Spaces:
Running
Running
James McCool
commited on
Commit
·
a0bee85
1
Parent(s):
4dcd40c
added market table kind of
Browse files
app.py
CHANGED
@@ -5,6 +5,7 @@ import pandas as pd
|
|
5 |
import gspread
|
6 |
import plotly.express as px
|
7 |
import scipy.stats as stats
|
|
|
8 |
st.set_page_config(layout="wide")
|
9 |
|
10 |
@st.cache_resource
|
@@ -39,12 +40,16 @@ def init_conn():
|
|
39 |
|
40 |
NFL_Data = st.secrets['NFL_Data']
|
41 |
|
|
|
|
|
|
|
|
|
42 |
gc = gspread.service_account_from_dict(credentials)
|
43 |
gc2 = gspread.service_account_from_dict(credentials2)
|
44 |
|
45 |
-
return gc, gc2, NFL_Data
|
46 |
|
47 |
-
gcservice_account, gcservice_account2, NFL_Data = init_conn()
|
48 |
|
49 |
game_format = {'Win%': '{:.2%}', 'Vegas': '{:.2%}', 'Win% Diff': '{:.2%}'}
|
50 |
american_format = {'First Inning Lead Percentage': '{:.2%}', 'Fifth Inning Lead Percentage': '{:.2%}'}
|
@@ -88,9 +93,15 @@ def init_baselines():
|
|
88 |
raw_display.replace('', np.nan, inplace=True)
|
89 |
pick_frame = raw_display.dropna(subset='Player')
|
90 |
|
91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
-
game_model, overall_stats, timestamp, prop_frame, prop_trends, pick_frame = init_baselines()
|
94 |
qb_stats = overall_stats[overall_stats['Position'] == 'QB']
|
95 |
qb_stats = qb_stats.drop_duplicates(subset=['Player', 'Position'])
|
96 |
non_qb_stats = overall_stats[overall_stats['Position'] != 'QB']
|
@@ -107,7 +118,7 @@ all_sim_vars = ['NFL_GAME_PLAYER_PASSING_YARDS', 'NFL_GAME_PLAYER_RUSHING_YARDS'
|
|
107 |
pick6_sim_vars = ['Rush + Rec Yards', 'Rush + Rec TDs', 'Passing Yards', 'Passing Attempts', 'Passing TDs', 'Completions', 'Rushing Yards', 'Receptions', 'Receiving Yards']
|
108 |
sim_all_hold = pd.DataFrame(columns=['Player', 'Team', 'Book', 'Prop Type', 'Prop', 'Mean_Outcome', 'Imp Over', 'Over%', 'Imp Under', 'Under%', 'Bet?', 'Edge'])
|
109 |
|
110 |
-
tab1, tab2, tab3, tab4, tab5, tab6 = st.tabs(["Game Betting Model", "QB Projections", "RB/WR/TE Projections", "Player Prop Trends", "Player Prop Simulations", "Stat Specific Simulations"])
|
111 |
|
112 |
def convert_df_to_csv(df):
|
113 |
return df.to_csv().encode('utf-8')
|
@@ -116,7 +127,7 @@ with tab1:
|
|
116 |
st.info(t_stamp)
|
117 |
if st.button("Reset Data", key='reset1'):
|
118 |
st.cache_data.clear()
|
119 |
-
game_model, overall_stats, timestamp, prop_frame, prop_trends, pick_frame = init_baselines()
|
120 |
qb_stats = overall_stats[overall_stats['Position'] == 'QB']
|
121 |
qb_stats = qb_stats.drop_duplicates(subset=['Player', 'Position'])
|
122 |
non_qb_stats = overall_stats[overall_stats['Position'] != 'QB']
|
@@ -149,7 +160,7 @@ with tab2:
|
|
149 |
st.info(t_stamp)
|
150 |
if st.button("Reset Data", key='reset2'):
|
151 |
st.cache_data.clear()
|
152 |
-
game_model, overall_stats, timestamp, prop_frame, prop_trends, pick_frame = init_baselines()
|
153 |
qb_stats = overall_stats[overall_stats['Position'] == 'QB']
|
154 |
qb_stats = qb_stats.drop_duplicates(subset=['Player', 'Position'])
|
155 |
non_qb_stats = overall_stats[overall_stats['Position'] != 'QB']
|
@@ -177,7 +188,7 @@ with tab3:
|
|
177 |
st.info(t_stamp)
|
178 |
if st.button("Reset Data", key='reset3'):
|
179 |
st.cache_data.clear()
|
180 |
-
game_model, overall_stats, timestamp, prop_frame, prop_trends, pick_frame = init_baselines()
|
181 |
qb_stats = overall_stats[overall_stats['Position'] == 'QB']
|
182 |
qb_stats = qb_stats.drop_duplicates(subset=['Player', 'Position'])
|
183 |
non_qb_stats = overall_stats[overall_stats['Position'] != 'QB']
|
@@ -200,12 +211,34 @@ with tab3:
|
|
200 |
mime='text/csv',
|
201 |
key='NFL_nonqb_stats_export',
|
202 |
)
|
203 |
-
|
204 |
with tab4:
|
205 |
st.info(t_stamp)
|
206 |
if st.button("Reset Data", key='reset4'):
|
207 |
st.cache_data.clear()
|
208 |
-
game_model, overall_stats, timestamp, prop_frame, prop_trends, pick_frame = init_baselines()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
209 |
qb_stats = overall_stats[overall_stats['Position'] == 'QB']
|
210 |
qb_stats = qb_stats.drop_duplicates(subset=['Player', 'Position'])
|
211 |
non_qb_stats = overall_stats[overall_stats['Position'] != 'QB']
|
@@ -232,11 +265,11 @@ with tab4:
|
|
232 |
mime='text/csv',
|
233 |
)
|
234 |
|
235 |
-
with
|
236 |
st.info(t_stamp)
|
237 |
-
if st.button("Reset Data", key='
|
238 |
st.cache_data.clear()
|
239 |
-
game_model, overall_stats, timestamp, prop_frame, prop_trends, pick_frame = init_baselines()
|
240 |
qb_stats = overall_stats[overall_stats['Position'] == 'QB']
|
241 |
qb_stats = qb_stats.drop_duplicates(subset=['Player', 'Position'])
|
242 |
non_qb_stats = overall_stats[overall_stats['Position'] != 'QB']
|
@@ -382,12 +415,12 @@ with tab5:
|
|
382 |
plot_hold_container = st.empty()
|
383 |
st.plotly_chart(fig, use_container_width=True)
|
384 |
|
385 |
-
with
|
386 |
st.info(t_stamp)
|
387 |
st.info('The Over and Under percentages are a compositve percentage based on simulations, historical performance, and implied probabilities, and may be different than you would expect based purely on the median projection. Likewise, the Edge of a bet is not the only indicator of if you should make the bet or not as the suggestion is using a base acceptable threshold to determine how much edge you should have for each stat category.')
|
388 |
-
if st.button("Reset Data/Load Data", key='
|
389 |
st.cache_data.clear()
|
390 |
-
game_model, overall_stats, timestamp, prop_frame, prop_trends, pick_frame = init_baselines()
|
391 |
qb_stats = overall_stats[overall_stats['Position'] == 'QB']
|
392 |
qb_stats = qb_stats.drop_duplicates(subset=['Player', 'Position'])
|
393 |
non_qb_stats = overall_stats[overall_stats['Position'] != 'QB']
|
|
|
5 |
import gspread
|
6 |
import plotly.express as px
|
7 |
import scipy.stats as stats
|
8 |
+
from pymongo import MongoClient
|
9 |
st.set_page_config(layout="wide")
|
10 |
|
11 |
@st.cache_resource
|
|
|
40 |
|
41 |
NFL_Data = st.secrets['NFL_Data']
|
42 |
|
43 |
+
uri = st.secrets['mongo_uri']
|
44 |
+
client = MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=100000)
|
45 |
+
db = client["Props_DB"]
|
46 |
+
|
47 |
gc = gspread.service_account_from_dict(credentials)
|
48 |
gc2 = gspread.service_account_from_dict(credentials2)
|
49 |
|
50 |
+
return gc, gc2, NFL_Data, db
|
51 |
|
52 |
+
gcservice_account, gcservice_account2, NFL_Data, db = init_conn()
|
53 |
|
54 |
game_format = {'Win%': '{:.2%}', 'Vegas': '{:.2%}', 'Win% Diff': '{:.2%}'}
|
55 |
american_format = {'First Inning Lead Percentage': '{:.2%}', 'Fifth Inning Lead Percentage': '{:.2%}'}
|
|
|
93 |
raw_display.replace('', np.nan, inplace=True)
|
94 |
pick_frame = raw_display.dropna(subset='Player')
|
95 |
|
96 |
+
collection = db["NFL_Props"]
|
97 |
+
cursor = collection.find()
|
98 |
+
|
99 |
+
raw_display = pd.DataFrame(list(cursor))
|
100 |
+
market_props = raw_display[['Name', 'Position', 'Projection', 'PropType', 'OddsType']]
|
101 |
+
|
102 |
+
return game_model, overall_stats, timestamp, prop_frame, prop_trends, pick_frame, market_props
|
103 |
|
104 |
+
game_model, overall_stats, timestamp, prop_frame, prop_trends, pick_frame, market_props = init_baselines()
|
105 |
qb_stats = overall_stats[overall_stats['Position'] == 'QB']
|
106 |
qb_stats = qb_stats.drop_duplicates(subset=['Player', 'Position'])
|
107 |
non_qb_stats = overall_stats[overall_stats['Position'] != 'QB']
|
|
|
118 |
pick6_sim_vars = ['Rush + Rec Yards', 'Rush + Rec TDs', 'Passing Yards', 'Passing Attempts', 'Passing TDs', 'Completions', 'Rushing Yards', 'Receptions', 'Receiving Yards']
|
119 |
sim_all_hold = pd.DataFrame(columns=['Player', 'Team', 'Book', 'Prop Type', 'Prop', 'Mean_Outcome', 'Imp Over', 'Over%', 'Imp Under', 'Under%', 'Bet?', 'Edge'])
|
120 |
|
121 |
+
tab1, tab2, tab3, tab4, tab5, tab6, tab7 = st.tabs(["Game Betting Model", "QB Projections", "RB/WR/TE Projections", 'Market Table', "Player Prop Trends", "Player Prop Simulations", "Stat Specific Simulations"])
|
122 |
|
123 |
def convert_df_to_csv(df):
|
124 |
return df.to_csv().encode('utf-8')
|
|
|
127 |
st.info(t_stamp)
|
128 |
if st.button("Reset Data", key='reset1'):
|
129 |
st.cache_data.clear()
|
130 |
+
game_model, overall_stats, timestamp, prop_frame, prop_trends, pick_frame, market_props = init_baselines()
|
131 |
qb_stats = overall_stats[overall_stats['Position'] == 'QB']
|
132 |
qb_stats = qb_stats.drop_duplicates(subset=['Player', 'Position'])
|
133 |
non_qb_stats = overall_stats[overall_stats['Position'] != 'QB']
|
|
|
160 |
st.info(t_stamp)
|
161 |
if st.button("Reset Data", key='reset2'):
|
162 |
st.cache_data.clear()
|
163 |
+
game_model, overall_stats, timestamp, prop_frame, prop_trends, pick_frame, market_props = init_baselines()
|
164 |
qb_stats = overall_stats[overall_stats['Position'] == 'QB']
|
165 |
qb_stats = qb_stats.drop_duplicates(subset=['Player', 'Position'])
|
166 |
non_qb_stats = overall_stats[overall_stats['Position'] != 'QB']
|
|
|
188 |
st.info(t_stamp)
|
189 |
if st.button("Reset Data", key='reset3'):
|
190 |
st.cache_data.clear()
|
191 |
+
game_model, overall_stats, timestamp, prop_frame, prop_trends, pick_frame, market_props = init_baselines()
|
192 |
qb_stats = overall_stats[overall_stats['Position'] == 'QB']
|
193 |
qb_stats = qb_stats.drop_duplicates(subset=['Player', 'Position'])
|
194 |
non_qb_stats = overall_stats[overall_stats['Position'] != 'QB']
|
|
|
211 |
mime='text/csv',
|
212 |
key='NFL_nonqb_stats_export',
|
213 |
)
|
214 |
+
|
215 |
with tab4:
|
216 |
st.info(t_stamp)
|
217 |
if st.button("Reset Data", key='reset4'):
|
218 |
st.cache_data.clear()
|
219 |
+
game_model, overall_stats, timestamp, prop_frame, prop_trends, pick_frame, market_props = init_baselines()
|
220 |
+
qb_stats = overall_stats[overall_stats['Position'] == 'QB']
|
221 |
+
qb_stats = qb_stats.drop_duplicates(subset=['Player', 'Position'])
|
222 |
+
non_qb_stats = overall_stats[overall_stats['Position'] != 'QB']
|
223 |
+
non_qb_stats = non_qb_stats.drop_duplicates(subset=['Player', 'Position'])
|
224 |
+
team_dict = dict(zip(prop_frame['Player'], prop_frame['Team']))
|
225 |
+
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
226 |
+
market_type = st.selectbox('Select type of prop are you wanting to view', options = prop_table_options, key = 'market_type_key')
|
227 |
+
disp_market = market_props.copy()
|
228 |
+
disp_market = disp_market[disp_market['PropType'].isin(market_type)]
|
229 |
+
st.dataframe(disp_market.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(prop_format, precision=2), height = 1000, use_container_width = True)
|
230 |
+
st.download_button(
|
231 |
+
label="Export Market Props",
|
232 |
+
data=convert_df_to_csv(disp_market),
|
233 |
+
file_name='NFL_market_props_export.csv',
|
234 |
+
mime='text/csv',
|
235 |
+
)
|
236 |
+
|
237 |
+
with tab5:
|
238 |
+
st.info(t_stamp)
|
239 |
+
if st.button("Reset Data", key='reset5'):
|
240 |
+
st.cache_data.clear()
|
241 |
+
game_model, overall_stats, timestamp, prop_frame, prop_trends, pick_frame, market_props = init_baselines()
|
242 |
qb_stats = overall_stats[overall_stats['Position'] == 'QB']
|
243 |
qb_stats = qb_stats.drop_duplicates(subset=['Player', 'Position'])
|
244 |
non_qb_stats = overall_stats[overall_stats['Position'] != 'QB']
|
|
|
265 |
mime='text/csv',
|
266 |
)
|
267 |
|
268 |
+
with tab6:
|
269 |
st.info(t_stamp)
|
270 |
+
if st.button("Reset Data", key='reset6'):
|
271 |
st.cache_data.clear()
|
272 |
+
game_model, overall_stats, timestamp, prop_frame, prop_trends, pick_frame, market_props = init_baselines()
|
273 |
qb_stats = overall_stats[overall_stats['Position'] == 'QB']
|
274 |
qb_stats = qb_stats.drop_duplicates(subset=['Player', 'Position'])
|
275 |
non_qb_stats = overall_stats[overall_stats['Position'] != 'QB']
|
|
|
415 |
plot_hold_container = st.empty()
|
416 |
st.plotly_chart(fig, use_container_width=True)
|
417 |
|
418 |
+
with tab7:
|
419 |
st.info(t_stamp)
|
420 |
st.info('The Over and Under percentages are a compositve percentage based on simulations, historical performance, and implied probabilities, and may be different than you would expect based purely on the median projection. Likewise, the Edge of a bet is not the only indicator of if you should make the bet or not as the suggestion is using a base acceptable threshold to determine how much edge you should have for each stat category.')
|
421 |
+
if st.button("Reset Data/Load Data", key='reset7'):
|
422 |
st.cache_data.clear()
|
423 |
+
game_model, overall_stats, timestamp, prop_frame, prop_trends, pick_frame, market_props = init_baselines()
|
424 |
qb_stats = overall_stats[overall_stats['Position'] == 'QB']
|
425 |
qb_stats = qb_stats.drop_duplicates(subset=['Player', 'Position'])
|
426 |
non_qb_stats = overall_stats[overall_stats['Position'] != 'QB']
|