Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -135,7 +135,7 @@ with tab2:
|
|
135 |
data=convert_df_to_csv(qb_stats_disp),
|
136 |
file_name='NFL_qb_stats_export.csv',
|
137 |
mime='text/csv',
|
138 |
-
key='
|
139 |
)
|
140 |
|
141 |
with tab3:
|
@@ -161,7 +161,7 @@ with tab3:
|
|
161 |
data=convert_df_to_csv(non_qb_stats_disp),
|
162 |
file_name='NFL_nonqb_stats_export.csv',
|
163 |
mime='text/csv',
|
164 |
-
key='
|
165 |
)
|
166 |
|
167 |
with tab4:
|
@@ -251,8 +251,6 @@ with tab5:
|
|
251 |
player_var = df.loc[df['Player'] == player_check]
|
252 |
player_var = player_var.reset_index()
|
253 |
|
254 |
-
['NFL_GAME_PLAYER_PASSING_YARDS', 'NFL_GAME_PLAYER_RUSHING_YARDS', 'NFL_GAME_PLAYER_RECEIVING_YARDS', 'NFL_GAME_PLAYER_RECEIVING_RECEPTIONS', 'NFL_GAME_PLAYER_RUSHING_ATTEMPTS', 'NFL_GAME_PLAYER_PASSING_ATTEMPTS']
|
255 |
-
|
256 |
if prop_type_var == 'Pass Yards':
|
257 |
df['Median'] = df['pass_yards']
|
258 |
elif prop_type_var == 'Pass TDs':
|
@@ -276,7 +274,7 @@ with tab5:
|
|
276 |
|
277 |
flex_file = df
|
278 |
flex_file['Floor'] = flex_file['Median'] * .20
|
279 |
-
flex_file['Ceiling'] = flex_file['Median'] + (flex_file['Median'] * .80)
|
280 |
flex_file['STD'] = flex_file['Median'] / 4
|
281 |
flex_file = flex_file[['Player', 'Floor', 'Median', 'Ceiling', 'STD']]
|
282 |
|
@@ -405,21 +403,19 @@ with tab6:
|
|
405 |
df.replace("", 0, inplace=True)
|
406 |
|
407 |
if prop == "pass_yards":
|
408 |
-
df['Median'] = df['
|
409 |
elif prop == "rush_yards":
|
410 |
-
df['Median'] = df['
|
411 |
elif prop == "rec_yards":
|
412 |
-
df['Median'] = df['
|
413 |
-
elif prop == "receptions":
|
414 |
-
df['Median'] = df['rec']
|
415 |
elif prop == "receptions":
|
416 |
-
df['Median'] = df['
|
417 |
elif prop == "rush_attempts":
|
418 |
-
df['Median'] = df['
|
419 |
|
420 |
flex_file = df
|
421 |
flex_file['Floor'] = flex_file['Median'] * .20
|
422 |
-
flex_file['Ceiling'] = flex_file['Median'] + (flex_file['Median'] * .80)
|
423 |
flex_file['STD'] = flex_file['Median'] / 4
|
424 |
flex_file['Prop'] = flex_file['Player'].map(prop_dict)
|
425 |
flex_file = flex_file[['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']]
|
@@ -482,9 +478,9 @@ with tab6:
|
|
482 |
elif game_select_var == 'Pick6':
|
483 |
prop_df = pick_frame[['Full_name', 'over_prop', 'over_line', 'under_line', 'prop_type']]
|
484 |
prop_df.rename(columns={"Full_name": "Player"}, inplace = True)
|
485 |
-
|
486 |
if prop_type_var == "pass_yards":
|
487 |
-
prop_df = prop_df.loc[prop_df['prop_type'] == '
|
488 |
prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
|
489 |
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
490 |
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
@@ -493,7 +489,7 @@ with tab6:
|
|
493 |
prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
|
494 |
df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
495 |
elif prop_type_var == "rush_yards":
|
496 |
-
prop_df = prop_df.loc[prop_df['prop_type'] == '
|
497 |
prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
|
498 |
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
499 |
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
@@ -502,7 +498,7 @@ with tab6:
|
|
502 |
prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
|
503 |
df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
504 |
elif prop_type_var == "rec_yards":
|
505 |
-
prop_df = prop_df.loc[prop_df['prop_type'] == '
|
506 |
prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
|
507 |
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
508 |
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
@@ -511,7 +507,7 @@ with tab6:
|
|
511 |
prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
|
512 |
df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
513 |
elif prop_type_var == "receptions":
|
514 |
-
prop_df = prop_df.loc[prop_df['prop_type'] == '
|
515 |
prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
|
516 |
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
517 |
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
@@ -520,7 +516,7 @@ with tab6:
|
|
520 |
prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
|
521 |
df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
522 |
elif prop_type_var == "rush_attempts":
|
523 |
-
prop_df = prop_df.loc[prop_df['prop_type'] == '
|
524 |
prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
|
525 |
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
526 |
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
@@ -529,7 +525,7 @@ with tab6:
|
|
529 |
prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
|
530 |
df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
531 |
elif prop_type_var == "pass_attempts":
|
532 |
-
prop_df = prop_df.loc[prop_df['prop_type'] == '
|
533 |
prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
|
534 |
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
535 |
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
@@ -538,7 +534,7 @@ with tab6:
|
|
538 |
prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
|
539 |
df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
540 |
elif prop_type_var == "pass_completions":
|
541 |
-
prop_df = prop_df.loc[prop_df['prop_type'] == '
|
542 |
prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
|
543 |
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
544 |
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
@@ -554,23 +550,21 @@ with tab6:
|
|
554 |
total_sims = 5000
|
555 |
|
556 |
df.replace("", 0, inplace=True)
|
557 |
-
|
558 |
if prop_type_var == "pass_yards":
|
559 |
-
df['Median'] = df['
|
560 |
elif prop_type_var == "rush_yards":
|
561 |
-
df['Median'] = df['
|
562 |
elif prop_type_var == "rec_yards":
|
563 |
-
df['Median'] = df['
|
564 |
-
elif prop_type_var == "receptions":
|
565 |
-
df['Median'] = df['rec']
|
566 |
elif prop_type_var == "receptions":
|
567 |
-
df['Median'] = df['
|
568 |
elif prop_type_var == "rush_attempts":
|
569 |
-
df['Median'] = df['
|
570 |
|
571 |
flex_file = df
|
572 |
flex_file['Floor'] = flex_file['Median'] * .20
|
573 |
-
flex_file['Ceiling'] = flex_file['Median'] + (flex_file['Median'] * .80)
|
574 |
flex_file['STD'] = flex_file['Median'] / 4
|
575 |
flex_file['Prop'] = flex_file['Player'].map(prop_dict)
|
576 |
flex_file = flex_file[['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']]
|
|
|
135 |
data=convert_df_to_csv(qb_stats_disp),
|
136 |
file_name='NFL_qb_stats_export.csv',
|
137 |
mime='text/csv',
|
138 |
+
key='NFL_qb_stats_export',
|
139 |
)
|
140 |
|
141 |
with tab3:
|
|
|
161 |
data=convert_df_to_csv(non_qb_stats_disp),
|
162 |
file_name='NFL_nonqb_stats_export.csv',
|
163 |
mime='text/csv',
|
164 |
+
key='NFL_nonqb_stats_export',
|
165 |
)
|
166 |
|
167 |
with tab4:
|
|
|
251 |
player_var = df.loc[df['Player'] == player_check]
|
252 |
player_var = player_var.reset_index()
|
253 |
|
|
|
|
|
254 |
if prop_type_var == 'Pass Yards':
|
255 |
df['Median'] = df['pass_yards']
|
256 |
elif prop_type_var == 'Pass TDs':
|
|
|
274 |
|
275 |
flex_file = df
|
276 |
flex_file['Floor'] = flex_file['Median'] * .20
|
277 |
+
flex_file['Ceiling'] = flex_file['Median'] + (flex_file['Median'] * 1.80)
|
278 |
flex_file['STD'] = flex_file['Median'] / 4
|
279 |
flex_file = flex_file[['Player', 'Floor', 'Median', 'Ceiling', 'STD']]
|
280 |
|
|
|
403 |
df.replace("", 0, inplace=True)
|
404 |
|
405 |
if prop == "pass_yards":
|
406 |
+
df['Median'] = df['NFL_GAME_PLAYER_PASSING_YARDS']
|
407 |
elif prop == "rush_yards":
|
408 |
+
df['Median'] = df['NFL_GAME_PLAYER_RUSHING_YARDS']
|
409 |
elif prop == "rec_yards":
|
410 |
+
df['Median'] = df['NFL_GAME_PLAYER_RECEIVING_YARDS']
|
|
|
|
|
411 |
elif prop == "receptions":
|
412 |
+
df['Median'] = df['NFL_GAME_PLAYER_RECEIVING_RECEPTIONS']
|
413 |
elif prop == "rush_attempts":
|
414 |
+
df['Median'] = df['NFL_GAME_PLAYER_RUSHING_ATTEMPTS']
|
415 |
|
416 |
flex_file = df
|
417 |
flex_file['Floor'] = flex_file['Median'] * .20
|
418 |
+
flex_file['Ceiling'] = flex_file['Median'] + (flex_file['Median'] * 1.80)
|
419 |
flex_file['STD'] = flex_file['Median'] / 4
|
420 |
flex_file['Prop'] = flex_file['Player'].map(prop_dict)
|
421 |
flex_file = flex_file[['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']]
|
|
|
478 |
elif game_select_var == 'Pick6':
|
479 |
prop_df = pick_frame[['Full_name', 'over_prop', 'over_line', 'under_line', 'prop_type']]
|
480 |
prop_df.rename(columns={"Full_name": "Player"}, inplace = True)
|
481 |
+
|
482 |
if prop_type_var == "pass_yards":
|
483 |
+
prop_df = prop_df.loc[prop_df['prop_type'] == 'NFL_GAME_PLAYER_PASSING_YARDS']
|
484 |
prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
|
485 |
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
486 |
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
|
|
489 |
prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
|
490 |
df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
491 |
elif prop_type_var == "rush_yards":
|
492 |
+
prop_df = prop_df.loc[prop_df['prop_type'] == 'NFL_GAME_PLAYER_RUSHING_YARDS']
|
493 |
prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
|
494 |
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
495 |
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
|
|
498 |
prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
|
499 |
df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
500 |
elif prop_type_var == "rec_yards":
|
501 |
+
prop_df = prop_df.loc[prop_df['prop_type'] == 'NFL_GAME_PLAYER_RECEIVING_YARDS']
|
502 |
prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
|
503 |
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
504 |
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
|
|
507 |
prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
|
508 |
df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
509 |
elif prop_type_var == "receptions":
|
510 |
+
prop_df = prop_df.loc[prop_df['prop_type'] == 'NFL_GAME_PLAYER_RECEIVING_RECEPTIONS']
|
511 |
prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
|
512 |
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
513 |
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
|
|
516 |
prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
|
517 |
df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
518 |
elif prop_type_var == "rush_attempts":
|
519 |
+
prop_df = prop_df.loc[prop_df['prop_type'] == 'NFL_GAME_PLAYER_RUSHING_ATTEMPTS']
|
520 |
prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
|
521 |
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
522 |
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
|
|
525 |
prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
|
526 |
df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
527 |
elif prop_type_var == "pass_attempts":
|
528 |
+
prop_df = prop_df.loc[prop_df['prop_type'] == 'NFL_GAME_PLAYER_PASSING_ATTEMPTS']
|
529 |
prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
|
530 |
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
531 |
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
|
|
534 |
prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
|
535 |
df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
536 |
elif prop_type_var == "pass_completions":
|
537 |
+
prop_df = prop_df.loc[prop_df['prop_type'] == 'NFL_GAME_PLAYER_PASSING_COMPLETIONS']
|
538 |
prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
|
539 |
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
540 |
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
|
|
550 |
total_sims = 5000
|
551 |
|
552 |
df.replace("", 0, inplace=True)
|
553 |
+
|
554 |
if prop_type_var == "pass_yards":
|
555 |
+
df['Median'] = df['NFL_GAME_PLAYER_PASSING_YARDS']
|
556 |
elif prop_type_var == "rush_yards":
|
557 |
+
df['Median'] = df['NFL_GAME_PLAYER_RUSHING_YARDS']
|
558 |
elif prop_type_var == "rec_yards":
|
559 |
+
df['Median'] = df['NFL_GAME_PLAYER_RECEIVING_YARDS']
|
|
|
|
|
560 |
elif prop_type_var == "receptions":
|
561 |
+
df['Median'] = df['NFL_GAME_PLAYER_RECEIVING_RECEPTIONS']
|
562 |
elif prop_type_var == "rush_attempts":
|
563 |
+
df['Median'] = df['NFL_GAME_PLAYER_RUSHING_ATTEMPTS']
|
564 |
|
565 |
flex_file = df
|
566 |
flex_file['Floor'] = flex_file['Median'] * .20
|
567 |
+
flex_file['Ceiling'] = flex_file['Median'] + (flex_file['Median'] * 1.80)
|
568 |
flex_file['STD'] = flex_file['Median'] / 4
|
569 |
flex_file['Prop'] = flex_file['Player'].map(prop_dict)
|
570 |
flex_file = flex_file[['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']]
|