio['DST'].map(maps_dict['Own_map'])
|
386 |
]).astype(np.float16)
|
387 |
|
388 |
if site_var1 == 'Draftkings':
|
389 |
RandomPortfolioDF = RandomPortfolioDF[RandomPortfolioDF['Salary'] <= 50000].reset_index(drop=True)
|
390 |
RandomPortfolioDF = RandomPortfolioDF[RandomPortfolioDF['Salary'] >= (49500 - (5000 * (1 - (len(Teams_used) / 32)))) - (FieldStrength * 1000)].reset_index(drop=True)
|
|
|
|
|
|
|
391 |
|
392 |
RandomPortfolio = RandomPortfolioDF.sort_values(by=Sim_function, ascending=False)
|
393 |
|
394 |
+
RandomPortfolio = RandomPortfolio[['QB', 'RB1', 'WR1', 'WR2', 'FLEX1', 'FLEX2', 'DST', 'User/Field', 'Salary', 'Projection', 'Own']]
|
395 |
|
396 |
return RandomPortfolio, maps_dict
|
397 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
398 |
static_exposure = pd.DataFrame(columns=['Player', 'count'])
|
399 |
overall_exposure = pd.DataFrame(columns=['Player', 'count'])
|
400 |
|
|
|
433 |
player_team_dict = dict(zip(proj_dataframe.Player, proj_dataframe.Team))
|
434 |
|
435 |
with col2:
|
436 |
+
st.info("The Portfolio file must contain only columns in order and explicitly named: 'QB', 'RB1', 'WR1', 'WR2', 'FLEX1', 'FLEX2', and 'DST'. Upload your projections first to avoid an error message.")
|
437 |
portfolio_file = st.file_uploader("Upload Portfolio File", key = 'portfolio_uploader')
|
438 |
|
439 |
if portfolio_file is not None:
|
|
|
445 |
|
446 |
try:
|
447 |
try:
|
448 |
+
portfolio_dataframe.columns=["QB", "RB1", "WR1", "WR2", "FLEX1", "FLEX2", "DST"]
|
449 |
split_portfolio = portfolio_dataframe
|
450 |
split_portfolio[['QB', 'QB_ID']] = split_portfolio.QB.str.split("(", n=1, expand = True)
|
451 |
split_portfolio[['RB1', 'RB1_ID']] = split_portfolio.RB1.str.split("(", n=1, expand = True)
|
|
|
452 |
split_portfolio[['WR1', 'WR1_ID']] = split_portfolio.WR1.str.split("(", n=1, expand = True)
|
453 |
split_portfolio[['WR2', 'WR2_ID']] = split_portfolio.WR2.str.split("(", n=1, expand = True)
|
454 |
+
split_portfolio[['FLEX1', 'FLEX1_ID']] = split_portfolio.FLEX1.str.split("(", n=1, expand = True)
|
455 |
+
split_portfolio[['FLEX2', 'FLEX2_ID']] = split_portfolio.FLEX2.str.split("(", n=1, expand = True)
|
|
|
456 |
split_portfolio[['DST', 'DST_ID']] = split_portfolio.DST.str.split("(", n=1, expand = True)
|
457 |
|
458 |
split_portfolio['QB'] = split_portfolio['QB'].str.strip()
|
459 |
split_portfolio['RB1'] = split_portfolio['RB1'].str.strip()
|
|
|
460 |
split_portfolio['WR1'] = split_portfolio['WR1'].str.strip()
|
461 |
split_portfolio['WR2'] = split_portfolio['WR2'].str.strip()
|
462 |
+
split_portfolio['FLEX1'] = split_portfolio['FLEX1'].str.strip()
|
463 |
+
split_portfolio['FLEX2'] = split_portfolio['FLEX2'].str.strip()
|
|
|
464 |
split_portfolio['DST'] = split_portfolio['DST'].str.strip()
|
465 |
|
466 |
st.table(split_portfolio.head(10))
|
467 |
|
468 |
split_portfolio['Salary'] = sum([split_portfolio['QB'].map(player_salary_dict),
|
469 |
split_portfolio['RB1'].map(player_salary_dict),
|
|
|
470 |
split_portfolio['WR1'].map(player_salary_dict),
|
471 |
split_portfolio['WR2'].map(player_salary_dict),
|
472 |
+
split_portfolio['FLEX1'].map(player_salary_dict),
|
473 |
+
split_portfolio['FLEX2'].map(player_salary_dict),
|
|
|
474 |
split_portfolio['DST'].map(player_salary_dict)])
|
475 |
|
476 |
split_portfolio['Projection'] = sum([split_portfolio['QB'].map(player_proj_dict),
|
477 |
split_portfolio['RB1'].map(player_proj_dict),
|
|
|
478 |
split_portfolio['WR1'].map(player_proj_dict),
|
479 |
split_portfolio['WR2'].map(player_proj_dict),
|
480 |
+
split_portfolio['FLEX1'].map(player_proj_dict),
|
481 |
+
split_portfolio['FLEX2'].map(player_proj_dict),
|
|
|
482 |
split_portfolio['DST'].map(player_proj_dict)])
|
483 |
|
484 |
split_portfolio['Ownership'] = sum([split_portfolio['QB'].map(player_own_dict),
|
485 |
split_portfolio['RB1'].map(player_own_dict),
|
|
|
486 |
split_portfolio['WR1'].map(player_own_dict),
|
487 |
split_portfolio['WR2'].map(player_own_dict),
|
488 |
+
split_portfolio['FLEX1'].map(player_own_dict),
|
489 |
+
split_portfolio['FLEX2'].map(player_own_dict),
|
|
|
490 |
split_portfolio['DST'].map(player_own_dict)])
|
491 |
|
492 |
split_portfolio['QB_team'] = split_portfolio['QB'].map(player_team_dict)
|
493 |
split_portfolio['RB1_team'] = split_portfolio['RB1'].map(player_team_dict)
|
|
|
494 |
split_portfolio['WR1_team'] = split_portfolio['WR1'].map(player_team_dict)
|
495 |
split_portfolio['WR2_team'] = split_portfolio['WR2'].map(player_team_dict)
|
496 |
+
split_portfolio['FLEX1_team'] = split_portfolio['FLEX1'].map(player_team_dict)
|
497 |
+
split_portfolio['FLEX2_team'] = split_portfolio['FLEX2'].map(player_team_dict)
|
|
|
498 |
split_portfolio['DST_team'] = split_portfolio['DST'].map(player_team_dict)
|
499 |
|
500 |
+
split_portfolio = split_portfolio[['QB', 'RB1', 'WR1', 'WR2', 'FLEX1', 'FLEX2', 'DST', 'Salary', 'Projection', 'Ownership', 'QB_team',
|
501 |
+
'RB1_team', 'WR1_team', 'WR2_team', 'FLEX1_team', 'FLEX2_team', 'DST_team']]
|
|
|
|
|
|
|
|
|
502 |
|
503 |
|
504 |
except:
|
505 |
+
portfolio_dataframe.columns=["QB", "RB1", "WR1", "WR2", "FLEX1", "FLEX2", "DST"]
|
506 |
|
507 |
split_portfolio = portfolio_dataframe
|
508 |
split_portfolio[['QB_ID', 'QB']] = split_portfolio.QB.str.split(":", n=1, expand = True)
|
509 |
split_portfolio[['RB1_ID', 'RB1']] = split_portfolio.RB1.str.split(":", n=1, expand = True)
|
|
|
510 |
split_portfolio[['WR1_ID', 'WR1']] = split_portfolio.WR1.str.split(":", n=1, expand = True)
|
511 |
split_portfolio[['WR2_ID', 'WR2']] = split_portfolio.WR2.str.split(":", n=1, expand = True)
|
512 |
+
split_portfolio[['FLEX1_ID', 'TE']] = split_portfolio.FLEX1.str.split(":", n=1, expand = True)
|
513 |
+
split_portfolio[['FLEX2_ID', 'FLEX']] = split_portfolio.FLEX2.str.split(":", n=1, expand = True)
|
|
|
514 |
split_portfolio[['DST_ID', 'DST']] = split_portfolio.DST.str.split(":", n=1, expand = True)
|
515 |
|
516 |
split_portfolio['QB'] = split_portfolio['QB'].str.strip()
|
517 |
split_portfolio['RB1'] = split_portfolio['RB1'].str.strip()
|
|
|
518 |
split_portfolio['WR1'] = split_portfolio['WR1'].str.strip()
|
519 |
split_portfolio['WR2'] = split_portfolio['WR2'].str.strip()
|
520 |
+
split_portfolio['FLEX1'] = split_portfolio['FLEX1'].str.strip()
|
521 |
+
split_portfolio['FLEX2'] = split_portfolio['FLEX2'].str.strip()
|
|
|
522 |
split_portfolio['DST'] = split_portfolio['DST'].str.strip()
|
523 |
|
524 |
split_portfolio['Salary'] = sum([split_portfolio['QB'].map(player_salary_dict),
|
525 |
split_portfolio['RB1'].map(player_salary_dict),
|
|
|
526 |
split_portfolio['WR1'].map(player_salary_dict),
|
527 |
split_portfolio['WR2'].map(player_salary_dict),
|
528 |
+
split_portfolio['FLEX1'].map(player_salary_dict),
|
529 |
+
split_portfolio['FLEX2'].map(player_salary_dict),
|
|
|
530 |
split_portfolio['DST'].map(player_salary_dict)])
|
531 |
|
532 |
split_portfolio['Projection'] = sum([split_portfolio['QB'].map(player_proj_dict),
|
533 |
split_portfolio['RB1'].map(player_proj_dict),
|
|
|
534 |
split_portfolio['WR1'].map(player_proj_dict),
|
535 |
split_portfolio['WR2'].map(player_proj_dict),
|
536 |
+
split_portfolio['FLEX1'].map(player_proj_dict),
|
537 |
+
split_portfolio['FLEX2'].map(player_proj_dict),
|
|
|
538 |
split_portfolio['DST'].map(player_proj_dict)])
|
539 |
|
540 |
st.table(split_portfolio.head(10))
|
541 |
split_portfolio['Ownership'] = sum([split_portfolio['QB'].map(player_own_dict),
|
542 |
split_portfolio['RB1'].map(player_own_dict),
|
|
|
543 |
split_portfolio['WR1'].map(player_own_dict),
|
544 |
split_portfolio['WR2'].map(player_own_dict),
|
545 |
+
split_portfolio['FLEX1'].map(player_own_dict),
|
546 |
+
split_portfolio['FLEX2'].map(player_own_dict),
|
|
|
547 |
split_portfolio['DST'].map(player_own_dict)])
|
548 |
|
549 |
split_portfolio['QB_team'] = split_portfolio['QB'].map(player_team_dict)
|
550 |
split_portfolio['RB1_team'] = split_portfolio['RB1'].map(player_team_dict)
|
|
|
551 |
split_portfolio['WR1_team'] = split_portfolio['WR1'].map(player_team_dict)
|
552 |
split_portfolio['WR2_team'] = split_portfolio['WR2'].map(player_team_dict)
|
553 |
+
split_portfolio['FLEX1_team'] = split_portfolio['FLEX1'].map(player_team_dict)
|
554 |
+
split_portfolio['FLEX2_team'] = split_portfolio['FLEX2'].map(player_team_dict)
|
|
|
555 |
split_portfolio['DST_team'] = split_portfolio['DST'].map(player_team_dict)
|
556 |
|
557 |
+
split_portfolio = split_portfolio[['QB', 'RB1', 'WR1', 'WR2', 'FLEX1', 'FLEX2', 'DST', 'Salary', 'Projection', 'Ownership', 'QB_team',
|
558 |
+
'RB1_team', 'WR1_team', 'WR2_team', 'FLEX1_team', 'FLEX2_team', 'DST_team']]
|
|
|
|
|
|
|
|
|
559 |
|
560 |
except:
|
561 |
split_portfolio = portfolio_dataframe
|
562 |
|
563 |
split_portfolio['Salary'] = sum([split_portfolio['QB'].map(player_salary_dict),
|
564 |
split_portfolio['RB1'].map(player_salary_dict),
|
|
|
565 |
split_portfolio['WR1'].map(player_salary_dict),
|
566 |
split_portfolio['WR2'].map(player_salary_dict),
|
567 |
+
split_portfolio['FLEX1'].map(player_salary_dict),
|
568 |
+
split_portfolio['FLEX2'].map(player_salary_dict),
|
|
|
569 |
split_portfolio['DST'].map(player_salary_dict)])
|
570 |
|
571 |
split_portfolio['Projection'] = sum([split_portfolio['QB'].map(player_proj_dict),
|
572 |
split_portfolio['RB1'].map(player_proj_dict),
|
|
|
573 |
split_portfolio['WR1'].map(player_proj_dict),
|
574 |
split_portfolio['WR2'].map(player_proj_dict),
|
575 |
+
split_portfolio['FLEX1'].map(player_proj_dict),
|
576 |
+
split_portfolio['FLEX2'].map(player_proj_dict),
|
|
|
577 |
split_portfolio['DST'].map(player_proj_dict)])
|
578 |
|
579 |
split_portfolio['Ownership'] = sum([split_portfolio['QB'].map(player_own_dict),
|
580 |
split_portfolio['RB1'].map(player_own_dict),
|
|
|
581 |
split_portfolio['WR1'].map(player_own_dict),
|
582 |
split_portfolio['WR2'].map(player_own_dict),
|
583 |
+
split_portfolio['FLEX1'].map(player_own_dict),
|
584 |
+
split_portfolio['FLEX2'].map(player_own_dict),
|
|
|
585 |
split_portfolio['DST'].map(player_own_dict)])
|
586 |
|
587 |
split_portfolio['QB_team'] = split_portfolio['QB'].map(player_team_dict)
|
588 |
split_portfolio['RB1_team'] = split_portfolio['RB1'].map(player_team_dict)
|
|
|
589 |
split_portfolio['WR1_team'] = split_portfolio['WR1'].map(player_team_dict)
|
590 |
split_portfolio['WR2_team'] = split_portfolio['WR2'].map(player_team_dict)
|
591 |
split_portfolio['WR3_team'] = split_portfolio['WR3'].map(player_team_dict)
|
592 |
+
split_portfolio['FLEX1_team'] = split_portfolio['FLEX1'].map(player_team_dict)
|
593 |
+
split_portfolio['FLEX2_team'] = split_portfolio['FLEX2'].map(player_team_dict)
|
594 |
split_portfolio['DST_team'] = split_portfolio['DST'].map(player_team_dict)
|
595 |
|
596 |
+
split_portfolio = split_portfolio[['QB', 'RB1', 'WR1', 'WR2', 'FLEX1', 'FLEX2', 'DST', 'Salary', 'Projection', 'Ownership', 'QB_team',
|
597 |
+
'RB1_team', 'WR1_team', 'WR2_team', 'FLEX1_team', 'FLEX2_team', 'DST_team']]
|
|
|
|
|
|
|
|
|
598 |
|
599 |
+
for player_cols in split_portfolio.iloc[:, :7]:
|
600 |
static_col_raw = split_portfolio[player_cols].value_counts()
|
601 |
static_col = static_col_raw.to_frame()
|
602 |
static_col.reset_index(inplace=True)
|
|
|
615 |
col1, col2 = st.columns([3, 3])
|
616 |
|
617 |
if portfolio_file is not None:
|
618 |
+
split_portfolio = split_portfolio
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
619 |
|
620 |
+
for player_cols in split_portfolio.iloc[:, :7]:
|
621 |
exposure_col_raw = split_portfolio[player_cols].value_counts()
|
622 |
exposure_col = exposure_col_raw.to_frame()
|
623 |
exposure_col.reset_index(inplace=True)
|
|
|
644 |
st.header('Portfolio View')
|
645 |
split_portfolio = split_portfolio.reset_index()
|
646 |
split_portfolio['Lineup'] = split_portfolio['index'] + 1
|
647 |
+
display_portfolio = split_portfolio[['Lineup', 'QB', 'RB1', 'WR1', 'WR2', 'FLEX1', 'FLEX2', 'DST', 'Salary', 'Projection', 'Ownership']]
|
648 |
display_portfolio = display_portfolio.set_index('Lineup')
|
649 |
st.dataframe(display_portfolio.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').background_gradient(cmap='RdYlGn_r', subset=['Ownership']).format(precision=2))
|
650 |
del split_portfolio
|
|
|
653 |
with tab2:
|
654 |
col1, col2 = st.columns([1, 7])
|
655 |
with col1:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
656 |
|
657 |
+
slate_var1 = 'User'
|
658 |
+
site_var1 = 'Draftkings'
|
659 |
+
raw_baselines = proj_dataframe[['Player', 'Salary', 'Position', 'Team', 'Opp', 'Median', 'Own']]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
660 |
st.info("If you are uploading a portfolio, note that there is an adjustments to projections and deviation mapping to prevent 'Projection Bias' and create a fair simulation")
|
661 |
insert_port1 = st.selectbox("Are you uploading a portfolio?", ('No', 'Yes'), key='insert_port1')
|
662 |
if insert_port1 == 'Yes':
|
|
|
728 |
OwnFrame['Own%'] = np.where((OwnFrame['Position'] == 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (10 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean(), OwnFrame['Own'])
|
729 |
OwnFrame['Own%'] = np.where((OwnFrame['Position'] != 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (5 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean(), OwnFrame['Own%'])
|
730 |
OwnFrame['Own%'] = np.where(OwnFrame['Own%'] > 75, 75, OwnFrame['Own%'])
|
731 |
+
OwnFrame['Own'] = OwnFrame['Own%'] * (700 / OwnFrame['Own%'].sum())
|
732 |
if contest_var1 == 'Medium':
|
733 |
OwnFrame['Own%'] = np.where((OwnFrame['Position'] == 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (6 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean(), OwnFrame['Own'])
|
734 |
OwnFrame['Own%'] = np.where((OwnFrame['Position'] != 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (3 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean(), OwnFrame['Own%'])
|
735 |
OwnFrame['Own%'] = np.where(OwnFrame['Own%'] > 75, 75, OwnFrame['Own%'])
|
736 |
+
OwnFrame['Own'] = OwnFrame['Own%'] * (700 / OwnFrame['Own%'].sum())
|
737 |
if contest_var1 == 'Large':
|
738 |
OwnFrame['Own%'] = np.where((OwnFrame['Position'] == 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (3 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean(), OwnFrame['Own'])
|
739 |
OwnFrame['Own%'] = np.where((OwnFrame['Position'] != 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (1.5 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean(), OwnFrame['Own%'])
|
740 |
OwnFrame['Own%'] = np.where(OwnFrame['Own%'] > 75, 75, OwnFrame['Own%'])
|
741 |
+
OwnFrame['Own'] = OwnFrame['Own%'] * (700 / OwnFrame['Own%'].sum())
|
742 |
Overall_Proj = OwnFrame[['Player', 'Team', 'Position', 'Median', 'Own', 'Salary']]
|
743 |
|
744 |
del OwnFrame
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
745 |
|
746 |
if insert_port == 1:
|
747 |
UserPortfolio = portfolio_dataframe[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST']]
|
|
|
811 |
wrs_raw.dropna(subset=['Median']).reset_index(drop=True)
|
812 |
wrs_raw = wrs_raw.reset_index(drop=True)
|
813 |
wrs_raw = wrs_raw.sort_values(by=['Own', 'Median'], ascending=False)
|
|
|
|
|
|
|
|
|
|
|
814 |
|
815 |
+
pos_players = pd.concat([rbs_raw, wrs_raw])
|
816 |
pos_players.dropna(subset=['Median']).reset_index(drop=True)
|
817 |
pos_players = pos_players.reset_index(drop=True)
|
818 |
|
|
|
820 |
del defs_raw
|
821 |
del rbs_raw
|
822 |
del wrs_raw
|
|
|
823 |
|
824 |
if insert_port == 1:
|
825 |
try:
|
|
|
827 |
Raw_Portfolio = pd.DataFrame()
|
828 |
|
829 |
# Loop through each position and split the data accordingly
|
830 |
+
positions = ['QB', 'RB1', 'WR1', 'WR2', 'FLEX1', 'FLEX2', 'DST']
|
831 |
for pos in positions:
|
832 |
temp_df = UserPortfolio[pos].str.split("(", n=1, expand=True)
|
833 |
temp_df.columns = [pos, 'Drop']
|
|
|
844 |
|
845 |
# Create frequency table for players
|
846 |
cleaport_players = pd.DataFrame(
|
847 |
+
np.column_stack(np.unique(CleanPortfolio.iloc[:, 0:7].values, return_counts=True)),
|
848 |
columns=['Player', 'Freq']
|
849 |
).sort_values('Freq', ascending=False).reset_index(drop=True)
|
850 |
cleaport_players['Freq'] = cleaport_players['Freq'].astype(int)
|
|
|
865 |
|
866 |
# Create frequency table for players
|
867 |
cleaport_players = pd.DataFrame(
|
868 |
+
np.column_stack(np.unique(CleanPortfolio.iloc[:, 0:7].values, return_counts=True)),
|
869 |
columns=['Player', 'Freq']
|
870 |
).sort_values('Freq', ascending=False).reset_index(drop=True)
|
871 |
cleaport_players['Freq'] = cleaport_players['Freq'].astype(int)
|
|
|
877 |
|
878 |
elif insert_port == 0:
|
879 |
CleanPortfolio = UserPortfolio
|
880 |
+
cleaport_players = pd.DataFrame(np.column_stack(np.unique(CleanPortfolio.iloc[:,0:7].values, return_counts=True)),
|
881 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
882 |
cleaport_players['Freq'] = cleaport_players['Freq'].astype(int)
|
883 |
nerf_frame = Overall_Proj
|
884 |
|
885 |
ref_dict = {
|
886 |
+
'pos':['RB', 'WR', 'FLEX'],
|
887 |
+
'pos_dfs':['RB_Table', 'WR_Table', 'FLEX_Table'],
|
888 |
+
'pos_dicts':['rb_dict', 'wr_dict', 'flex_dict']
|
889 |
}
|
890 |
|
891 |
maps_dict = {
|
|
|
963 |
else:
|
964 |
sample_arrays = sample_arrays1
|
965 |
|
966 |
+
final_array = sample_arrays[sample_arrays[:, 8].argsort()[::-1]]
|
967 |
best_lineup = final_array[final_array[:, -1].argsort(kind='stable')[::-1][:1]]
|
968 |
Sim_Winners.append(best_lineup)
|
969 |
SimVar += 1
|
|
|
992 |
# Conditional Replacement
|
993 |
columns_to_replace = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST']
|
994 |
|
995 |
+
player_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,0:7].values, return_counts=True)),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
996 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
997 |
player_freq['Freq'] = player_freq['Freq'].astype(int)
|
998 |
player_freq['Position'] = player_freq['Player'].map(maps_dict['Pos_map'])
|
|
|
1020 |
|
1021 |
qb_freq = qb_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
1022 |
|
1023 |
+
rb_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,1:2].values, return_counts=True)),
|
1024 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1025 |
rb_freq['Freq'] = rb_freq['Freq'].astype(int)
|
1026 |
rb_freq['Position'] = rb_freq['Player'].map(maps_dict['Pos_map'])
|
|
|
1034 |
|
1035 |
rb_freq = rb_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
1036 |
|
1037 |
+
wr_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,[2, 3]].values, return_counts=True)),
|
1038 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1039 |
wr_freq['Freq'] = wr_freq['Freq'].astype(int)
|
1040 |
wr_freq['Position'] = wr_freq['Player'].map(maps_dict['Pos_map'])
|
|
|
1048 |
|
1049 |
wr_freq = wr_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
1050 |
|
1051 |
+
flex_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,[4, 5]].values, return_counts=True)),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1052 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1053 |
flex_freq['Freq'] = flex_freq['Freq'].astype(int)
|
1054 |
flex_freq['Position'] = flex_freq['Player'].map(maps_dict['Pos_map'])
|
|
|
1062 |
|
1063 |
flex_freq = flex_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
1064 |
|
1065 |
+
dst_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,5:6].values, return_counts=True)),
|
1066 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1067 |
dst_freq['Freq'] = dst_freq['Freq'].astype(int)
|
1068 |
dst_freq['Position'] = dst_freq['Player'].map(maps_dict['Pos_map'])
|
|
|
1089 |
|
1090 |
with st.container():
|
1091 |
freq_container = st.empty()
|
1092 |
+
tab1, tab2, tab3, tab4, tab5, tab6 = st.tabs(['Overall Exposures', 'QB Exposures', 'RB Exposures', 'WR Exposures', 'FLEX Exposures', 'DST Exposures'])
|
1093 |
with tab1:
|
1094 |
st.dataframe(player_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
1095 |
st.download_button(
|
|
|
1123 |
mime='text/csv',
|
1124 |
)
|
1125 |
with tab5:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1126 |
st.dataframe(flex_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
1127 |
st.download_button(
|
1128 |
label="Export Exposures",
|
|
|
1130 |
file_name='flex_freq_export.csv',
|
1131 |
mime='text/csv',
|
1132 |
)
|
1133 |
+
with tab6:
|
1134 |
st.dataframe(dst_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
1135 |
st.download_button(
|
1136 |
label="Export Exposures",
|