Multichem commited on
Commit
9db2e5e
·
verified ·
1 Parent(s): c4c5946

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +24 -30
app.py CHANGED
@@ -135,7 +135,7 @@ with tab2:
135
  data=convert_df_to_csv(qb_stats_disp),
136
  file_name='NFL_qb_stats_export.csv',
137
  mime='text/csv',
138
- key='pitcher_prop_export',
139
  )
140
 
141
  with tab3:
@@ -161,7 +161,7 @@ with tab3:
161
  data=convert_df_to_csv(non_qb_stats_disp),
162
  file_name='NFL_nonqb_stats_export.csv',
163
  mime='text/csv',
164
- key='hitter_prop_export',
165
  )
166
 
167
  with tab4:
@@ -251,8 +251,6 @@ with tab5:
251
  player_var = df.loc[df['Player'] == player_check]
252
  player_var = player_var.reset_index()
253
 
254
- ['NFL_GAME_PLAYER_PASSING_YARDS', 'NFL_GAME_PLAYER_RUSHING_YARDS', 'NFL_GAME_PLAYER_RECEIVING_YARDS', 'NFL_GAME_PLAYER_RECEIVING_RECEPTIONS', 'NFL_GAME_PLAYER_RUSHING_ATTEMPTS', 'NFL_GAME_PLAYER_PASSING_ATTEMPTS']
255
-
256
  if prop_type_var == 'Pass Yards':
257
  df['Median'] = df['pass_yards']
258
  elif prop_type_var == 'Pass TDs':
@@ -276,7 +274,7 @@ with tab5:
276
 
277
  flex_file = df
278
  flex_file['Floor'] = flex_file['Median'] * .20
279
- flex_file['Ceiling'] = flex_file['Median'] + (flex_file['Median'] * .80)
280
  flex_file['STD'] = flex_file['Median'] / 4
281
  flex_file = flex_file[['Player', 'Floor', 'Median', 'Ceiling', 'STD']]
282
 
@@ -405,21 +403,19 @@ with tab6:
405
  df.replace("", 0, inplace=True)
406
 
407
  if prop == "pass_yards":
408
- df['Median'] = df['pass_yards']
409
  elif prop == "rush_yards":
410
- df['Median'] = df['rush_yards']
411
  elif prop == "rec_yards":
412
- df['Median'] = df['rec_yards']
413
- elif prop == "receptions":
414
- df['Median'] = df['rec']
415
  elif prop == "receptions":
416
- df['Median'] = df['rec']
417
  elif prop == "rush_attempts":
418
- df['Median'] = df['rush_att']
419
 
420
  flex_file = df
421
  flex_file['Floor'] = flex_file['Median'] * .20
422
- flex_file['Ceiling'] = flex_file['Median'] + (flex_file['Median'] * .80)
423
  flex_file['STD'] = flex_file['Median'] / 4
424
  flex_file['Prop'] = flex_file['Player'].map(prop_dict)
425
  flex_file = flex_file[['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']]
@@ -482,9 +478,9 @@ with tab6:
482
  elif game_select_var == 'Pick6':
483
  prop_df = pick_frame[['Full_name', 'over_prop', 'over_line', 'under_line', 'prop_type']]
484
  prop_df.rename(columns={"Full_name": "Player"}, inplace = True)
485
-
486
  if prop_type_var == "pass_yards":
487
- prop_df = prop_df.loc[prop_df['prop_type'] == 'pass_yards']
488
  prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
489
  prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
490
  prop_df = prop_df.loc[prop_df['Prop'] != 0]
@@ -493,7 +489,7 @@ with tab6:
493
  prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
494
  df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
495
  elif prop_type_var == "rush_yards":
496
- prop_df = prop_df.loc[prop_df['prop_type'] == 'rush_yards']
497
  prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
498
  prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
499
  prop_df = prop_df.loc[prop_df['Prop'] != 0]
@@ -502,7 +498,7 @@ with tab6:
502
  prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
503
  df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
504
  elif prop_type_var == "rec_yards":
505
- prop_df = prop_df.loc[prop_df['prop_type'] == 'rec_yards']
506
  prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
507
  prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
508
  prop_df = prop_df.loc[prop_df['Prop'] != 0]
@@ -511,7 +507,7 @@ with tab6:
511
  prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
512
  df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
513
  elif prop_type_var == "receptions":
514
- prop_df = prop_df.loc[prop_df['prop_type'] == 'receptions']
515
  prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
516
  prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
517
  prop_df = prop_df.loc[prop_df['Prop'] != 0]
@@ -520,7 +516,7 @@ with tab6:
520
  prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
521
  df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
522
  elif prop_type_var == "rush_attempts":
523
- prop_df = prop_df.loc[prop_df['prop_type'] == 'rush_attempts']
524
  prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
525
  prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
526
  prop_df = prop_df.loc[prop_df['Prop'] != 0]
@@ -529,7 +525,7 @@ with tab6:
529
  prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
530
  df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
531
  elif prop_type_var == "pass_attempts":
532
- prop_df = prop_df.loc[prop_df['prop_type'] == 'pass_attempts']
533
  prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
534
  prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
535
  prop_df = prop_df.loc[prop_df['Prop'] != 0]
@@ -538,7 +534,7 @@ with tab6:
538
  prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
539
  df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
540
  elif prop_type_var == "pass_completions":
541
- prop_df = prop_df.loc[prop_df['prop_type'] == 'pass_completions']
542
  prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
543
  prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
544
  prop_df = prop_df.loc[prop_df['Prop'] != 0]
@@ -554,23 +550,21 @@ with tab6:
554
  total_sims = 5000
555
 
556
  df.replace("", 0, inplace=True)
557
-
558
  if prop_type_var == "pass_yards":
559
- df['Median'] = df['pass_yards']
560
  elif prop_type_var == "rush_yards":
561
- df['Median'] = df['rush_yards']
562
  elif prop_type_var == "rec_yards":
563
- df['Median'] = df['rec_yards']
564
- elif prop_type_var == "receptions":
565
- df['Median'] = df['rec']
566
  elif prop_type_var == "receptions":
567
- df['Median'] = df['rec']
568
  elif prop_type_var == "rush_attempts":
569
- df['Median'] = df['rush_att']
570
 
571
  flex_file = df
572
  flex_file['Floor'] = flex_file['Median'] * .20
573
- flex_file['Ceiling'] = flex_file['Median'] + (flex_file['Median'] * .80)
574
  flex_file['STD'] = flex_file['Median'] / 4
575
  flex_file['Prop'] = flex_file['Player'].map(prop_dict)
576
  flex_file = flex_file[['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']]
 
135
  data=convert_df_to_csv(qb_stats_disp),
136
  file_name='NFL_qb_stats_export.csv',
137
  mime='text/csv',
138
+ key='NFL_qb_stats_export',
139
  )
140
 
141
  with tab3:
 
161
  data=convert_df_to_csv(non_qb_stats_disp),
162
  file_name='NFL_nonqb_stats_export.csv',
163
  mime='text/csv',
164
+ key='NFL_nonqb_stats_export',
165
  )
166
 
167
  with tab4:
 
251
  player_var = df.loc[df['Player'] == player_check]
252
  player_var = player_var.reset_index()
253
 
 
 
254
  if prop_type_var == 'Pass Yards':
255
  df['Median'] = df['pass_yards']
256
  elif prop_type_var == 'Pass TDs':
 
274
 
275
  flex_file = df
276
  flex_file['Floor'] = flex_file['Median'] * .20
277
+ flex_file['Ceiling'] = flex_file['Median'] + (flex_file['Median'] * 1.80)
278
  flex_file['STD'] = flex_file['Median'] / 4
279
  flex_file = flex_file[['Player', 'Floor', 'Median', 'Ceiling', 'STD']]
280
 
 
403
  df.replace("", 0, inplace=True)
404
 
405
  if prop == "pass_yards":
406
+ df['Median'] = df['NFL_GAME_PLAYER_PASSING_YARDS']
407
  elif prop == "rush_yards":
408
+ df['Median'] = df['NFL_GAME_PLAYER_RUSHING_YARDS']
409
  elif prop == "rec_yards":
410
+ df['Median'] = df['NFL_GAME_PLAYER_RECEIVING_YARDS']
 
 
411
  elif prop == "receptions":
412
+ df['Median'] = df['NFL_GAME_PLAYER_RECEIVING_RECEPTIONS']
413
  elif prop == "rush_attempts":
414
+ df['Median'] = df['NFL_GAME_PLAYER_RUSHING_ATTEMPTS']
415
 
416
  flex_file = df
417
  flex_file['Floor'] = flex_file['Median'] * .20
418
+ flex_file['Ceiling'] = flex_file['Median'] + (flex_file['Median'] * 1.80)
419
  flex_file['STD'] = flex_file['Median'] / 4
420
  flex_file['Prop'] = flex_file['Player'].map(prop_dict)
421
  flex_file = flex_file[['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']]
 
478
  elif game_select_var == 'Pick6':
479
  prop_df = pick_frame[['Full_name', 'over_prop', 'over_line', 'under_line', 'prop_type']]
480
  prop_df.rename(columns={"Full_name": "Player"}, inplace = True)
481
+
482
  if prop_type_var == "pass_yards":
483
+ prop_df = prop_df.loc[prop_df['prop_type'] == 'NFL_GAME_PLAYER_PASSING_YARDS']
484
  prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
485
  prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
486
  prop_df = prop_df.loc[prop_df['Prop'] != 0]
 
489
  prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
490
  df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
491
  elif prop_type_var == "rush_yards":
492
+ prop_df = prop_df.loc[prop_df['prop_type'] == 'NFL_GAME_PLAYER_RUSHING_YARDS']
493
  prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
494
  prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
495
  prop_df = prop_df.loc[prop_df['Prop'] != 0]
 
498
  prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
499
  df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
500
  elif prop_type_var == "rec_yards":
501
+ prop_df = prop_df.loc[prop_df['prop_type'] == 'NFL_GAME_PLAYER_RECEIVING_YARDS']
502
  prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
503
  prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
504
  prop_df = prop_df.loc[prop_df['Prop'] != 0]
 
507
  prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
508
  df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
509
  elif prop_type_var == "receptions":
510
+ prop_df = prop_df.loc[prop_df['prop_type'] == 'NFL_GAME_PLAYER_RECEIVING_RECEPTIONS']
511
  prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
512
  prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
513
  prop_df = prop_df.loc[prop_df['Prop'] != 0]
 
516
  prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
517
  df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
518
  elif prop_type_var == "rush_attempts":
519
+ prop_df = prop_df.loc[prop_df['prop_type'] == 'NFL_GAME_PLAYER_RUSHING_ATTEMPTS']
520
  prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
521
  prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
522
  prop_df = prop_df.loc[prop_df['Prop'] != 0]
 
525
  prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
526
  df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
527
  elif prop_type_var == "pass_attempts":
528
+ prop_df = prop_df.loc[prop_df['prop_type'] == 'NFL_GAME_PLAYER_PASSING_ATTEMPTS']
529
  prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
530
  prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
531
  prop_df = prop_df.loc[prop_df['Prop'] != 0]
 
534
  prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
535
  df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
536
  elif prop_type_var == "pass_completions":
537
+ prop_df = prop_df.loc[prop_df['prop_type'] == 'NFL_GAME_PLAYER_PASSING_COMPLETIONS']
538
  prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
539
  prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
540
  prop_df = prop_df.loc[prop_df['Prop'] != 0]
 
550
  total_sims = 5000
551
 
552
  df.replace("", 0, inplace=True)
553
+
554
  if prop_type_var == "pass_yards":
555
+ df['Median'] = df['NFL_GAME_PLAYER_PASSING_YARDS']
556
  elif prop_type_var == "rush_yards":
557
+ df['Median'] = df['NFL_GAME_PLAYER_RUSHING_YARDS']
558
  elif prop_type_var == "rec_yards":
559
+ df['Median'] = df['NFL_GAME_PLAYER_RECEIVING_YARDS']
 
 
560
  elif prop_type_var == "receptions":
561
+ df['Median'] = df['NFL_GAME_PLAYER_RECEIVING_RECEPTIONS']
562
  elif prop_type_var == "rush_attempts":
563
+ df['Median'] = df['NFL_GAME_PLAYER_RUSHING_ATTEMPTS']
564
 
565
  flex_file = df
566
  flex_file['Floor'] = flex_file['Median'] * .20
567
+ flex_file['Ceiling'] = flex_file['Median'] + (flex_file['Median'] * 1.80)
568
  flex_file['STD'] = flex_file['Median'] / 4
569
  flex_file['Prop'] = flex_file['Player'].map(prop_dict)
570
  flex_file = flex_file[['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']]