Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -46,6 +46,11 @@ def init_baselines():
|
|
46 |
raw_display.replace('', np.nan, inplace=True)
|
47 |
overall_stats = raw_display.dropna()
|
48 |
|
|
|
|
|
|
|
|
|
|
|
49 |
worksheet = sh.worksheet('DK_ROO')
|
50 |
timestamp = worksheet.acell('U2').value
|
51 |
|
@@ -55,18 +60,21 @@ def init_baselines():
|
|
55 |
raw_display.replace('#DIV/0!', np.nan, inplace=True)
|
56 |
prop_frame = raw_display.dropna()
|
57 |
|
58 |
-
return game_model, overall_stats, timestamp, prop_frame
|
59 |
|
60 |
-
game_model, overall_stats, timestamp, prop_frame = init_baselines()
|
61 |
qb_stats = overall_stats.loc[overall_stats['Position'] == 'QB']
|
62 |
non_qb_stats = overall_stats.loc[overall_stats['Position'] != 'QB']
|
63 |
team_dict = dict(zip(prop_frame['Player'], prop_frame['Team']))
|
64 |
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
65 |
|
|
|
|
|
|
|
66 |
all_sim_vars = ['pass_yards', 'rush_yards', 'rec_yards', 'receptions', 'rush_attempts']
|
67 |
sim_all_hold = pd.DataFrame(columns=['Player', 'Team', 'Prop type', 'Prop', 'Mean_Outcome', 'Imp Over', 'Over%', 'Imp Under', 'Under%', 'Bet?', 'Edge'])
|
68 |
|
69 |
-
tab1, tab2, tab3, tab4, tab5 = st.tabs(["Game Betting Model", "QB Projections", "RB/WR/TE Projections", "Player Prop Simulations", "Stat Specific Simulations"])
|
70 |
|
71 |
def convert_df_to_csv(df):
|
72 |
return df.to_csv().encode('utf-8')
|
@@ -75,7 +83,7 @@ with tab1:
|
|
75 |
st.info(t_stamp)
|
76 |
if st.button("Reset Data", key='reset1'):
|
77 |
st.cache_data.clear()
|
78 |
-
game_model, overall_stats, timestamp, prop_frame = init_baselines()
|
79 |
qb_stats = overall_stats.loc[overall_stats['Position'] == 'QB']
|
80 |
non_qb_stats = overall_stats.loc[overall_stats['Position'] != 'QB']
|
81 |
team_dict = dict(zip(prop_frame['Player'], prop_frame['Team']))
|
@@ -103,7 +111,7 @@ with tab2:
|
|
103 |
st.info(t_stamp)
|
104 |
if st.button("Reset Data", key='reset2'):
|
105 |
st.cache_data.clear()
|
106 |
-
game_model, overall_stats, timestamp, prop_frame = init_baselines()
|
107 |
qb_stats = overall_stats.loc[overall_stats['Position'] == 'QB']
|
108 |
non_qb_stats = overall_stats.loc[overall_stats['Position'] != 'QB']
|
109 |
team_dict = dict(zip(prop_frame['Player'], prop_frame['Team']))
|
@@ -129,7 +137,7 @@ with tab3:
|
|
129 |
st.info(t_stamp)
|
130 |
if st.button("Reset Data", key='reset3'):
|
131 |
st.cache_data.clear()
|
132 |
-
game_model, overall_stats, timestamp, prop_frame = init_baselines()
|
133 |
qb_stats = overall_stats.loc[overall_stats['Position'] == 'QB']
|
134 |
non_qb_stats = overall_stats.loc[overall_stats['Position'] != 'QB']
|
135 |
team_dict = dict(zip(prop_frame['Player'], prop_frame['Team']))
|
@@ -150,12 +158,39 @@ with tab3:
|
|
150 |
mime='text/csv',
|
151 |
key='hitter_prop_export',
|
152 |
)
|
153 |
-
|
154 |
with tab4:
|
155 |
st.info(t_stamp)
|
156 |
if st.button("Reset Data", key='reset4'):
|
157 |
st.cache_data.clear()
|
158 |
-
game_model, overall_stats, timestamp, prop_frame = init_baselines()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
qb_stats = overall_stats.loc[overall_stats['Position'] == 'QB']
|
160 |
non_qb_stats = overall_stats.loc[overall_stats['Position'] != 'QB']
|
161 |
team_dict = dict(zip(prop_frame['Player'], prop_frame['Team']))
|
@@ -297,12 +332,12 @@ with tab4:
|
|
297 |
plot_hold_container = st.empty()
|
298 |
st.plotly_chart(fig, use_container_width=True)
|
299 |
|
300 |
-
with
|
301 |
st.info(t_stamp)
|
302 |
st.info('The Over and Under percentages are a compositve percentage based on simulations, historical performance, and implied probabilities, and may be different than you would expect based purely on the median projection. Likewise, the Edge of a bet is not the only indicator of if you should make the bet or not as the suggestion is using a base acceptable threshold to determine how much edge you should have for each stat category.')
|
303 |
-
if st.button("Reset Data/Load Data", key='
|
304 |
st.cache_data.clear()
|
305 |
-
game_model, overall_stats, timestamp, prop_frame = init_baselines()
|
306 |
qb_stats = overall_stats.loc[overall_stats['Position'] == 'QB']
|
307 |
non_qb_stats = overall_stats.loc[overall_stats['Position'] != 'QB']
|
308 |
team_dict = dict(zip(prop_frame['Player'], prop_frame['Team']))
|
|
|
46 |
raw_display.replace('', np.nan, inplace=True)
|
47 |
overall_stats = raw_display.dropna()
|
48 |
|
49 |
+
worksheet = sh.worksheet('prop_frame')
|
50 |
+
raw_display = pd.DataFrame(worksheet.get_all_records())
|
51 |
+
raw_display.replace('', np.nan, inplace=True)
|
52 |
+
prop_trends = raw_display.dropna()
|
53 |
+
|
54 |
worksheet = sh.worksheet('DK_ROO')
|
55 |
timestamp = worksheet.acell('U2').value
|
56 |
|
|
|
60 |
raw_display.replace('#DIV/0!', np.nan, inplace=True)
|
61 |
prop_frame = raw_display.dropna()
|
62 |
|
63 |
+
return game_model, overall_stats, timestamp, prop_frame, prop_trends
|
64 |
|
65 |
+
game_model, overall_stats, timestamp, prop_frame, prop_trends = init_baselines()
|
66 |
qb_stats = overall_stats.loc[overall_stats['Position'] == 'QB']
|
67 |
non_qb_stats = overall_stats.loc[overall_stats['Position'] != 'QB']
|
68 |
team_dict = dict(zip(prop_frame['Player'], prop_frame['Team']))
|
69 |
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
70 |
|
71 |
+
prop_table_options = ['pass_yards', 'rush_yards', 'rec_yards', 'receptions', 'rush_attempts', 'pass_attempts']
|
72 |
+
prop_format = {'L3 Success': '{:.2%}', 'L6_Success': '{:.2%}', 'L10_success': '{:.2%}', 'Trending Over': '{:.2%}', 'Trending Under': '{:.2%}',
|
73 |
+
'Implied Over': '{:.2%}', 'Implied Under': '{:.2%}', 'Over Edge': '{:.2%}', 'Under Edge': '{:.2%}'}
|
74 |
all_sim_vars = ['pass_yards', 'rush_yards', 'rec_yards', 'receptions', 'rush_attempts']
|
75 |
sim_all_hold = pd.DataFrame(columns=['Player', 'Team', 'Prop type', 'Prop', 'Mean_Outcome', 'Imp Over', 'Over%', 'Imp Under', 'Under%', 'Bet?', 'Edge'])
|
76 |
|
77 |
+
tab1, tab2, tab3, tab4, tab5, tab6 = st.tabs(["Game Betting Model", "QB Projections", "RB/WR/TE Projections", "Player Prop Trends", "Player Prop Simulations", "Stat Specific Simulations"])
|
78 |
|
79 |
def convert_df_to_csv(df):
|
80 |
return df.to_csv().encode('utf-8')
|
|
|
83 |
st.info(t_stamp)
|
84 |
if st.button("Reset Data", key='reset1'):
|
85 |
st.cache_data.clear()
|
86 |
+
game_model, overall_stats, timestamp, prop_frame, prop_trends = init_baselines()
|
87 |
qb_stats = overall_stats.loc[overall_stats['Position'] == 'QB']
|
88 |
non_qb_stats = overall_stats.loc[overall_stats['Position'] != 'QB']
|
89 |
team_dict = dict(zip(prop_frame['Player'], prop_frame['Team']))
|
|
|
111 |
st.info(t_stamp)
|
112 |
if st.button("Reset Data", key='reset2'):
|
113 |
st.cache_data.clear()
|
114 |
+
game_model, overall_stats, timestamp, prop_frame, prop_trends = init_baselines()
|
115 |
qb_stats = overall_stats.loc[overall_stats['Position'] == 'QB']
|
116 |
non_qb_stats = overall_stats.loc[overall_stats['Position'] != 'QB']
|
117 |
team_dict = dict(zip(prop_frame['Player'], prop_frame['Team']))
|
|
|
137 |
st.info(t_stamp)
|
138 |
if st.button("Reset Data", key='reset3'):
|
139 |
st.cache_data.clear()
|
140 |
+
game_model, overall_stats, timestamp, prop_frame, prop_trends = init_baselines()
|
141 |
qb_stats = overall_stats.loc[overall_stats['Position'] == 'QB']
|
142 |
non_qb_stats = overall_stats.loc[overall_stats['Position'] != 'QB']
|
143 |
team_dict = dict(zip(prop_frame['Player'], prop_frame['Team']))
|
|
|
158 |
mime='text/csv',
|
159 |
key='hitter_prop_export',
|
160 |
)
|
161 |
+
|
162 |
with tab4:
|
163 |
st.info(t_stamp)
|
164 |
if st.button("Reset Data", key='reset4'):
|
165 |
st.cache_data.clear()
|
166 |
+
game_model, overall_stats, timestamp, prop_frame, prop_trends = init_baselines()
|
167 |
+
qb_stats = overall_stats.loc[overall_stats['Position'] == 'QB']
|
168 |
+
non_qb_stats = overall_stats.loc[overall_stats['Position'] != 'QB']
|
169 |
+
team_dict = dict(zip(prop_frame['Player'], prop_frame['Team']))
|
170 |
+
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
171 |
+
split_var5 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var5')
|
172 |
+
if split_var5 == 'Specific Teams':
|
173 |
+
team_var5 = st.multiselect('Which teams would you like to include in the tables?', options = prop_trends['Team'].unique(), key='team_var5')
|
174 |
+
elif split_var5 == 'All':
|
175 |
+
team_var5 = prop_trends.Team.values.tolist()
|
176 |
+
prop_type_var2 = st.selectbox('Select type of prop are you wanting to view', options = prop_table_options)
|
177 |
+
prop_frame_disp = prop_trends[prop_trends['Team'].isin(team_var5)]
|
178 |
+
prop_frame_disp = prop_frame_disp[prop_frame_disp['prop_type'] == prop_type_var2]
|
179 |
+
prop_frame_disp = prop_frame_disp.set_index('Player')
|
180 |
+
prop_frame_disp = prop_frame_disp.sort_values(by='Trending Over', ascending=False)
|
181 |
+
st.dataframe(prop_frame_disp.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(prop_format, precision=2), use_container_width = True)
|
182 |
+
st.download_button(
|
183 |
+
label="Export Prop Trends Model",
|
184 |
+
data=convert_df_to_csv(prop_frame_disp),
|
185 |
+
file_name='NFL_prop_trends_export.csv',
|
186 |
+
mime='text/csv',
|
187 |
+
)
|
188 |
+
|
189 |
+
with tab5:
|
190 |
+
st.info(t_stamp)
|
191 |
+
if st.button("Reset Data", key='reset5'):
|
192 |
+
st.cache_data.clear()
|
193 |
+
game_model, overall_stats, timestamp, prop_frame, prop_trends = init_baselines()
|
194 |
qb_stats = overall_stats.loc[overall_stats['Position'] == 'QB']
|
195 |
non_qb_stats = overall_stats.loc[overall_stats['Position'] != 'QB']
|
196 |
team_dict = dict(zip(prop_frame['Player'], prop_frame['Team']))
|
|
|
332 |
plot_hold_container = st.empty()
|
333 |
st.plotly_chart(fig, use_container_width=True)
|
334 |
|
335 |
+
with tab6:
|
336 |
st.info(t_stamp)
|
337 |
st.info('The Over and Under percentages are a compositve percentage based on simulations, historical performance, and implied probabilities, and may be different than you would expect based purely on the median projection. Likewise, the Edge of a bet is not the only indicator of if you should make the bet or not as the suggestion is using a base acceptable threshold to determine how much edge you should have for each stat category.')
|
338 |
+
if st.button("Reset Data/Load Data", key='reset6'):
|
339 |
st.cache_data.clear()
|
340 |
+
game_model, overall_stats, timestamp, prop_frame, prop_trends = init_baselines()
|
341 |
qb_stats = overall_stats.loc[overall_stats['Position'] == 'QB']
|
342 |
non_qb_stats = overall_stats.loc[overall_stats['Position'] != 'QB']
|
343 |
team_dict = dict(zip(prop_frame['Player'], prop_frame['Team']))
|