Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -385,16 +385,179 @@ with tab6:
|
|
385 |
elif game_select_var == 'Pick6':
|
386 |
prop_df = pick_frame[['Full_name', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type']]
|
387 |
prop_df.rename(columns={"Full_name": "Player"}, inplace = True)
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
398 |
|
399 |
prop_dict = dict(zip(df.Player, df.Prop))
|
400 |
book_dict = dict(zip(df.Player, df.book))
|
@@ -404,17 +567,17 @@ with tab6:
|
|
404 |
total_sims = 5000
|
405 |
|
406 |
df.replace("", 0, inplace=True)
|
407 |
-
|
408 |
-
if
|
409 |
-
df['Median'] = df['
|
410 |
-
elif
|
411 |
-
df['Median'] = df['
|
412 |
-
elif
|
413 |
-
df['Median'] = df['
|
414 |
-
elif
|
415 |
-
df['Median'] = df['
|
416 |
-
elif
|
417 |
-
df['Median'] = df['
|
418 |
|
419 |
flex_file = df
|
420 |
flex_file['Floor'] = flex_file['Median'] * .25
|
@@ -437,7 +600,7 @@ with tab6:
|
|
437 |
for x in range(0,total_sims):
|
438 |
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
|
439 |
|
440 |
-
overall_file=overall_file.drop(['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
441 |
|
442 |
players_only = hold_file[['Player']]
|
443 |
|
@@ -454,8 +617,8 @@ with tab6:
|
|
454 |
players_only['Under'] = prop_check[prop_check < 0].count(axis=1)/float(total_sims)
|
455 |
players_only['Imp Under'] = players_only['Player'].map(under_dict)
|
456 |
players_only['Under%'] = players_only[["Under", "Imp Under"]].mean(axis=1)
|
457 |
-
players_only['Prop'] = players_only['Player'].map(prop_dict)
|
458 |
players_only['Book'] = players_only['Player'].map(book_dict)
|
|
|
459 |
players_only['Prop_avg'] = players_only['Prop'].mean() / 100
|
460 |
players_only['prop_threshold'] = .10
|
461 |
players_only = players_only.loc[players_only['Mean_Outcome'] > 0]
|
@@ -465,170 +628,14 @@ with tab6:
|
|
465 |
players_only['Bet_suggest'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], "Over" , "Under")
|
466 |
players_only['Bet?'] = np.where(players_only['Bet_check'] >= players_only['prop_threshold'], players_only['Bet_suggest'], "No Bet")
|
467 |
players_only['Edge'] = players_only['Bet_check']
|
468 |
-
players_only['Prop type'] = prop
|
469 |
|
470 |
players_only['Player'] = hold_file[['Player']]
|
471 |
players_only['Team'] = players_only['Player'].map(team_dict)
|
472 |
|
473 |
-
leg_outcomes = players_only[['Player', 'Team', 'Book', 'Prop
|
474 |
sim_all_hold = pd.concat([sim_all_hold, leg_outcomes], ignore_index=True)
|
475 |
|
476 |
final_outcomes = sim_all_hold
|
477 |
-
|
478 |
-
elif prop_type_var != 'All Props':
|
479 |
-
|
480 |
-
if game_select_var == 'Aggregate':
|
481 |
-
prop_df = prop_frame[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type']]
|
482 |
-
elif game_select_var == 'Pick6':
|
483 |
-
prop_df = pick_frame[['Full_name', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type']]
|
484 |
-
prop_df.rename(columns={"Full_name": "Player"}, inplace = True)
|
485 |
-
|
486 |
-
if prop_type_var == "pass_yards":
|
487 |
-
prop_df = prop_df.loc[prop_df['prop_type'] == 'NFL_GAME_PLAYER_PASSING_YARDS']
|
488 |
-
prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line']]
|
489 |
-
prop_df = prop_df[prop_df['book'].isin(['FANDUEL', 'DRAFTKINGS', 'BET365', 'CONSENSUS'])]
|
490 |
-
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
491 |
-
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
492 |
-
st.table(prop_df)
|
493 |
-
prop_df['Over'] = 1 / prop_df['over_line']
|
494 |
-
prop_df['Under'] = 1 / prop_df['under_line']
|
495 |
-
df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
496 |
-
elif prop_type_var == "rush_yards":
|
497 |
-
prop_df = prop_df.loc[prop_df['prop_type'] == 'NFL_GAME_PLAYER_RUSHING_YARDS']
|
498 |
-
prop_df = prop_df[~((prop_df['over_prop'] < 10) & (prop_df['prop_type'] == 'NFL_GAME_PLAYER_RUSHING_YARDS'))]
|
499 |
-
prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line']]
|
500 |
-
prop_df = prop_df[prop_df['book'].isin(['FANDUEL', 'DRAFTKINGS', 'BET365', 'CONSENSUS'])]
|
501 |
-
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
502 |
-
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
503 |
-
st.table(prop_df)
|
504 |
-
prop_df['Over'] = 1 / prop_df['over_line']
|
505 |
-
prop_df['Under'] = 1 / prop_df['under_line']
|
506 |
-
df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
507 |
-
elif prop_type_var == "rec_yards":
|
508 |
-
prop_df = prop_df.loc[prop_df['prop_type'] == 'NFL_GAME_PLAYER_RECEIVING_YARDS']
|
509 |
-
prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line']]
|
510 |
-
prop_df = prop_df[prop_df['book'].isin(['FANDUEL', 'DRAFTKINGS', 'BET365', 'CONSENSUS'])]
|
511 |
-
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
512 |
-
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
513 |
-
st.table(prop_df)
|
514 |
-
prop_df['Over'] = 1 / prop_df['over_line']
|
515 |
-
prop_df['Under'] = 1 / prop_df['under_line']
|
516 |
-
df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
517 |
-
elif prop_type_var == "receptions":
|
518 |
-
prop_df = prop_df.loc[prop_df['prop_type'] == 'NFL_GAME_PLAYER_RECEIVING_RECEPTIONS']
|
519 |
-
prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line']]
|
520 |
-
prop_df = prop_df[prop_df['book'].isin(['FANDUEL', 'DRAFTKINGS', 'BET365', 'CONSENSUS'])]
|
521 |
-
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
522 |
-
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
523 |
-
st.table(prop_df)
|
524 |
-
prop_df['Over'] = 1 / prop_df['over_line']
|
525 |
-
prop_df['Under'] = 1 / prop_df['under_line']
|
526 |
-
df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
527 |
-
elif prop_type_var == "rush_attempts":
|
528 |
-
prop_df = prop_df.loc[prop_df['prop_type'] == 'NFL_GAME_PLAYER_RUSHING_ATTEMPTS']
|
529 |
-
prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line']]
|
530 |
-
prop_df = prop_df[prop_df['book'].isin(['FANDUEL', 'DRAFTKINGS', 'BET365', 'CONSENSUS'])]
|
531 |
-
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
532 |
-
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
533 |
-
st.table(prop_df)
|
534 |
-
prop_df['Over'] = 1 / prop_df['over_line']
|
535 |
-
prop_df['Under'] = 1 / prop_df['under_line']
|
536 |
-
df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
537 |
-
elif prop_type_var == "pass_attempts":
|
538 |
-
prop_df = prop_df.loc[prop_df['prop_type'] == 'NFL_GAME_PLAYER_PASSING_ATTEMPTS']
|
539 |
-
prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line']]
|
540 |
-
prop_df = prop_df[prop_df['book'].isin(['FANDUEL', 'DRAFTKINGS', 'BET365', 'CONSENSUS'])]
|
541 |
-
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
542 |
-
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
543 |
-
st.table(prop_df)
|
544 |
-
prop_df['Over'] = 1 / prop_df['over_line']
|
545 |
-
prop_df['Under'] = 1 / prop_df['under_line']
|
546 |
-
df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
547 |
-
elif prop_type_var == "pass_completions":
|
548 |
-
prop_df = prop_df.loc[prop_df['prop_type'] == 'NFL_GAME_PLAYER_PASSING_COMPLETIONS']
|
549 |
-
prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line']]
|
550 |
-
prop_df = prop_df[prop_df['book'].isin(['FANDUEL', 'DRAFTKINGS', 'BET365', 'CONSENSUS'])]
|
551 |
-
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
552 |
-
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
553 |
-
st.table(prop_df)
|
554 |
-
prop_df['Over'] = 1 / prop_df['over_line']
|
555 |
-
prop_df['Under'] = 1 / prop_df['under_line']
|
556 |
-
df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
557 |
-
|
558 |
-
prop_dict = dict(zip(df.Player, df.Prop))
|
559 |
-
book_dict = dict(zip(df.Player, df.book))
|
560 |
-
over_dict = dict(zip(df.Player, df.Over))
|
561 |
-
under_dict = dict(zip(df.Player, df.Under))
|
562 |
-
|
563 |
-
total_sims = 5000
|
564 |
-
|
565 |
-
df.replace("", 0, inplace=True)
|
566 |
-
|
567 |
-
if prop_type_var == "pass_yards":
|
568 |
-
df['Median'] = df['pass_yards']
|
569 |
-
elif prop_type_var == "rush_yards":
|
570 |
-
df['Median'] = df['rush_yards']
|
571 |
-
elif prop_type_var == "rec_yards":
|
572 |
-
df['Median'] = df['rec_yards']
|
573 |
-
elif prop_type_var == "receptions":
|
574 |
-
df['Median'] = df['rec']
|
575 |
-
elif prop_type_var == "rush_attempts":
|
576 |
-
df['Median'] = df['rush_att']
|
577 |
-
|
578 |
-
flex_file = df
|
579 |
-
flex_file['Floor'] = flex_file['Median'] * .25
|
580 |
-
flex_file['Ceiling'] = flex_file['Median'] + (flex_file['Median'] * 1.75)
|
581 |
-
flex_file['STD'] = flex_file['Median'] / 4
|
582 |
-
flex_file['Prop'] = flex_file['Player'].map(prop_dict)
|
583 |
-
flex_file = flex_file[['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']]
|
584 |
-
|
585 |
-
hold_file = flex_file
|
586 |
-
overall_file = flex_file
|
587 |
-
prop_file = flex_file
|
588 |
-
|
589 |
-
overall_players = overall_file[['Player']]
|
590 |
-
|
591 |
-
for x in range(0,total_sims):
|
592 |
-
prop_file[x] = prop_file['Prop']
|
593 |
-
|
594 |
-
prop_file = prop_file.drop(['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
595 |
-
|
596 |
-
for x in range(0,total_sims):
|
597 |
-
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
|
598 |
-
|
599 |
-
overall_file=overall_file.drop(['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
600 |
-
|
601 |
-
players_only = hold_file[['Player']]
|
602 |
-
|
603 |
-
player_outcomes = pd.merge(players_only, overall_file, left_index=True, right_index=True)
|
604 |
-
|
605 |
-
prop_check = (overall_file - prop_file)
|
606 |
-
|
607 |
-
players_only['Mean_Outcome'] = overall_file.mean(axis=1)
|
608 |
-
players_only['10%'] = overall_file.quantile(0.1, axis=1)
|
609 |
-
players_only['90%'] = overall_file.quantile(0.9, axis=1)
|
610 |
-
players_only['Over'] = prop_check[prop_check > 0].count(axis=1)/float(total_sims)
|
611 |
-
players_only['Imp Over'] = players_only['Player'].map(over_dict)
|
612 |
-
players_only['Over%'] = players_only[["Over", "Imp Over"]].mean(axis=1)
|
613 |
-
players_only['Under'] = prop_check[prop_check < 0].count(axis=1)/float(total_sims)
|
614 |
-
players_only['Imp Under'] = players_only['Player'].map(under_dict)
|
615 |
-
players_only['Under%'] = players_only[["Under", "Imp Under"]].mean(axis=1)
|
616 |
-
players_only['Book'] = players_only['Player'].map(book_dict)
|
617 |
-
players_only['Prop'] = players_only['Player'].map(prop_dict)
|
618 |
-
players_only['Prop_avg'] = players_only['Prop'].mean() / 100
|
619 |
-
players_only['prop_threshold'] = .10
|
620 |
-
players_only = players_only.loc[players_only['Mean_Outcome'] > 0]
|
621 |
-
players_only['Over_diff'] = players_only['Over%'] - players_only['Imp Over']
|
622 |
-
players_only['Under_diff'] = players_only['Under%'] - players_only['Imp Under']
|
623 |
-
players_only['Bet_check'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], players_only['Over_diff'] , players_only['Under_diff'])
|
624 |
-
players_only['Bet_suggest'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], "Over" , "Under")
|
625 |
-
players_only['Bet?'] = np.where(players_only['Bet_check'] >= players_only['prop_threshold'], players_only['Bet_suggest'], "No Bet")
|
626 |
-
players_only['Edge'] = players_only['Bet_check']
|
627 |
-
|
628 |
-
players_only['Player'] = hold_file[['Player']]
|
629 |
-
players_only['Team'] = players_only['Player'].map(team_dict)
|
630 |
-
|
631 |
-
final_outcomes = players_only[['Player', 'Team', 'Book', 'Prop', 'Mean_Outcome', 'Imp Over', 'Over%', 'Imp Under', 'Under%', 'Bet?', 'Edge']]
|
632 |
|
633 |
final_outcomes = final_outcomes.dropna()
|
634 |
final_outcomes = final_outcomes.sort_values(by='Edge', ascending=False)
|
|
|
385 |
elif game_select_var == 'Pick6':
|
386 |
prop_df = pick_frame[['Full_name', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type']]
|
387 |
prop_df.rename(columns={"Full_name": "Player"}, inplace = True)
|
388 |
+
|
389 |
+
for books in ['FANDUEL', 'DRAFTKINGS', 'BET365', 'CONSENSUS']:
|
390 |
+
prop_df = prop_df.loc[prop_df['prop_type'] == prop]
|
391 |
+
prop_df = prop_df[~((prop_df['over_prop'] < 10) & (prop_df['prop_type'] == 'NFL_GAME_PLAYER_RUSHING_YARDS'))]
|
392 |
+
prop_df = prop_df[prop_df['book'].isin(['FANDUEL', 'DRAFTKINGS', 'BET365', 'CONSENSUS'])]
|
393 |
+
prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line']]
|
394 |
+
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
395 |
+
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
396 |
+
st.table(prop_df)
|
397 |
+
prop_df['Over'] = 1 / prop_df['over_line']
|
398 |
+
prop_df['Under'] = 1 / prop_df['under_line']
|
399 |
+
df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
400 |
+
|
401 |
+
prop_dict = dict(zip(df.Player, df.Prop))
|
402 |
+
book_dict = dict(zip(df.Player, df.book))
|
403 |
+
over_dict = dict(zip(df.Player, df.Over))
|
404 |
+
under_dict = dict(zip(df.Player, df.Under))
|
405 |
+
|
406 |
+
total_sims = 5000
|
407 |
+
|
408 |
+
df.replace("", 0, inplace=True)
|
409 |
+
|
410 |
+
if prop == "pass_yards":
|
411 |
+
df['Median'] = df['NFL_GAME_PLAYER_PASSING_YARDS']
|
412 |
+
elif prop == "rush_yards":
|
413 |
+
df['Median'] = df['NFL_GAME_PLAYER_RUSHING_YARDS']
|
414 |
+
elif prop == "rec_yards":
|
415 |
+
df['Median'] = df['NFL_GAME_PLAYER_RECEIVING_YARDS']
|
416 |
+
elif prop == "receptions":
|
417 |
+
df['Median'] = df['NFL_GAME_PLAYER_RECEIVING_RECEPTIONS']
|
418 |
+
elif prop == "rush_attempts":
|
419 |
+
df['Median'] = df['NFL_GAME_PLAYER_RUSHING_ATTEMPTS']
|
420 |
+
|
421 |
+
flex_file = df
|
422 |
+
flex_file['Floor'] = flex_file['Median'] * .25
|
423 |
+
flex_file['Ceiling'] = flex_file['Median'] + (flex_file['Median'] * 1.75)
|
424 |
+
flex_file['STD'] = flex_file['Median'] / 4
|
425 |
+
flex_file['Prop'] = flex_file['Player'].map(prop_dict)
|
426 |
+
flex_file = flex_file[['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']]
|
427 |
+
|
428 |
+
hold_file = flex_file
|
429 |
+
overall_file = flex_file
|
430 |
+
prop_file = flex_file
|
431 |
+
|
432 |
+
overall_players = overall_file[['Player']]
|
433 |
+
|
434 |
+
for x in range(0,total_sims):
|
435 |
+
prop_file[x] = prop_file['Prop']
|
436 |
+
|
437 |
+
prop_file = prop_file.drop(['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
438 |
+
|
439 |
+
for x in range(0,total_sims):
|
440 |
+
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
|
441 |
+
|
442 |
+
overall_file=overall_file.drop(['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
443 |
+
|
444 |
+
players_only = hold_file[['Player']]
|
445 |
+
|
446 |
+
player_outcomes = pd.merge(players_only, overall_file, left_index=True, right_index=True)
|
447 |
+
|
448 |
+
prop_check = (overall_file - prop_file)
|
449 |
+
|
450 |
+
players_only['Mean_Outcome'] = overall_file.mean(axis=1)
|
451 |
+
players_only['10%'] = overall_file.quantile(0.1, axis=1)
|
452 |
+
players_only['90%'] = overall_file.quantile(0.9, axis=1)
|
453 |
+
players_only['Over'] = prop_check[prop_check > 0].count(axis=1)/float(total_sims)
|
454 |
+
players_only['Imp Over'] = players_only['Player'].map(over_dict)
|
455 |
+
players_only['Over%'] = players_only[["Over", "Imp Over"]].mean(axis=1)
|
456 |
+
players_only['Under'] = prop_check[prop_check < 0].count(axis=1)/float(total_sims)
|
457 |
+
players_only['Imp Under'] = players_only['Player'].map(under_dict)
|
458 |
+
players_only['Under%'] = players_only[["Under", "Imp Under"]].mean(axis=1)
|
459 |
+
players_only['Prop'] = players_only['Player'].map(prop_dict)
|
460 |
+
players_only['Book'] = players_only['Player'].map(book_dict)
|
461 |
+
players_only['Prop_avg'] = players_only['Prop'].mean() / 100
|
462 |
+
players_only['prop_threshold'] = .10
|
463 |
+
players_only = players_only.loc[players_only['Mean_Outcome'] > 0]
|
464 |
+
players_only['Over_diff'] = players_only['Over%'] - players_only['Imp Over']
|
465 |
+
players_only['Under_diff'] = players_only['Under%'] - players_only['Imp Under']
|
466 |
+
players_only['Bet_check'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], players_only['Over_diff'] , players_only['Under_diff'])
|
467 |
+
players_only['Bet_suggest'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], "Over" , "Under")
|
468 |
+
players_only['Bet?'] = np.where(players_only['Bet_check'] >= players_only['prop_threshold'], players_only['Bet_suggest'], "No Bet")
|
469 |
+
players_only['Edge'] = players_only['Bet_check']
|
470 |
+
players_only['Prop type'] = prop
|
471 |
+
|
472 |
+
players_only['Player'] = hold_file[['Player']]
|
473 |
+
players_only['Team'] = players_only['Player'].map(team_dict)
|
474 |
+
|
475 |
+
leg_outcomes = players_only[['Player', 'Team', 'Book', 'Prop type', 'Prop', 'Mean_Outcome', 'Imp Over', 'Over%', 'Imp Under', 'Under%', 'Bet?', 'Edge']]
|
476 |
+
sim_all_hold = pd.concat([sim_all_hold, leg_outcomes], ignore_index=True)
|
477 |
+
|
478 |
+
final_outcomes = sim_all_hold
|
479 |
+
|
480 |
+
elif prop_type_var != 'All Props':
|
481 |
+
|
482 |
+
|
483 |
+
if game_select_var == 'Aggregate':
|
484 |
+
prop_df = prop_frame[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type']]
|
485 |
+
elif game_select_var == 'Pick6':
|
486 |
+
prop_df = pick_frame[['Full_name', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type']]
|
487 |
+
prop_df.rename(columns={"Full_name": "Player"}, inplace = True)
|
488 |
+
|
489 |
+
for books in ['FANDUEL', 'DRAFTKINGS', 'BET365', 'CONSENSUS']:
|
490 |
+
if prop_type_var == "pass_yards":
|
491 |
+
prop_df = prop_df.loc[prop_df['prop_type'] == 'NFL_GAME_PLAYER_PASSING_YARDS']
|
492 |
+
prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line']]
|
493 |
+
prop_df = prop_df['book'] == books
|
494 |
+
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
495 |
+
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
496 |
+
st.table(prop_df)
|
497 |
+
prop_df['Over'] = 1 / prop_df['over_line']
|
498 |
+
prop_df['Under'] = 1 / prop_df['under_line']
|
499 |
+
df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
500 |
+
elif prop_type_var == "rush_yards":
|
501 |
+
prop_df = prop_df.loc[prop_df['prop_type'] == 'NFL_GAME_PLAYER_RUSHING_YARDS']
|
502 |
+
prop_df = prop_df[~((prop_df['over_prop'] < 10) & (prop_df['prop_type'] == 'NFL_GAME_PLAYER_RUSHING_YARDS'))]
|
503 |
+
prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line']]
|
504 |
+
prop_df = prop_df['book'] == books
|
505 |
+
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
506 |
+
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
507 |
+
st.table(prop_df)
|
508 |
+
prop_df['Over'] = 1 / prop_df['over_line']
|
509 |
+
prop_df['Under'] = 1 / prop_df['under_line']
|
510 |
+
df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
511 |
+
elif prop_type_var == "rec_yards":
|
512 |
+
prop_df = prop_df.loc[prop_df['prop_type'] == 'NFL_GAME_PLAYER_RECEIVING_YARDS']
|
513 |
+
prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line']]
|
514 |
+
prop_df = prop_df['book'] == books
|
515 |
+
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
516 |
+
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
517 |
+
st.table(prop_df)
|
518 |
+
prop_df['Over'] = 1 / prop_df['over_line']
|
519 |
+
prop_df['Under'] = 1 / prop_df['under_line']
|
520 |
+
df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
521 |
+
elif prop_type_var == "receptions":
|
522 |
+
prop_df = prop_df.loc[prop_df['prop_type'] == 'NFL_GAME_PLAYER_RECEIVING_RECEPTIONS']
|
523 |
+
prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line']]
|
524 |
+
prop_df = prop_df['book'] == books
|
525 |
+
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
526 |
+
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
527 |
+
st.table(prop_df)
|
528 |
+
prop_df['Over'] = 1 / prop_df['over_line']
|
529 |
+
prop_df['Under'] = 1 / prop_df['under_line']
|
530 |
+
df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
531 |
+
elif prop_type_var == "rush_attempts":
|
532 |
+
prop_df = prop_df.loc[prop_df['prop_type'] == 'NFL_GAME_PLAYER_RUSHING_ATTEMPTS']
|
533 |
+
prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line']]
|
534 |
+
prop_df = prop_df['book'] == books
|
535 |
+
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
536 |
+
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
537 |
+
st.table(prop_df)
|
538 |
+
prop_df['Over'] = 1 / prop_df['over_line']
|
539 |
+
prop_df['Under'] = 1 / prop_df['under_line']
|
540 |
+
df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
541 |
+
elif prop_type_var == "pass_attempts":
|
542 |
+
prop_df = prop_df.loc[prop_df['prop_type'] == 'NFL_GAME_PLAYER_PASSING_ATTEMPTS']
|
543 |
+
prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line']]
|
544 |
+
prop_df = prop_df['book'] == books
|
545 |
+
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
546 |
+
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
547 |
+
st.table(prop_df)
|
548 |
+
prop_df['Over'] = 1 / prop_df['over_line']
|
549 |
+
prop_df['Under'] = 1 / prop_df['under_line']
|
550 |
+
df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
551 |
+
elif prop_type_var == "pass_completions":
|
552 |
+
prop_df = prop_df.loc[prop_df['prop_type'] == 'NFL_GAME_PLAYER_PASSING_COMPLETIONS']
|
553 |
+
prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line']]
|
554 |
+
prop_df = prop_df['book'] == books
|
555 |
+
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
556 |
+
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
557 |
+
st.table(prop_df)
|
558 |
+
prop_df['Over'] = 1 / prop_df['over_line']
|
559 |
+
prop_df['Under'] = 1 / prop_df['under_line']
|
560 |
+
df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
561 |
|
562 |
prop_dict = dict(zip(df.Player, df.Prop))
|
563 |
book_dict = dict(zip(df.Player, df.book))
|
|
|
567 |
total_sims = 5000
|
568 |
|
569 |
df.replace("", 0, inplace=True)
|
570 |
+
|
571 |
+
if prop_type_var == "pass_yards":
|
572 |
+
df['Median'] = df['pass_yards']
|
573 |
+
elif prop_type_var == "rush_yards":
|
574 |
+
df['Median'] = df['rush_yards']
|
575 |
+
elif prop_type_var == "rec_yards":
|
576 |
+
df['Median'] = df['rec_yards']
|
577 |
+
elif prop_type_var == "receptions":
|
578 |
+
df['Median'] = df['rec']
|
579 |
+
elif prop_type_var == "rush_attempts":
|
580 |
+
df['Median'] = df['rush_att']
|
581 |
|
582 |
flex_file = df
|
583 |
flex_file['Floor'] = flex_file['Median'] * .25
|
|
|
600 |
for x in range(0,total_sims):
|
601 |
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
|
602 |
|
603 |
+
overall_file=overall_file.drop(['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
604 |
|
605 |
players_only = hold_file[['Player']]
|
606 |
|
|
|
617 |
players_only['Under'] = prop_check[prop_check < 0].count(axis=1)/float(total_sims)
|
618 |
players_only['Imp Under'] = players_only['Player'].map(under_dict)
|
619 |
players_only['Under%'] = players_only[["Under", "Imp Under"]].mean(axis=1)
|
|
|
620 |
players_only['Book'] = players_only['Player'].map(book_dict)
|
621 |
+
players_only['Prop'] = players_only['Player'].map(prop_dict)
|
622 |
players_only['Prop_avg'] = players_only['Prop'].mean() / 100
|
623 |
players_only['prop_threshold'] = .10
|
624 |
players_only = players_only.loc[players_only['Mean_Outcome'] > 0]
|
|
|
628 |
players_only['Bet_suggest'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], "Over" , "Under")
|
629 |
players_only['Bet?'] = np.where(players_only['Bet_check'] >= players_only['prop_threshold'], players_only['Bet_suggest'], "No Bet")
|
630 |
players_only['Edge'] = players_only['Bet_check']
|
|
|
631 |
|
632 |
players_only['Player'] = hold_file[['Player']]
|
633 |
players_only['Team'] = players_only['Player'].map(team_dict)
|
634 |
|
635 |
+
leg_outcomes = players_only[['Player', 'Team', 'Book', 'Prop', 'Mean_Outcome', 'Imp Over', 'Over%', 'Imp Under', 'Under%', 'Bet?', 'Edge']]
|
636 |
sim_all_hold = pd.concat([sim_all_hold, leg_outcomes], ignore_index=True)
|
637 |
|
638 |
final_outcomes = sim_all_hold
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
639 |
|
640 |
final_outcomes = final_outcomes.dropna()
|
641 |
final_outcomes = final_outcomes.sort_values(by='Edge', ascending=False)
|