Multichem commited on
Commit
b86285f
·
1 Parent(s): d1bbb46

Upload streamlit_app.py

Browse files
Files changed (1) hide show
  1. streamlit_app.py +459 -0
streamlit_app.py ADDED
@@ -0,0 +1,459 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pulp
2
+ import numpy as np
3
+ import pandas as pd
4
+ import random
5
+ import sys
6
+ import openpyxl
7
+ import re
8
+ import time
9
+ import streamlit as st
10
+ import matplotlib
11
+ from matplotlib.colors import LinearSegmentedColormap
12
+ from st_aggrid import GridOptionsBuilder, AgGrid, GridUpdateMode, DataReturnMode
13
+ import json
14
+ import requests
15
+ import gspread
16
+ import plotly.express as px
17
+
18
+ scope = ['https://www.googleapis.com/auth/spreadsheets',
19
+ "https://www.googleapis.com/auth/drive"]
20
+
21
+ credentials = {
22
+ "type": "service_account",
23
+ "project_id": "sheets-api-connect-378620",
24
+ "private_key_id": "1005124050c80d085e2c5b344345715978dd9cc9",
25
+ "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
26
+ "client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
27
+ "client_id": "106625872877651920064",
28
+ "auth_uri": "https://accounts.google.com/o/oauth2/auth",
29
+ "token_uri": "https://oauth2.googleapis.com/token",
30
+ "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
31
+ "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
32
+ }
33
+
34
+ gc = gspread.service_account_from_dict(credentials)
35
+
36
+ st.set_page_config(layout="wide")
37
+
38
+ game_format = {'Win%': '{:.2%}', 'Vegas': '{:.2%}', 'Win% Diff': '{:.2%}'}
39
+ american_format = {'First Inning Lead Percentage': '{:.2%}', 'Fifth Inning Lead Percentage': '{:.2%}'}
40
+
41
+ master_hold = 'https://docs.google.com/spreadsheets/d/1I_1Ve3F4tftgfLQQoRKOJ351XfEG48s36OxXUKxmgS8/edit#gid=694077504'
42
+
43
+ @st.cache_data
44
+ def game_betting_model():
45
+ sh = gc.open_by_url(master_hold)
46
+ worksheet = sh.worksheet('Game_Betting')
47
+ raw_display = pd.DataFrame(worksheet.get_all_records())
48
+ raw_display.replace('#DIV/0!', np.nan, inplace=True)
49
+ raw_display = raw_display.dropna()
50
+
51
+ return raw_display
52
+
53
+ @st.cache_data
54
+ def player_stat_table():
55
+ sh = gc.open_by_url(master_hold)
56
+ worksheet = sh.worksheet('Prop_Table')
57
+ raw_display = pd.DataFrame(worksheet.get_all_records())
58
+ raw_display.replace('', np.nan, inplace=True)
59
+ raw_display = raw_display.dropna()
60
+
61
+ return raw_display
62
+
63
+ @st.cache_data
64
+ def player_prop_table():
65
+ sh = gc.open_by_url(master_hold)
66
+ worksheet = sh.worksheet('prop_frame')
67
+ raw_display = pd.DataFrame(worksheet.get_all_records())
68
+ raw_display.replace('', np.nan, inplace=True)
69
+ raw_display = raw_display.dropna()
70
+
71
+ return raw_display
72
+
73
+ return raw_display
74
+
75
+ game_model = game_betting_model()
76
+ overall_stats = player_stat_table()
77
+ qb_stats = overall_stats.loc[overall_stats['Position'] == 'QB']
78
+ non_qb_stats = overall_stats.loc[overall_stats['Position'] != 'QB']
79
+ prop_frame = player_prop_table()
80
+ t_stamp = f"Last Update: " + str(prop_frame['timestamp'][0]) + f" CST"
81
+
82
+ tab1, tab2, tab3, tab4, tab5 = st.tabs(["Game Betting Model", "QB Projections", "RB/WR/TE Projections", "Player Prop Simulations", "Stat Specific Simulations"])
83
+
84
+ def convert_df_to_csv(df):
85
+ return df.to_csv().encode('utf-8')
86
+
87
+ with tab1:
88
+ st.info(t_stamp)
89
+ if st.button("Reset Data", key='reset1'):
90
+ st.cache_data.clear()
91
+ game_model = game_betting_model()
92
+ overall_stats = player_stat_table()
93
+ qb_stats = overall_stats.loc[overall_stats['Position'] == 'QB']
94
+ non_qb_stats = overall_stats.loc[overall_stats['Position'] != 'QB']
95
+ prop_frame = player_prop_table()
96
+ t_stamp = f"Last Update: " + str(prop_frame['timestamp'][0]) + f" CST"
97
+ line_var1 = st.radio('How would you like to display odds?', options = ['Percentage', 'American'], key='line_var1')
98
+ team_frame = game_model
99
+ if line_var1 == 'Percentage':
100
+ team_frame = team_frame[['team', 'Opp', 'Win%', 'Vegas', 'Win% Diff', 'PD Spread', 'Vegas Spread', 'Spread Diff']]
101
+ team_frame = team_frame.set_index('team')
102
+ st.dataframe(team_frame.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(game_format, precision=2), use_container_width = True)
103
+ if line_var1 == 'American':
104
+ team_frame = team_frame[['team', 'Opp', 'Win Line', 'Vegas Line', 'Line Diff', 'PD Spread', 'Vegas Spread', 'Spread Diff']]
105
+ team_frame = team_frame.set_index('team')
106
+ st.dataframe(team_frame.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
107
+
108
+ st.download_button(
109
+ label="Export Team Model",
110
+ data=convert_df_to_csv(team_frame),
111
+ file_name='NFL_team_betting_export.csv',
112
+ mime='text/csv',
113
+ key='team_export',
114
+ )
115
+
116
+ with tab2:
117
+ st.info(t_stamp)
118
+ if st.button("Reset Data", key='reset2'):
119
+ st.cache_data.clear()
120
+ game_model = game_betting_model()
121
+ overall_stats = player_stat_table()
122
+ qb_stats = overall_stats.loc[overall_stats['Position'] == 'QB']
123
+ non_qb_stats = overall_stats.loc[overall_stats['Position'] != 'QB']
124
+ prop_frame = player_prop_table()
125
+ t_stamp = f"Last Update: " + str(prop_frame['timestamp'][0]) + f" CST"
126
+ split_var1 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var1')
127
+ if split_var1 == 'Specific Teams':
128
+ team_var1 = st.multiselect('Which teams would you like to include in the tables?', options = qb_stats['Team'].unique(), key='team_var1')
129
+ elif split_var1 == 'All':
130
+ team_var1 = qb_stats.Team.values.tolist()
131
+ qb_stats = qb_stats[qb_stats['Team'].isin(team_var1)]
132
+ qb_stats_disp = qb_stats.set_index('Player')
133
+ qb_stats_disp = qb_stats_disp.sort_values(by='PPR', ascending=False)
134
+ st.dataframe(qb_stats_disp.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
135
+ st.download_button(
136
+ label="Export Prop Model",
137
+ data=convert_df_to_csv(qb_stats_disp),
138
+ file_name='NFL_qb_stats_export.csv',
139
+ mime='text/csv',
140
+ key='pitcher_prop_export',
141
+ )
142
+
143
+ with tab3:
144
+ st.info(t_stamp)
145
+ if st.button("Reset Data", key='reset3'):
146
+ st.cache_data.clear()
147
+ game_model = game_betting_model()
148
+ overall_stats = player_stat_table()
149
+ qb_stats = overall_stats.loc[overall_stats['Position'] == 'QB']
150
+ non_qb_stats = overall_stats.loc[overall_stats['Position'] != 'QB']
151
+ prop_frame = player_prop_table()
152
+ t_stamp = f"Last Update: " + str(prop_frame['timestamp'][0]) + f" CST"
153
+ split_var2 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var2')
154
+ if split_var2 == 'Specific Teams':
155
+ team_var2 = st.multiselect('Which teams would you like to include in the tables?', options = non_qb_stats['Team'].unique(), key='team_var2')
156
+ elif split_var2 == 'All':
157
+ team_var2 = non_qb_stats.Team.values.tolist()
158
+ non_qb_stats = non_qb_stats[non_qb_stats['Team'].isin(team_var2)]
159
+ non_qb_stats_disp = non_qb_stats.set_index('Player')
160
+ non_qb_stats_disp = non_qb_stats_disp.sort_values(by='PPR', ascending=False)
161
+ st.dataframe(non_qb_stats_disp.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
162
+ st.download_button(
163
+ label="Export Prop Model",
164
+ data=convert_df_to_csv(non_qb_stats_disp),
165
+ file_name='NFL_nonqb_stats_export.csv',
166
+ mime='text/csv',
167
+ key='hitter_prop_export',
168
+ )
169
+
170
+ with tab4:
171
+ st.info(t_stamp)
172
+ if st.button("Reset Data", key='reset4'):
173
+ st.cache_data.clear()
174
+ game_model = game_betting_model()
175
+ overall_stats = player_stat_table()
176
+ qb_stats = overall_stats.loc[overall_stats['Position'] == 'QB']
177
+ non_qb_stats = overall_stats.loc[overall_stats['Position'] != 'QB']
178
+ prop_frame = player_prop_table()
179
+ t_stamp = f"Last Update: " + str(prop_frame['timestamp'][0]) + f" CST"
180
+ col1, col2 = st.columns([1, 5])
181
+
182
+ with col2:
183
+ df_hold_container = st.empty()
184
+ info_hold_container = st.empty()
185
+ plot_hold_container = st.empty()
186
+
187
+ with col1:
188
+ player_check = st.selectbox('Select player to simulate props', options = overall_stats['Player'].unique())
189
+ prop_type_var = st.selectbox('Select type of prop to simulate', options = ['Pass Yards', 'Pass TDs', 'Rush Yards', 'Rush TDs', 'Receptions', 'Rec Yards', 'Rec TDs', 'Fantasy', 'FD Fantasy', 'PrizePicks'])
190
+
191
+ ou_var = st.selectbox('Select wether it is an over or under', options = ['Over', 'Under'])
192
+ if prop_type_var == 'Pass Yards':
193
+ prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 100.0, max_value = 400.5, value = 250.5, step = .5)
194
+ elif prop_type_var == 'Pass TDs':
195
+ prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 5.5, value = 1.5, step = .5)
196
+ elif prop_type_var == 'Rush Yards':
197
+ prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 155.5, value = 25.5, step = .5)
198
+ elif prop_type_var == 'Rush TDs':
199
+ prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 5.5, value = 1.5, step = .5)
200
+ elif prop_type_var == 'Receptions':
201
+ prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 15.5, value = 5.5, step = .5)
202
+ elif prop_type_var == 'Rec Yards':
203
+ prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 155.5, value = 25.5, step = .5)
204
+ elif prop_type_var == 'Rec TDs':
205
+ prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 5.5, value = 1.5, step = .5)
206
+ elif prop_type_var == 'Fantasy':
207
+ prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 50.5, value = 10.5, step = .5)
208
+ elif prop_type_var == 'FD Fantasy':
209
+ prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 50.5, value = 10.5, step = .5)
210
+ elif prop_type_var == 'PrizePicks':
211
+ prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 50.5, value = 10.5, step = .5)
212
+ line_var = st.number_input('Type in the line on the prop (i.e. -120)', min_value = -1000, max_value = 1000, value = -150, step = 1)
213
+ line_var = line_var + 1
214
+
215
+ if st.button('Simulate Prop'):
216
+ with col2:
217
+
218
+ with df_hold_container.container():
219
+
220
+ df = overall_stats
221
+
222
+ total_sims = 5000
223
+
224
+ df.replace("", 0, inplace=True)
225
+
226
+ player_var = df.loc[df['Player'] == player_check]
227
+ player_var = player_var.reset_index()
228
+
229
+ if prop_type_var == 'Pass Yards':
230
+ df['Median'] = df['pass_yards']
231
+ elif prop_type_var == 'Pass TDs':
232
+ df['Median'] = df['pass_tds']
233
+ elif prop_type_var == 'Rush Yards':
234
+ df['Median'] = df['rush_yards']
235
+ elif prop_type_var == 'Rush TDs':
236
+ df['Median'] = df['rush_tds']
237
+ elif prop_type_var == 'Receptions':
238
+ df['Median'] = df['rec']
239
+ elif prop_type_var == 'Rec Yards':
240
+ df['Median'] = df['rec_yards']
241
+ elif prop_type_var == 'Rec TDs':
242
+ df['Median'] = df['rec_tds']
243
+ elif prop_type_var == 'Fantasy':
244
+ df['Median'] = df['PPR']
245
+ elif prop_type_var == 'FD Fantasy':
246
+ df['Median'] = df['Half_PPF']
247
+ elif prop_type_var == 'PrizePicks':
248
+ df['Median'] = df['Half_PPF']
249
+
250
+ flex_file = df
251
+ flex_file['Floor'] = flex_file['Median'] * .20
252
+ flex_file['Ceiling'] = flex_file['Median'] + (flex_file['Median'] * .80)
253
+ flex_file['STD'] = flex_file['Median'] / 4
254
+ flex_file = flex_file[['Player', 'Floor', 'Median', 'Ceiling', 'STD']]
255
+
256
+ hold_file = flex_file
257
+ overall_file = flex_file
258
+ salary_file = flex_file
259
+
260
+ overall_players = overall_file[['Player']]
261
+
262
+ for x in range(0,total_sims):
263
+ overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
264
+
265
+ overall_file=overall_file.drop(['Player', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
266
+ overall_file.astype('int').dtypes
267
+
268
+ players_only = hold_file[['Player']]
269
+
270
+ player_outcomes = pd.merge(players_only, overall_file, left_index=True, right_index=True)
271
+
272
+ players_only['Mean_Outcome'] = overall_file.mean(axis=1)
273
+ players_only['10%'] = overall_file.quantile(0.1, axis=1)
274
+ players_only['90%'] = overall_file.quantile(0.9, axis=1)
275
+ if ou_var == 'Over':
276
+ players_only['beat_prop'] = overall_file[overall_file > prop_var].count(axis=1)/float(total_sims)
277
+ elif ou_var == 'Under':
278
+ players_only['beat_prop'] = (overall_file[overall_file < prop_var].count(axis=1)/float(total_sims))
279
+
280
+ players_only['implied_odds'] = np.where(line_var <= 0, (-(line_var)/((-(line_var))+100)), 100/(line_var+100))
281
+
282
+ players_only['Player'] = hold_file[['Player']]
283
+
284
+ final_outcomes = players_only[['Player', '10%', 'Mean_Outcome', '90%', 'implied_odds', 'beat_prop']]
285
+ final_outcomes['Bet?'] = np.where(final_outcomes['beat_prop'] - final_outcomes['implied_odds'] >= .10, "Bet", "No Bet")
286
+ final_outcomes = final_outcomes.loc[final_outcomes['Player'] == player_check]
287
+ player_outcomes = player_outcomes.loc[player_outcomes['Player'] == player_check]
288
+ player_outcomes = player_outcomes.drop(columns=['Player']).transpose()
289
+ player_outcomes = player_outcomes.reset_index()
290
+ player_outcomes.columns = ['Instance', 'Outcome']
291
+
292
+ x1 = player_outcomes.Outcome.to_numpy()
293
+
294
+ print(x1)
295
+
296
+ hist_data = [x1]
297
+
298
+ group_labels = ['player outcomes']
299
+
300
+ fig = px.histogram(
301
+ player_outcomes, x='Outcome')
302
+ fig.add_vline(x=prop_var, line_dash="dash", line_color="green")
303
+
304
+ with df_hold_container:
305
+ df_hold_container = st.empty()
306
+ format_dict = {'10%': '{:.2f}', 'Mean_Outcome': '{:.2f}','90%': '{:.2f}', 'beat_prop': '{:.2%}','implied_odds': '{:.2%}'}
307
+ st.dataframe(final_outcomes.style.format(format_dict), use_container_width = True)
308
+
309
+ with info_hold_container:
310
+ st.info('The Y-axis is the percent of times in simulations that the player reaches certain thresholds, while the X-axis is the threshold to be met. The Green dotted line is the prop you entered. You can hover over any spot and see the percent to reach that mark.')
311
+
312
+ with plot_hold_container:
313
+ st.dataframe(player_outcomes, use_container_width = True)
314
+ plot_hold_container = st.empty()
315
+ st.plotly_chart(fig, use_container_width=True)
316
+
317
+ with tab5:
318
+ st.info(t_stamp)
319
+ st.info('The Over and Under percentages are a compositve percentage based on simulations, historical performance, and implied probabilities, and may be different than you would expect based purely on the median projection. Likewise, the Edge of a bet is not the only indicator of if you should make the bet or not as the suggestion is using a base acceptable threshold to determine how much edge you should have for each stat category.')
320
+ if st.button("Reset Data/Load Data", key='reset5'):
321
+ st.cache_data.clear()
322
+ game_model = game_betting_model()
323
+ overall_stats = player_stat_table()
324
+ qb_stats = overall_stats.loc[overall_stats['Position'] == 'QB']
325
+ non_qb_stats = overall_stats.loc[overall_stats['Position'] != 'QB']
326
+ prop_frame = player_prop_table()
327
+ t_stamp = f"Last Update: " + str(prop_frame['timestamp'][0]) + f" CST"
328
+ col1, col2 = st.columns([1, 5])
329
+
330
+ with col2:
331
+ df_hold_container = st.empty()
332
+ info_hold_container = st.empty()
333
+ plot_hold_container = st.empty()
334
+ export_container = st.empty()
335
+
336
+ with col1:
337
+ prop_type_var = st.selectbox('Select prop category', options = ['Pass Yards', 'Rush Yards', 'Receiving Yards'])
338
+
339
+ if st.button('Simulate Prop Category'):
340
+ with col2:
341
+
342
+ with df_hold_container.container():
343
+
344
+ if prop_type_var == "Pass Yards":
345
+ prop_df = prop_frame[['Player', 'over_prop', 'over_line', 'under_line', 'prop_type']]
346
+ prop_df = prop_df.loc[prop_df['prop_type'] == 'pass_yards']
347
+ prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
348
+ prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
349
+ prop_df = prop_df.loc[prop_df['Prop'] != 0]
350
+ st.table(prop_df)
351
+ prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+101)), 101/(prop_df['over_line']+101))
352
+ prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
353
+ df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
354
+ elif prop_type_var == "Rush Yards":
355
+ prop_df = prop_frame[['Player', 'over_prop', 'over_line', 'under_line', 'prop_type']]
356
+ prop_df = prop_df.loc[prop_df['prop_type'] == 'rush_yards']
357
+ prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
358
+ prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
359
+ prop_df = prop_df.loc[prop_df['Prop'] != 0]
360
+ st.table(prop_df)
361
+ prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+101)), 101/(prop_df['over_line']+101))
362
+ prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
363
+ df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
364
+ elif prop_type_var == "Receiving Yards":
365
+ prop_df = prop_frame[['Player', 'over_prop', 'over_line', 'under_line', 'prop_type']]
366
+ prop_df = prop_df.loc[prop_df['prop_type'] == 'rec_yards']
367
+ prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
368
+ prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
369
+ prop_df = prop_df.loc[prop_df['Prop'] != 0]
370
+ st.table(prop_df)
371
+ prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+101)), 101/(prop_df['over_line']+101))
372
+ prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
373
+ df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
374
+
375
+ prop_dict = dict(zip(df.Player, df.Prop))
376
+ over_dict = dict(zip(df.Player, df.Over))
377
+ under_dict = dict(zip(df.Player, df.Under))
378
+
379
+ total_sims = 1000
380
+
381
+ df.replace("", 0, inplace=True)
382
+
383
+ if prop_type_var == "Pass Yards":
384
+ df['Median'] = df['pass_yards']
385
+ elif prop_type_var == "Rush Yards":
386
+ df['Median'] = df['rush_yards']
387
+ elif prop_type_var == "Receiving Yards":
388
+ df['Median'] = df['rec_yards']
389
+
390
+ flex_file = df
391
+ flex_file['Floor'] = flex_file['Median'] * .20
392
+ flex_file['Ceiling'] = flex_file['Median'] + (flex_file['Median'] * .80)
393
+ flex_file['STD'] = flex_file['Median'] / 4
394
+ flex_file['Prop'] = flex_file['Player'].map(prop_dict)
395
+ flex_file = flex_file[['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']]
396
+
397
+ hold_file = flex_file
398
+ overall_file = flex_file
399
+ prop_file = flex_file
400
+
401
+ overall_players = overall_file[['Player']]
402
+
403
+ for x in range(0,total_sims):
404
+ prop_file[x] = prop_file['Prop']
405
+
406
+ prop_file = prop_file.drop(['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
407
+
408
+ for x in range(0,total_sims):
409
+ overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
410
+
411
+ overall_file=overall_file.drop(['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
412
+
413
+ players_only = hold_file[['Player']]
414
+
415
+ player_outcomes = pd.merge(players_only, overall_file, left_index=True, right_index=True)
416
+
417
+ prop_check = (overall_file - prop_file)
418
+
419
+ players_only['Mean_Outcome'] = overall_file.mean(axis=1)
420
+ players_only['10%'] = overall_file.quantile(0.1, axis=1)
421
+ players_only['90%'] = overall_file.quantile(0.9, axis=1)
422
+ players_only['Over'] = prop_check[prop_check > 0].count(axis=1)/float(total_sims)
423
+ players_only['Imp Over'] = players_only['Player'].map(over_dict)
424
+ players_only['Over%'] = players_only[["Over", "Imp Over"]].mean(axis=1)
425
+ players_only['Under'] = prop_check[prop_check < 0].count(axis=1)/float(total_sims)
426
+ players_only['Imp Under'] = players_only['Player'].map(under_dict)
427
+ players_only['Under%'] = players_only[["Under", "Imp Under"]].mean(axis=1)
428
+ players_only['Prop'] = players_only['Player'].map(prop_dict)
429
+ players_only['Prop_avg'] = players_only['Prop'].mean() / 100
430
+ players_only['prop_threshold'] = .10
431
+ players_only = players_only.loc[players_only['Mean_Outcome'] > 0]
432
+ players_only['Over_diff'] = players_only['Over%'] - players_only['Imp Over']
433
+ players_only['Under_diff'] = players_only['Under%'] - players_only['Imp Under']
434
+ players_only['Bet_check'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], players_only['Over_diff'] , players_only['Under_diff'])
435
+ players_only['Bet_suggest'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], "Over" , "Under")
436
+ players_only['Bet?'] = np.where(players_only['Bet_check'] >= players_only['prop_threshold'], players_only['Bet_suggest'], "No Bet")
437
+ players_only['Edge'] = players_only['Bet_check']
438
+
439
+ players_only['Player'] = hold_file[['Player']]
440
+
441
+ final_outcomes = players_only[['Player', 'Prop', 'Mean_Outcome', 'Imp Over', 'Over%', 'Imp Under', 'Under%', 'Bet?', 'Edge']]
442
+
443
+ final_outcomes = final_outcomes.sort_values(by='Edge', ascending=False)
444
+
445
+ final_outcomes = final_outcomes.set_index('Player')
446
+
447
+ with df_hold_container:
448
+ df_hold_container = st.empty()
449
+ st.dataframe(final_outcomes.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
450
+ with export_container:
451
+ export_container = st.empty()
452
+ st.download_button(
453
+ label="Export Projections",
454
+ data=convert_df_to_csv(final_outcomes),
455
+ file_name='NFL_prop_proj.csv',
456
+ mime='text/csv',
457
+ key='prop_proj',
458
+ )
459
+