Spaces:
Running
Running
James McCool
commited on
Commit
·
33e229f
1
Parent(s):
25ce10e
big update to incorporate pick6 and clean up loop on stat specific sim
Browse files
app.py
CHANGED
@@ -87,10 +87,13 @@ non_qb_stats = overall_stats.loc[overall_stats['Position'] != 'QB']
|
|
87 |
team_dict = dict(zip(prop_frame['Player'], prop_frame['Team']))
|
88 |
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
89 |
|
90 |
-
prop_table_options = ['
|
|
|
91 |
prop_format = {'L3 Success': '{:.2%}', 'L6_Success': '{:.2%}', 'L10_success': '{:.2%}', 'Trending Over': '{:.2%}', 'Trending Under': '{:.2%}',
|
92 |
'Implied Over': '{:.2%}', 'Implied Under': '{:.2%}', 'Over Edge': '{:.2%}', 'Under Edge': '{:.2%}'}
|
93 |
-
all_sim_vars = ['NFL_GAME_PLAYER_PASSING_YARDS', 'NFL_GAME_PLAYER_RUSHING_YARDS', '
|
|
|
|
|
94 |
sim_all_hold = pd.DataFrame(columns=['Player', 'Team', 'Book', 'Prop Type', 'Prop', 'Mean_Outcome', 'Imp Over', 'Over%', 'Imp Under', 'Under%', 'Bet?', 'Edge'])
|
95 |
|
96 |
tab1, tab2, tab3, tab4, tab5, tab6 = st.tabs(["Game Betting Model", "QB Projections", "RB/WR/TE Projections", "Player Prop Trends", "Player Prop Simulations", "Stat Specific Simulations"])
|
@@ -376,6 +379,11 @@ with tab6:
|
|
376 |
|
377 |
with col1:
|
378 |
game_select_var = st.selectbox('Select prop source', options = ['Aggregate', 'Pick6'])
|
|
|
|
|
|
|
|
|
|
|
379 |
if game_select_var == 'Aggregate':
|
380 |
prop_df = prop_frame[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type']]
|
381 |
elif game_select_var == 'Pick6':
|
@@ -384,18 +392,26 @@ with tab6:
|
|
384 |
st.download_button(
|
385 |
label="Download Prop Source",
|
386 |
data=convert_df_to_csv(prop_df),
|
387 |
-
file_name='
|
388 |
mime='text/csv',
|
389 |
key='prop_source',
|
390 |
)
|
391 |
-
|
|
|
|
|
|
|
392 |
|
393 |
if st.button('Simulate Prop Category'):
|
394 |
with col2:
|
395 |
|
396 |
with df_hold_container.container():
|
397 |
if prop_type_var == 'All Props':
|
398 |
-
|
|
|
|
|
|
|
|
|
|
|
399 |
|
400 |
if game_select_var == 'Aggregate':
|
401 |
prop_df_raw = prop_frame[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type']]
|
@@ -409,44 +425,54 @@ with tab6:
|
|
409 |
prop_df = prop_df[~((prop_df['over_prop'] < 15) & (prop_df['prop_type'] == 'NFL_GAME_PLAYER_RUSHING_YARDS'))]
|
410 |
prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line']]
|
411 |
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
|
|
412 |
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
413 |
-
st.table(prop_df)
|
414 |
prop_df['Over'] = 1 / prop_df['over_line']
|
415 |
prop_df['Under'] = 1 / prop_df['under_line']
|
416 |
df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
417 |
-
|
|
|
418 |
prop_dict = dict(zip(df.Player, df.Prop))
|
419 |
book_dict = dict(zip(df.Player, df.book))
|
420 |
over_dict = dict(zip(df.Player, df.Over))
|
|
|
421 |
under_dict = dict(zip(df.Player, df.Under))
|
422 |
|
423 |
total_sims = 1000
|
424 |
|
425 |
df.replace("", 0, inplace=True)
|
426 |
|
427 |
-
if prop == "NFL_GAME_PLAYER_PASSING_YARDS":
|
428 |
df['Median'] = df['pass_yards']
|
429 |
-
elif prop == "NFL_GAME_PLAYER_RUSHING_YARDS":
|
430 |
df['Median'] = df['rush_yards']
|
431 |
-
elif prop == "
|
432 |
-
df['Median'] = df['rec_yards']
|
433 |
-
elif prop == "NFL_GAME_PLAYER_RECEIVING_RECEPTIONS":
|
434 |
-
df['Median'] = df['rec']
|
435 |
-
elif prop == "NFL_GAME_PLAYER_RUSHING_ATTEMPTS":
|
436 |
-
df['Median'] = df['rush_att']
|
437 |
-
elif prop == "NFL_GAME_PLAYER_PASSING_ATTEMPTS":
|
438 |
df['Median'] = df['pass_att']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
439 |
|
440 |
-
flex_file = df
|
441 |
flex_file['Floor'] = flex_file['Median'] * .25
|
442 |
flex_file['Ceiling'] = flex_file['Median'] + (flex_file['Median'] * 1.75)
|
443 |
flex_file['STD'] = flex_file['Median'] / 4
|
444 |
flex_file['Prop'] = flex_file['Player'].map(prop_dict)
|
445 |
flex_file = flex_file[['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']]
|
446 |
|
447 |
-
hold_file = flex_file
|
448 |
-
overall_file = flex_file
|
449 |
-
prop_file = flex_file
|
450 |
|
451 |
overall_players = overall_file[['Player']]
|
452 |
|
@@ -495,115 +521,105 @@ with tab6:
|
|
495 |
sim_all_hold = pd.concat([sim_all_hold, leg_outcomes], ignore_index=True)
|
496 |
|
497 |
final_outcomes = sim_all_hold
|
|
|
498 |
|
499 |
elif prop_type_var != 'All Props':
|
500 |
-
|
501 |
-
|
502 |
if game_select_var == 'Aggregate':
|
503 |
prop_df_raw = prop_frame[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type']]
|
504 |
elif game_select_var == 'Pick6':
|
505 |
prop_df_raw = pick_frame[['Full_name', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type']]
|
506 |
prop_df_raw.rename(columns={"Full_name": "Player"}, inplace = True)
|
507 |
|
508 |
-
for books in
|
509 |
prop_df = prop_df_raw.loc[prop_df_raw['book'] == books]
|
510 |
-
|
|
|
511 |
prop_df = prop_df.loc[prop_df['prop_type'] == 'NFL_GAME_PLAYER_PASSING_YARDS']
|
512 |
-
|
513 |
-
prop_df
|
514 |
-
|
515 |
-
st.table(prop_df)
|
516 |
-
prop_df['Over'] = 1 / prop_df['over_line']
|
517 |
-
prop_df['Under'] = 1 / prop_df['under_line']
|
518 |
-
df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
519 |
-
elif prop_type_var == "rush_yards":
|
520 |
prop_df = prop_df.loc[prop_df['prop_type'] == 'NFL_GAME_PLAYER_RUSHING_YARDS']
|
521 |
-
|
522 |
-
prop_df = prop_df[['
|
523 |
-
|
524 |
-
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
525 |
-
st.table(prop_df)
|
526 |
-
prop_df['Over'] = 1 / prop_df['over_line']
|
527 |
-
prop_df['Under'] = 1 / prop_df['under_line']
|
528 |
-
df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
529 |
-
elif prop_type_var == "rec_yards":
|
530 |
-
prop_df = prop_df.loc[prop_df['prop_type'] == 'NFL_GAME_PLAYER_RECEIVING_YARDS']
|
531 |
-
prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line']]
|
532 |
-
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
533 |
-
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
534 |
-
st.table(prop_df)
|
535 |
-
prop_df['Over'] = 1 / prop_df['over_line']
|
536 |
-
prop_df['Under'] = 1 / prop_df['under_line']
|
537 |
-
df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
538 |
-
elif prop_type_var == "receptions":
|
539 |
-
prop_df = prop_df.loc[prop_df['prop_type'] == 'NFL_GAME_PLAYER_RECEIVING_RECEPTIONS']
|
540 |
-
prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line']]
|
541 |
-
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
542 |
-
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
543 |
-
st.table(prop_df)
|
544 |
-
prop_df['Over'] = 1 / prop_df['over_line']
|
545 |
-
prop_df['Under'] = 1 / prop_df['under_line']
|
546 |
-
df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
547 |
-
elif prop_type_var == "rush_attempts":
|
548 |
-
prop_df = prop_df.loc[prop_df['prop_type'] == 'NFL_GAME_PLAYER_RUSHING_ATTEMPTS']
|
549 |
-
prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line']]
|
550 |
-
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
551 |
-
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
552 |
-
st.table(prop_df)
|
553 |
-
prop_df['Over'] = 1 / prop_df['over_line']
|
554 |
-
prop_df['Under'] = 1 / prop_df['under_line']
|
555 |
-
df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
556 |
-
elif prop_type_var == "pass_attempts":
|
557 |
prop_df = prop_df.loc[prop_df['prop_type'] == 'NFL_GAME_PLAYER_PASSING_ATTEMPTS']
|
558 |
-
|
559 |
-
prop_df
|
560 |
-
|
561 |
-
|
562 |
-
|
563 |
-
prop_df['
|
564 |
-
|
565 |
-
|
566 |
-
|
567 |
-
prop_df = prop_df[['
|
568 |
-
|
569 |
-
prop_df = prop_df.loc[prop_df['
|
570 |
-
|
571 |
-
prop_df['
|
572 |
-
|
573 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
574 |
|
575 |
prop_dict = dict(zip(df.Player, df.Prop))
|
576 |
book_dict = dict(zip(df.Player, df.book))
|
577 |
over_dict = dict(zip(df.Player, df.Over))
|
|
|
578 |
under_dict = dict(zip(df.Player, df.Under))
|
579 |
|
580 |
total_sims = 1000
|
581 |
|
582 |
df.replace("", 0, inplace=True)
|
583 |
|
584 |
-
if prop_type_var == "
|
585 |
df['Median'] = df['pass_yards']
|
586 |
-
elif prop_type_var == "
|
587 |
df['Median'] = df['rush_yards']
|
588 |
-
elif prop_type_var == "
|
589 |
-
df['Median'] = df['rec_yards']
|
590 |
-
elif prop_type_var == "receptions":
|
591 |
-
df['Median'] = df['rec']
|
592 |
-
elif prop_type_var == "rush_attempts":
|
593 |
-
df['Median'] = df['rush_att']
|
594 |
-
elif prop_type_var == "pass_attempts":
|
595 |
df['Median'] = df['pass_att']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
596 |
|
597 |
-
flex_file = df
|
598 |
flex_file['Floor'] = flex_file['Median'] * .25
|
599 |
flex_file['Ceiling'] = flex_file['Median'] + (flex_file['Median'] * 1.75)
|
600 |
flex_file['STD'] = flex_file['Median'] / 4
|
601 |
flex_file['Prop'] = flex_file['Player'].map(prop_dict)
|
602 |
flex_file = flex_file[['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']]
|
603 |
|
604 |
-
hold_file = flex_file
|
605 |
-
overall_file = flex_file
|
606 |
-
prop_file = flex_file
|
607 |
|
608 |
overall_players = overall_file[['Player']]
|
609 |
|
@@ -652,8 +668,11 @@ with tab6:
|
|
652 |
sim_all_hold = pd.concat([sim_all_hold, leg_outcomes], ignore_index=True)
|
653 |
|
654 |
final_outcomes = sim_all_hold
|
|
|
655 |
|
656 |
final_outcomes = final_outcomes.dropna()
|
|
|
|
|
657 |
final_outcomes = final_outcomes.sort_values(by='Edge', ascending=False)
|
658 |
|
659 |
with df_hold_container:
|
|
|
87 |
team_dict = dict(zip(prop_frame['Player'], prop_frame['Team']))
|
88 |
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
89 |
|
90 |
+
prop_table_options = ['NFL_GAME_PLAYER_PASSING_YARDS', 'NFL_GAME_PLAYER_RUSHING_YARDS', 'NFL_GAME_PLAYER_PASSING_ATTEMPTS', 'NFL_GAME_PLAYER_PASSING_TOUCHDOWNS', 'NFL_GAME_PLAYER_PASSING_COMPLETIONS', 'NFL_GAME_PLAYER_RUSHING_ATTEMPTS',
|
91 |
+
'NFL_GAME_PLAYER_RECEIVING_RECEPTIONS', 'NFL_GAME_PLAYER_RECEIVING_YARDS', 'NFL_GAME_PLAYER_RECEIVING_TOUCHDOWNS']
|
92 |
prop_format = {'L3 Success': '{:.2%}', 'L6_Success': '{:.2%}', 'L10_success': '{:.2%}', 'Trending Over': '{:.2%}', 'Trending Under': '{:.2%}',
|
93 |
'Implied Over': '{:.2%}', 'Implied Under': '{:.2%}', 'Over Edge': '{:.2%}', 'Under Edge': '{:.2%}'}
|
94 |
+
all_sim_vars = ['NFL_GAME_PLAYER_PASSING_YARDS', 'NFL_GAME_PLAYER_RUSHING_YARDS', 'NFL_GAME_PLAYER_PASSING_ATTEMPTS', 'NFL_GAME_PLAYER_PASSING_TOUCHDOWNS', 'NFL_GAME_PLAYER_PASSING_COMPLETIONS', 'NFL_GAME_PLAYER_RUSHING_ATTEMPTS',
|
95 |
+
'NFL_GAME_PLAYER_RECEIVING_RECEPTIONS', 'NFL_GAME_PLAYER_RECEIVING_YARDS', 'NFL_GAME_PLAYER_RECEIVING_TOUCHDOWNS']
|
96 |
+
pick6_sim_vars = ['Rush + Rec Yards', 'Rush + Rec TDs', 'Interceptions Thrown', 'Passing Yards', 'Passing Attempts', 'Passing TDs', 'Completions', 'Rushing Yards', 'Receptions', 'Receiving Yards']
|
97 |
sim_all_hold = pd.DataFrame(columns=['Player', 'Team', 'Book', 'Prop Type', 'Prop', 'Mean_Outcome', 'Imp Over', 'Over%', 'Imp Under', 'Under%', 'Bet?', 'Edge'])
|
98 |
|
99 |
tab1, tab2, tab3, tab4, tab5, tab6 = st.tabs(["Game Betting Model", "QB Projections", "RB/WR/TE Projections", "Player Prop Trends", "Player Prop Simulations", "Stat Specific Simulations"])
|
|
|
379 |
|
380 |
with col1:
|
381 |
game_select_var = st.selectbox('Select prop source', options = ['Aggregate', 'Pick6'])
|
382 |
+
book_select_var = st.selectbox('Select book', options = ['ALL', 'BET_365', 'DRAFTKINGS', 'FANDUEL', 'MGM', 'UNIBET', 'WILLIAM_HILL'])
|
383 |
+
if book_select_var == 'ALL':
|
384 |
+
book_selections = ['BET_365', 'DRAFTKINGS', 'FANDUEL', 'MGM', 'UNIBET', 'WILLIAM_HILL']
|
385 |
+
else:
|
386 |
+
book_selections = [book_select_var]
|
387 |
if game_select_var == 'Aggregate':
|
388 |
prop_df = prop_frame[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type']]
|
389 |
elif game_select_var == 'Pick6':
|
|
|
392 |
st.download_button(
|
393 |
label="Download Prop Source",
|
394 |
data=convert_df_to_csv(prop_df),
|
395 |
+
file_name='NFL_prop_source.csv',
|
396 |
mime='text/csv',
|
397 |
key='prop_source',
|
398 |
)
|
399 |
+
if game_select_var == 'Aggregate':
|
400 |
+
prop_type_var = st.selectbox('Select prop category', options = ['All Props', 'NBA_GAME_PLAYER_POINTS', 'NBA_GAME_PLAYER_REBOUNDS', 'NBA_GAME_PLAYER_ASSISTS', 'NBA_GAME_PLAYER_POINTS_REBOUNDS_ASSISTS', 'NBA_GAME_PLAYER_POINTS_REBOUNDS', 'NBA_GAME_PLAYER_POINTS_ASSISTS', 'NBA_GAME_PLAYER_REBOUNDS_ASSISTS'])
|
401 |
+
elif game_select_var == 'Pick6':
|
402 |
+
prop_type_var = st.selectbox('Select prop category', options = ['All Props', 'Points', 'Rebounds', 'Assists', 'Points + Assists + Rebounds', 'Points + Assists', 'Points + Rebounds', 'Assists + Rebounds'])
|
403 |
|
404 |
if st.button('Simulate Prop Category'):
|
405 |
with col2:
|
406 |
|
407 |
with df_hold_container.container():
|
408 |
if prop_type_var == 'All Props':
|
409 |
+
if game_select_var == 'Aggregate':
|
410 |
+
sim_vars = ['NFL_GAME_PLAYER_PASSING_YARDS', 'NFL_GAME_PLAYER_RUSHING_YARDS', 'NFL_GAME_PLAYER_PASSING_ATTEMPTS', 'NFL_GAME_PLAYER_PASSING_TOUCHDOWNS', 'NFL_GAME_PLAYER_RUSHING_ATTEMPTS',
|
411 |
+
'NFL_GAME_PLAYER_RECEIVING_RECEPTIONS', 'NFL_GAME_PLAYER_RECEIVING_YARDS', 'NFL_GAME_PLAYER_RECEIVING_TOUCHDOWNS']
|
412 |
+
elif game_select_var == 'Pick6':
|
413 |
+
sim_vars = ['Rush + Rec Yards', 'Rush + Rec TDs', 'Interceptions Thrown', 'Passing Yards', 'Passing Attempts', 'Passing TDs', 'Rushing Attempts', 'Rushing Yards', 'Receptions', 'Receiving Yards', 'Receiving TDs']
|
414 |
+
for prop in sim_vars:
|
415 |
|
416 |
if game_select_var == 'Aggregate':
|
417 |
prop_df_raw = prop_frame[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type']]
|
|
|
425 |
prop_df = prop_df[~((prop_df['over_prop'] < 15) & (prop_df['prop_type'] == 'NFL_GAME_PLAYER_RUSHING_YARDS'))]
|
426 |
prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line']]
|
427 |
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
428 |
+
prop_df = prop_df.drop_duplicates(subset=['Player'])
|
429 |
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
|
|
430 |
prop_df['Over'] = 1 / prop_df['over_line']
|
431 |
prop_df['Under'] = 1 / prop_df['under_line']
|
432 |
df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
433 |
+
df = df.reset_index(drop=True)
|
434 |
+
|
435 |
prop_dict = dict(zip(df.Player, df.Prop))
|
436 |
book_dict = dict(zip(df.Player, df.book))
|
437 |
over_dict = dict(zip(df.Player, df.Over))
|
438 |
+
team_dict = dict(zip(df.Player, df.Team))
|
439 |
under_dict = dict(zip(df.Player, df.Under))
|
440 |
|
441 |
total_sims = 1000
|
442 |
|
443 |
df.replace("", 0, inplace=True)
|
444 |
|
445 |
+
if prop == "NFL_GAME_PLAYER_PASSING_YARDS" or prop == "Passing Yards":
|
446 |
df['Median'] = df['pass_yards']
|
447 |
+
elif prop == "NFL_GAME_PLAYER_RUSHING_YARDS" or prop == "Rushing Yards":
|
448 |
df['Median'] = df['rush_yards']
|
449 |
+
elif prop == "NFL_GAME_PLAYER_PASSING_ATTEMPTS" or prop == "Passing Attempts":
|
|
|
|
|
|
|
|
|
|
|
|
|
450 |
df['Median'] = df['pass_att']
|
451 |
+
elif prop == "NFL_GAME_PLAYER_PASSING_TOUCHDOWNS" or prop == "Passing TDs":
|
452 |
+
df['Median'] = df['pass_tds']
|
453 |
+
elif prop == "NFL_GAME_PLAYER_RUSHING_ATTEMPTS" or prop == "Rushing Attempts":
|
454 |
+
df['Median'] = df['rush_att']
|
455 |
+
elif prop == "NFL_GAME_PLAYER_RECEIVING_RECEPTIONS" or prop == "Receptions":
|
456 |
+
df['Median'] = df['rec']
|
457 |
+
elif prop == "NFL_GAME_PLAYER_RECEIVING_YARDS" or prop == "Receiving Yards":
|
458 |
+
df['Median'] = df['rec_yards']
|
459 |
+
elif prop == "NFL_GAME_PLAYER_RECEIVING_TOUCHDOWNS" or prop == "Receiving TDs":
|
460 |
+
df['Median'] = df['rec_tds']
|
461 |
+
elif prop == "Rush + Rec Yards":
|
462 |
+
df['Median'] = df['rush_yards'] + df['rec_yards']
|
463 |
+
elif prop == "Rush + Rec TDs":
|
464 |
+
df['Median'] = df['rush_tds'] + df['rec_tds']
|
465 |
|
466 |
+
flex_file = df.copy()
|
467 |
flex_file['Floor'] = flex_file['Median'] * .25
|
468 |
flex_file['Ceiling'] = flex_file['Median'] + (flex_file['Median'] * 1.75)
|
469 |
flex_file['STD'] = flex_file['Median'] / 4
|
470 |
flex_file['Prop'] = flex_file['Player'].map(prop_dict)
|
471 |
flex_file = flex_file[['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']]
|
472 |
|
473 |
+
hold_file = flex_file.copy()
|
474 |
+
overall_file = flex_file.copy()
|
475 |
+
prop_file = flex_file.copy()
|
476 |
|
477 |
overall_players = overall_file[['Player']]
|
478 |
|
|
|
521 |
sim_all_hold = pd.concat([sim_all_hold, leg_outcomes], ignore_index=True)
|
522 |
|
523 |
final_outcomes = sim_all_hold
|
524 |
+
st.write(f'finished {prop}')
|
525 |
|
526 |
elif prop_type_var != 'All Props':
|
|
|
|
|
527 |
if game_select_var == 'Aggregate':
|
528 |
prop_df_raw = prop_frame[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type']]
|
529 |
elif game_select_var == 'Pick6':
|
530 |
prop_df_raw = pick_frame[['Full_name', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type']]
|
531 |
prop_df_raw.rename(columns={"Full_name": "Player"}, inplace = True)
|
532 |
|
533 |
+
for books in book_selections:
|
534 |
prop_df = prop_df_raw.loc[prop_df_raw['book'] == books]
|
535 |
+
|
536 |
+
if prop_type_var == "NFL_GAME_PLAYER_PASSING_YARDS":
|
537 |
prop_df = prop_df.loc[prop_df['prop_type'] == 'NFL_GAME_PLAYER_PASSING_YARDS']
|
538 |
+
elif prop_type_var == "Passing Yards":
|
539 |
+
prop_df = prop_df.loc[prop_df['prop_type'] == 'Passing Yards']
|
540 |
+
elif prop_type_var == "NFL_GAME_PLAYER_RUSHING_YARDS":
|
|
|
|
|
|
|
|
|
|
|
541 |
prop_df = prop_df.loc[prop_df['prop_type'] == 'NFL_GAME_PLAYER_RUSHING_YARDS']
|
542 |
+
elif prop_type_var == "Rushing Yards":
|
543 |
+
prop_df = prop_df.loc[prop_df['prop_type'] == 'Rushing Yards']
|
544 |
+
elif prop_type_var == "NFL_GAME_PLAYER_PASSING_ATTEMPTS":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
545 |
prop_df = prop_df.loc[prop_df['prop_type'] == 'NFL_GAME_PLAYER_PASSING_ATTEMPTS']
|
546 |
+
elif prop_type_var == "Passing Attempts":
|
547 |
+
prop_df = prop_df.loc[prop_df['prop_type'] == 'Passing Attempts']
|
548 |
+
elif prop_type_var == "NFL_GAME_PLAYER_PASSING_TOUCHDOWNS":
|
549 |
+
prop_df = prop_df.loc[prop_df['prop_type'] == 'NFL_GAME_PLAYER_PASSING_TOUCHDOWNS']
|
550 |
+
elif prop_type_var == "Passing TDs":
|
551 |
+
prop_df = prop_df.loc[prop_df['prop_type'] == 'Passing TDs']
|
552 |
+
elif prop_type_var == "NFL_GAME_PLAYER_RUSHING_ATTEMPTS":
|
553 |
+
prop_df = prop_df.loc[prop_df['prop_type'] == 'NFL_GAME_PLAYER_RUSHING_ATTEMPTS']
|
554 |
+
elif prop_type_var == "Rushing Attempts":
|
555 |
+
prop_df = prop_df.loc[prop_df['prop_type'] == 'Rushing Attempts']
|
556 |
+
elif prop_type_var == "NFL_GAME_PLAYER_RECEIVING_RECEPTIONS":
|
557 |
+
prop_df = prop_df.loc[prop_df['prop_type'] == 'NFL_GAME_PLAYER_RECEIVING_RECEPTIONS']
|
558 |
+
elif prop_type_var == "Receptions":
|
559 |
+
prop_df = prop_df.loc[prop_df['prop_type'] == 'Receptions']
|
560 |
+
elif prop_type_var == "NFL_GAME_PLAYER_RECEIVING_YARDS":
|
561 |
+
prop_df = prop_df.loc[prop_df['prop_type'] == 'NFL_GAME_PLAYER_RECEIVING_YARDS']
|
562 |
+
elif prop_type_var == "Receiving Yards":
|
563 |
+
prop_df = prop_df.loc[prop_df['prop_type'] == 'Receiving Yards']
|
564 |
+
elif prop_type_var == "NFL_GAME_PLAYER_RECEIVING_TOUCHDOWNS":
|
565 |
+
prop_df = prop_df.loc[prop_df['prop_type'] == 'NFL_GAME_PLAYER_RECEIVING_TOUCHDOWNS']
|
566 |
+
elif prop_type_var == "Receiving TDs":
|
567 |
+
prop_df = prop_df.loc[prop_df['prop_type'] == 'Receiving TDs']
|
568 |
+
elif prop_type_var == "Rush + Rec Yards":
|
569 |
+
prop_df = prop_df.loc[prop_df['prop_type'] == 'Rush + Rec Yards']
|
570 |
+
elif prop_type_var == "Rush + Rec TDs":
|
571 |
+
prop_df = prop_df.loc[prop_df['prop_type'] == 'Rush + Rec TDs']
|
572 |
+
|
573 |
+
prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line']]
|
574 |
+
prop_df = prop_df.rename(columns={"over_prop": "Prop"})
|
575 |
+
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
576 |
+
prop_df = prop_df.drop_duplicates(subset=['Player'])
|
577 |
+
prop_df['Over'] = 1 / prop_df['over_line']
|
578 |
+
prop_df['Under'] = 1 / prop_df['under_line']
|
579 |
+
df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
580 |
+
df = df.reset_index(drop=True)
|
581 |
|
582 |
prop_dict = dict(zip(df.Player, df.Prop))
|
583 |
book_dict = dict(zip(df.Player, df.book))
|
584 |
over_dict = dict(zip(df.Player, df.Over))
|
585 |
+
team_dict = dict(zip(df.Player, df.Team))
|
586 |
under_dict = dict(zip(df.Player, df.Under))
|
587 |
|
588 |
total_sims = 1000
|
589 |
|
590 |
df.replace("", 0, inplace=True)
|
591 |
|
592 |
+
if prop_type_var == "NFL_GAME_PLAYER_PASSING_YARDS" or prop_type_var == "Passing Yards":
|
593 |
df['Median'] = df['pass_yards']
|
594 |
+
elif prop_type_var == "NFL_GAME_PLAYER_RUSHING_YARDS" or prop_type_var == "Rushing Yards":
|
595 |
df['Median'] = df['rush_yards']
|
596 |
+
elif prop_type_var == "NFL_GAME_PLAYER_PASSING_ATTEMPTS" or prop_type_var == "Passing Attempts":
|
|
|
|
|
|
|
|
|
|
|
|
|
597 |
df['Median'] = df['pass_att']
|
598 |
+
elif prop_type_var == "NFL_GAME_PLAYER_PASSING_TOUCHDOWNS" or prop_type_var == "Passing TDs":
|
599 |
+
df['Median'] = df['pass_tds']
|
600 |
+
elif prop_type_var == "NFL_GAME_PLAYER_RUSHING_ATTEMPTS" or prop_type_var == "Rushing Attempts":
|
601 |
+
df['Median'] = df['rush_att']
|
602 |
+
elif prop_type_var == "NFL_GAME_PLAYER_RECEIVING_RECEPTIONS" or prop_type_var == "Receptions":
|
603 |
+
df['Median'] = df['rec']
|
604 |
+
elif prop_type_var == "NFL_GAME_PLAYER_RECEIVING_YARDS" or prop_type_var == "Receiving Yards":
|
605 |
+
df['Median'] = df['rec_yards']
|
606 |
+
elif prop_type_var == "NFL_GAME_PLAYER_RECEIVING_TOUCHDOWNS" or prop_type_var == "Receiving TDs":
|
607 |
+
df['Median'] = df['rec_tds']
|
608 |
+
elif prop_type_var == "Rush + Rec Yards":
|
609 |
+
df['Median'] = df['rush_yards'] + df['rec_yards']
|
610 |
+
elif prop_type_var == "Rush + Rec TDs":
|
611 |
+
df['Median'] = df['rush_tds'] + df['rec_tds']
|
612 |
|
613 |
+
flex_file = df.copy()
|
614 |
flex_file['Floor'] = flex_file['Median'] * .25
|
615 |
flex_file['Ceiling'] = flex_file['Median'] + (flex_file['Median'] * 1.75)
|
616 |
flex_file['STD'] = flex_file['Median'] / 4
|
617 |
flex_file['Prop'] = flex_file['Player'].map(prop_dict)
|
618 |
flex_file = flex_file[['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']]
|
619 |
|
620 |
+
hold_file = flex_file.copy()
|
621 |
+
overall_file = flex_file.copy()
|
622 |
+
prop_file = flex_file.copy()
|
623 |
|
624 |
overall_players = overall_file[['Player']]
|
625 |
|
|
|
668 |
sim_all_hold = pd.concat([sim_all_hold, leg_outcomes], ignore_index=True)
|
669 |
|
670 |
final_outcomes = sim_all_hold
|
671 |
+
st.write(f'finished {prop_type_var}')
|
672 |
|
673 |
final_outcomes = final_outcomes.dropna()
|
674 |
+
if game_select_var == 'Pick6':
|
675 |
+
final_outcomes = final_outcomes.drop_duplicates(subset=['Player', 'Prop Type'])
|
676 |
final_outcomes = final_outcomes.sort_values(by='Edge', ascending=False)
|
677 |
|
678 |
with df_hold_container:
|