Multichem commited on
Commit
c3b29f1
·
1 Parent(s): 8cd313c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -5
app.py CHANGED
@@ -202,11 +202,9 @@ def get_correlated_portfolio_for_sim(Total_Sample_Size):
202
  sizesplit = round(Total_Sample_Size * sharp_split)
203
 
204
  RandomPortfolio, maps_dict, ranges_dict, full_pos_player_dict = create_random_portfolio(sizesplit, raw_baselines)
205
- stack_num = random.randint(1, 2)
206
  stacking_dict = create_stack_options(raw_baselines, stack_num)
207
 
208
- st.write(RandomPortfolio.head(100))
209
-
210
  RandomPortfolio['QB'] = pd.Series(list(RandomPortfolio['QB'].map(qb_dict)), dtype="string[pyarrow]")
211
  RandomPortfolio['RB1'] = pd.Series(list(RandomPortfolio['RB1'].map(full_pos_player_dict['pos_dicts'][0])), dtype="string[pyarrow]")
212
  RandomPortfolio['WR1'] = pd.Series(list(RandomPortfolio['QB'].map(stacking_dict)), dtype="string[pyarrow]")
@@ -219,8 +217,6 @@ def get_correlated_portfolio_for_sim(Total_Sample_Size):
219
  RandomPortfolio = RandomPortfolio[RandomPortfolio['plyr_count'] == 8].drop(columns=['plyr_list','plyr_count']).\
220
  reset_index(drop=True)
221
 
222
- st.write(RandomPortfolio.head(100))
223
-
224
  del sizesplit
225
  del full_pos_player_dict
226
  del ranges_dict
@@ -259,6 +255,7 @@ def get_correlated_portfolio_for_sim(Total_Sample_Size):
259
  RandomPortArray = np.c_[RandomPortArray, np.einsum('ij->i',RandomPortArray[:,26:35].astype(np.double))]
260
 
261
  RandomPortArrayOut = np.delete(RandomPortArray, np.s_[8:35], axis=1)
 
262
  RandomPortfolioDF = pd.DataFrame(RandomPortArrayOut, columns = ['QB', 'RB1', 'WR1', 'WR2', 'FLEX1', 'FLEX2', 'DST', 'User/Field', 'Salary', 'Projection', 'Own'])
263
  RandomPortfolioDF = RandomPortfolioDF.sort_values(by=Sim_function, ascending=False)
264
  del RandomPortArray
 
202
  sizesplit = round(Total_Sample_Size * sharp_split)
203
 
204
  RandomPortfolio, maps_dict, ranges_dict, full_pos_player_dict = create_random_portfolio(sizesplit, raw_baselines)
205
+ stack_num = random.randint(1, 3)
206
  stacking_dict = create_stack_options(raw_baselines, stack_num)
207
 
 
 
208
  RandomPortfolio['QB'] = pd.Series(list(RandomPortfolio['QB'].map(qb_dict)), dtype="string[pyarrow]")
209
  RandomPortfolio['RB1'] = pd.Series(list(RandomPortfolio['RB1'].map(full_pos_player_dict['pos_dicts'][0])), dtype="string[pyarrow]")
210
  RandomPortfolio['WR1'] = pd.Series(list(RandomPortfolio['QB'].map(stacking_dict)), dtype="string[pyarrow]")
 
217
  RandomPortfolio = RandomPortfolio[RandomPortfolio['plyr_count'] == 8].drop(columns=['plyr_list','plyr_count']).\
218
  reset_index(drop=True)
219
 
 
 
220
  del sizesplit
221
  del full_pos_player_dict
222
  del ranges_dict
 
255
  RandomPortArray = np.c_[RandomPortArray, np.einsum('ij->i',RandomPortArray[:,26:35].astype(np.double))]
256
 
257
  RandomPortArrayOut = np.delete(RandomPortArray, np.s_[8:35], axis=1)
258
+ st.write(RandomPortArrayOut.head(100))
259
  RandomPortfolioDF = pd.DataFrame(RandomPortArrayOut, columns = ['QB', 'RB1', 'WR1', 'WR2', 'FLEX1', 'FLEX2', 'DST', 'User/Field', 'Salary', 'Projection', 'Own'])
260
  RandomPortfolioDF = RandomPortfolioDF.sort_values(by=Sim_function, ascending=False)
261
  del RandomPortArray