Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -396,6 +396,7 @@ with tab6:
|
|
396 |
df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
397 |
|
398 |
prop_dict = dict(zip(df.Player, df.Prop))
|
|
|
399 |
over_dict = dict(zip(df.Player, df.Over))
|
400 |
under_dict = dict(zip(df.Player, df.Under))
|
401 |
|
@@ -453,6 +454,7 @@ with tab6:
|
|
453 |
players_only['Imp Under'] = players_only['Player'].map(under_dict)
|
454 |
players_only['Under%'] = players_only[["Under", "Imp Under"]].mean(axis=1)
|
455 |
players_only['Prop'] = players_only['Player'].map(prop_dict)
|
|
|
456 |
players_only['Prop_avg'] = players_only['Prop'].mean() / 100
|
457 |
players_only['prop_threshold'] = .10
|
458 |
players_only = players_only.loc[players_only['Mean_Outcome'] > 0]
|
@@ -467,7 +469,7 @@ with tab6:
|
|
467 |
players_only['Player'] = hold_file[['Player']]
|
468 |
players_only['Team'] = players_only['Player'].map(team_dict)
|
469 |
|
470 |
-
leg_outcomes = players_only[['Player', 'Team', '
|
471 |
sim_all_hold = pd.concat([sim_all_hold, leg_outcomes], ignore_index=True)
|
472 |
|
473 |
final_outcomes = sim_all_hold
|
@@ -552,6 +554,7 @@ with tab6:
|
|
552 |
df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
553 |
|
554 |
prop_dict = dict(zip(df.Player, df.Prop))
|
|
|
555 |
over_dict = dict(zip(df.Player, df.Over))
|
556 |
under_dict = dict(zip(df.Player, df.Under))
|
557 |
|
@@ -591,7 +594,7 @@ with tab6:
|
|
591 |
for x in range(0,total_sims):
|
592 |
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
|
593 |
|
594 |
-
overall_file=overall_file.drop(['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
595 |
|
596 |
players_only = hold_file[['Player']]
|
597 |
|
@@ -608,6 +611,7 @@ with tab6:
|
|
608 |
players_only['Under'] = prop_check[prop_check < 0].count(axis=1)/float(total_sims)
|
609 |
players_only['Imp Under'] = players_only['Player'].map(under_dict)
|
610 |
players_only['Under%'] = players_only[["Under", "Imp Under"]].mean(axis=1)
|
|
|
611 |
players_only['Prop'] = players_only['Player'].map(prop_dict)
|
612 |
players_only['Prop_avg'] = players_only['Prop'].mean() / 100
|
613 |
players_only['prop_threshold'] = .10
|
@@ -622,7 +626,7 @@ with tab6:
|
|
622 |
players_only['Player'] = hold_file[['Player']]
|
623 |
players_only['Team'] = players_only['Player'].map(team_dict)
|
624 |
|
625 |
-
final_outcomes = players_only[['Player', 'Team', '
|
626 |
|
627 |
final_outcomes = final_outcomes.sort_values(by='Edge', ascending=False)
|
628 |
|
|
|
396 |
df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
397 |
|
398 |
prop_dict = dict(zip(df.Player, df.Prop))
|
399 |
+
book_dict = dict(zip(df.Player, df.book))
|
400 |
over_dict = dict(zip(df.Player, df.Over))
|
401 |
under_dict = dict(zip(df.Player, df.Under))
|
402 |
|
|
|
454 |
players_only['Imp Under'] = players_only['Player'].map(under_dict)
|
455 |
players_only['Under%'] = players_only[["Under", "Imp Under"]].mean(axis=1)
|
456 |
players_only['Prop'] = players_only['Player'].map(prop_dict)
|
457 |
+
players_only['Book'] = players_only['Player'].map(book_dict)
|
458 |
players_only['Prop_avg'] = players_only['Prop'].mean() / 100
|
459 |
players_only['prop_threshold'] = .10
|
460 |
players_only = players_only.loc[players_only['Mean_Outcome'] > 0]
|
|
|
469 |
players_only['Player'] = hold_file[['Player']]
|
470 |
players_only['Team'] = players_only['Player'].map(team_dict)
|
471 |
|
472 |
+
leg_outcomes = players_only[['Player', 'Team', 'Book', 'Prop type', 'Prop', 'Mean_Outcome', 'Imp Over', 'Over%', 'Imp Under', 'Under%', 'Bet?', 'Edge']]
|
473 |
sim_all_hold = pd.concat([sim_all_hold, leg_outcomes], ignore_index=True)
|
474 |
|
475 |
final_outcomes = sim_all_hold
|
|
|
554 |
df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
555 |
|
556 |
prop_dict = dict(zip(df.Player, df.Prop))
|
557 |
+
book_dict = dict(zip(df.Player, df.book))
|
558 |
over_dict = dict(zip(df.Player, df.Over))
|
559 |
under_dict = dict(zip(df.Player, df.Under))
|
560 |
|
|
|
594 |
for x in range(0,total_sims):
|
595 |
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
|
596 |
|
597 |
+
overall_file=overall_file.drop(['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
598 |
|
599 |
players_only = hold_file[['Player']]
|
600 |
|
|
|
611 |
players_only['Under'] = prop_check[prop_check < 0].count(axis=1)/float(total_sims)
|
612 |
players_only['Imp Under'] = players_only['Player'].map(under_dict)
|
613 |
players_only['Under%'] = players_only[["Under", "Imp Under"]].mean(axis=1)
|
614 |
+
players_only['Book'] = players_only['Player'].map(book_dict)
|
615 |
players_only['Prop'] = players_only['Player'].map(prop_dict)
|
616 |
players_only['Prop_avg'] = players_only['Prop'].mean() / 100
|
617 |
players_only['prop_threshold'] = .10
|
|
|
626 |
players_only['Player'] = hold_file[['Player']]
|
627 |
players_only['Team'] = players_only['Player'].map(team_dict)
|
628 |
|
629 |
+
final_outcomes = players_only[['Player', 'Team', 'Book', 'Prop', 'Mean_Outcome', 'Imp Over', 'Over%', 'Imp Under', 'Under%', 'Bet?', 'Edge']]
|
630 |
|
631 |
final_outcomes = final_outcomes.sort_values(by='Edge', ascending=False)
|
632 |
|