Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -30,49 +30,31 @@ american_format = {'First Inning Lead Percentage': '{:.2%}', 'Fifth Inning Lead
|
|
30 |
master_hold = 'https://docs.google.com/spreadsheets/d/1I_1Ve3F4tftgfLQQoRKOJ351XfEG48s36OxXUKxmgS8/edit#gid=694077504'
|
31 |
|
32 |
@st.cache_data
|
33 |
-
def
|
34 |
sh = gc.open_by_url(master_hold)
|
35 |
worksheet = sh.worksheet('Game_Betting')
|
36 |
raw_display = pd.DataFrame(worksheet.get_all_records())
|
37 |
raw_display.replace('#DIV/0!', np.nan, inplace=True)
|
38 |
-
|
39 |
-
|
40 |
-
return raw_display
|
41 |
-
|
42 |
-
@st.cache_data
|
43 |
-
def player_stat_table():
|
44 |
-
sh = gc.open_by_url(master_hold)
|
45 |
worksheet = sh.worksheet('Prop_Table')
|
46 |
raw_display = pd.DataFrame(worksheet.get_all_records())
|
47 |
raw_display.replace('', np.nan, inplace=True)
|
48 |
-
|
49 |
-
|
50 |
-
return raw_display
|
51 |
-
|
52 |
-
@st.cache_data
|
53 |
-
def timestamp_table():
|
54 |
-
sh = gc.open_by_url(master_hold)
|
55 |
worksheet = sh.worksheet('DK_ROO')
|
56 |
-
|
57 |
-
|
58 |
-
return raw_display
|
59 |
-
|
60 |
-
@st.cache_data
|
61 |
-
def player_prop_table():
|
62 |
-
sh = gc.open_by_url(master_hold)
|
63 |
worksheet = sh.worksheet('prop_frame')
|
64 |
raw_display = pd.DataFrame(worksheet.get_all_records())
|
65 |
raw_display.replace('', np.nan, inplace=True)
|
66 |
-
|
67 |
|
68 |
-
return
|
69 |
|
70 |
-
game_model =
|
71 |
-
overall_stats = player_stat_table()
|
72 |
qb_stats = overall_stats.loc[overall_stats['Position'] == 'QB']
|
73 |
non_qb_stats = overall_stats.loc[overall_stats['Position'] != 'QB']
|
74 |
-
timestamp = timestamp_table()
|
75 |
-
prop_frame = player_prop_table()
|
76 |
team_dict = dict(zip(prop_frame['Player'], prop_frame['Team']))
|
77 |
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
78 |
|
@@ -89,12 +71,11 @@ with tab1:
|
|
89 |
st.info(t_stamp)
|
90 |
if st.button("Reset Data", key='reset1'):
|
91 |
st.cache_data.clear()
|
92 |
-
game_model =
|
93 |
-
overall_stats = player_stat_table()
|
94 |
qb_stats = overall_stats.loc[overall_stats['Position'] == 'QB']
|
95 |
non_qb_stats = overall_stats.loc[overall_stats['Position'] != 'QB']
|
96 |
-
|
97 |
-
t_stamp = f"Last Update: " + str(
|
98 |
line_var1 = st.radio('How would you like to display odds?', options = ['Percentage', 'American'], key='line_var1')
|
99 |
team_frame = game_model
|
100 |
if line_var1 == 'Percentage':
|
@@ -118,12 +99,11 @@ with tab2:
|
|
118 |
st.info(t_stamp)
|
119 |
if st.button("Reset Data", key='reset2'):
|
120 |
st.cache_data.clear()
|
121 |
-
game_model =
|
122 |
-
overall_stats = player_stat_table()
|
123 |
qb_stats = overall_stats.loc[overall_stats['Position'] == 'QB']
|
124 |
non_qb_stats = overall_stats.loc[overall_stats['Position'] != 'QB']
|
125 |
-
|
126 |
-
t_stamp = f"Last Update: " + str(
|
127 |
split_var1 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var1')
|
128 |
if split_var1 == 'Specific Teams':
|
129 |
team_var1 = st.multiselect('Which teams would you like to include in the tables?', options = qb_stats['Team'].unique(), key='team_var1')
|
@@ -145,12 +125,11 @@ with tab3:
|
|
145 |
st.info(t_stamp)
|
146 |
if st.button("Reset Data", key='reset3'):
|
147 |
st.cache_data.clear()
|
148 |
-
game_model =
|
149 |
-
overall_stats = player_stat_table()
|
150 |
qb_stats = overall_stats.loc[overall_stats['Position'] == 'QB']
|
151 |
non_qb_stats = overall_stats.loc[overall_stats['Position'] != 'QB']
|
152 |
-
|
153 |
-
t_stamp = f"Last Update: " + str(
|
154 |
split_var2 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var2')
|
155 |
if split_var2 == 'Specific Teams':
|
156 |
team_var2 = st.multiselect('Which teams would you like to include in the tables?', options = non_qb_stats['Team'].unique(), key='team_var2')
|
@@ -172,12 +151,11 @@ with tab4:
|
|
172 |
st.info(t_stamp)
|
173 |
if st.button("Reset Data", key='reset4'):
|
174 |
st.cache_data.clear()
|
175 |
-
game_model =
|
176 |
-
overall_stats = player_stat_table()
|
177 |
qb_stats = overall_stats.loc[overall_stats['Position'] == 'QB']
|
178 |
non_qb_stats = overall_stats.loc[overall_stats['Position'] != 'QB']
|
179 |
-
|
180 |
-
t_stamp = f"Last Update: " + str(
|
181 |
col1, col2 = st.columns([1, 5])
|
182 |
|
183 |
with col2:
|
@@ -320,12 +298,11 @@ with tab5:
|
|
320 |
st.info('The Over and Under percentages are a compositve percentage based on simulations, historical performance, and implied probabilities, and may be different than you would expect based purely on the median projection. Likewise, the Edge of a bet is not the only indicator of if you should make the bet or not as the suggestion is using a base acceptable threshold to determine how much edge you should have for each stat category.')
|
321 |
if st.button("Reset Data/Load Data", key='reset5'):
|
322 |
st.cache_data.clear()
|
323 |
-
game_model =
|
324 |
-
overall_stats = player_stat_table()
|
325 |
qb_stats = overall_stats.loc[overall_stats['Position'] == 'QB']
|
326 |
non_qb_stats = overall_stats.loc[overall_stats['Position'] != 'QB']
|
327 |
-
|
328 |
-
t_stamp = f"Last Update: " + str(
|
329 |
col1, col2 = st.columns([1, 5])
|
330 |
|
331 |
with col2:
|
|
|
30 |
master_hold = 'https://docs.google.com/spreadsheets/d/1I_1Ve3F4tftgfLQQoRKOJ351XfEG48s36OxXUKxmgS8/edit#gid=694077504'
|
31 |
|
32 |
@st.cache_data
|
33 |
+
def init_baselines():
|
34 |
sh = gc.open_by_url(master_hold)
|
35 |
worksheet = sh.worksheet('Game_Betting')
|
36 |
raw_display = pd.DataFrame(worksheet.get_all_records())
|
37 |
raw_display.replace('#DIV/0!', np.nan, inplace=True)
|
38 |
+
game_model = raw_display.dropna()
|
39 |
+
|
|
|
|
|
|
|
|
|
|
|
40 |
worksheet = sh.worksheet('Prop_Table')
|
41 |
raw_display = pd.DataFrame(worksheet.get_all_records())
|
42 |
raw_display.replace('', np.nan, inplace=True)
|
43 |
+
overall_stats = raw_display.dropna()
|
44 |
+
|
|
|
|
|
|
|
|
|
|
|
45 |
worksheet = sh.worksheet('DK_ROO')
|
46 |
+
timestamp = worksheet.acell('U2').value
|
47 |
+
|
|
|
|
|
|
|
|
|
|
|
48 |
worksheet = sh.worksheet('prop_frame')
|
49 |
raw_display = pd.DataFrame(worksheet.get_all_records())
|
50 |
raw_display.replace('', np.nan, inplace=True)
|
51 |
+
prop_frame = raw_display.dropna()
|
52 |
|
53 |
+
return game_model, overall_stats, timestamp, prop_frame
|
54 |
|
55 |
+
game_model, overall_stats, timestamp, prop_frame = init_baselines()
|
|
|
56 |
qb_stats = overall_stats.loc[overall_stats['Position'] == 'QB']
|
57 |
non_qb_stats = overall_stats.loc[overall_stats['Position'] != 'QB']
|
|
|
|
|
58 |
team_dict = dict(zip(prop_frame['Player'], prop_frame['Team']))
|
59 |
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
60 |
|
|
|
71 |
st.info(t_stamp)
|
72 |
if st.button("Reset Data", key='reset1'):
|
73 |
st.cache_data.clear()
|
74 |
+
game_model, overall_stats, timestamp, prop_frame = init_baselines()
|
|
|
75 |
qb_stats = overall_stats.loc[overall_stats['Position'] == 'QB']
|
76 |
non_qb_stats = overall_stats.loc[overall_stats['Position'] != 'QB']
|
77 |
+
team_dict = dict(zip(prop_frame['Player'], prop_frame['Team']))
|
78 |
+
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
79 |
line_var1 = st.radio('How would you like to display odds?', options = ['Percentage', 'American'], key='line_var1')
|
80 |
team_frame = game_model
|
81 |
if line_var1 == 'Percentage':
|
|
|
99 |
st.info(t_stamp)
|
100 |
if st.button("Reset Data", key='reset2'):
|
101 |
st.cache_data.clear()
|
102 |
+
game_model, overall_stats, timestamp, prop_frame = init_baselines()
|
|
|
103 |
qb_stats = overall_stats.loc[overall_stats['Position'] == 'QB']
|
104 |
non_qb_stats = overall_stats.loc[overall_stats['Position'] != 'QB']
|
105 |
+
team_dict = dict(zip(prop_frame['Player'], prop_frame['Team']))
|
106 |
+
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
107 |
split_var1 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var1')
|
108 |
if split_var1 == 'Specific Teams':
|
109 |
team_var1 = st.multiselect('Which teams would you like to include in the tables?', options = qb_stats['Team'].unique(), key='team_var1')
|
|
|
125 |
st.info(t_stamp)
|
126 |
if st.button("Reset Data", key='reset3'):
|
127 |
st.cache_data.clear()
|
128 |
+
game_model, overall_stats, timestamp, prop_frame = init_baselines()
|
|
|
129 |
qb_stats = overall_stats.loc[overall_stats['Position'] == 'QB']
|
130 |
non_qb_stats = overall_stats.loc[overall_stats['Position'] != 'QB']
|
131 |
+
team_dict = dict(zip(prop_frame['Player'], prop_frame['Team']))
|
132 |
+
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
133 |
split_var2 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var2')
|
134 |
if split_var2 == 'Specific Teams':
|
135 |
team_var2 = st.multiselect('Which teams would you like to include in the tables?', options = non_qb_stats['Team'].unique(), key='team_var2')
|
|
|
151 |
st.info(t_stamp)
|
152 |
if st.button("Reset Data", key='reset4'):
|
153 |
st.cache_data.clear()
|
154 |
+
game_model, overall_stats, timestamp, prop_frame = init_baselines()
|
|
|
155 |
qb_stats = overall_stats.loc[overall_stats['Position'] == 'QB']
|
156 |
non_qb_stats = overall_stats.loc[overall_stats['Position'] != 'QB']
|
157 |
+
team_dict = dict(zip(prop_frame['Player'], prop_frame['Team']))
|
158 |
+
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
159 |
col1, col2 = st.columns([1, 5])
|
160 |
|
161 |
with col2:
|
|
|
298 |
st.info('The Over and Under percentages are a compositve percentage based on simulations, historical performance, and implied probabilities, and may be different than you would expect based purely on the median projection. Likewise, the Edge of a bet is not the only indicator of if you should make the bet or not as the suggestion is using a base acceptable threshold to determine how much edge you should have for each stat category.')
|
299 |
if st.button("Reset Data/Load Data", key='reset5'):
|
300 |
st.cache_data.clear()
|
301 |
+
game_model, overall_stats, timestamp, prop_frame = init_baselines()
|
|
|
302 |
qb_stats = overall_stats.loc[overall_stats['Position'] == 'QB']
|
303 |
non_qb_stats = overall_stats.loc[overall_stats['Position'] != 'QB']
|
304 |
+
team_dict = dict(zip(prop_frame['Player'], prop_frame['Team']))
|
305 |
+
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
306 |
col1, col2 = st.columns([1, 5])
|
307 |
|
308 |
with col2:
|