James McCool commited on
Commit
e066741
·
1 Parent(s): 4c34346

cleaned up the stat specific sim

Browse files
Files changed (1) hide show
  1. app.py +36 -25
app.py CHANGED
@@ -408,35 +408,39 @@ with tab6:
408
  with df_hold_container.container():
409
  if prop_type_var == 'All Props':
410
  if game_select_var == 'Aggregate':
 
411
  sim_vars = ['NFL_GAME_PLAYER_PASSING_YARDS', 'NFL_GAME_PLAYER_RUSHING_YARDS', 'NFL_GAME_PLAYER_PASSING_ATTEMPTS', 'NFL_GAME_PLAYER_PASSING_TOUCHDOWNS', 'NFL_GAME_PLAYER_RUSHING_ATTEMPTS',
412
  'NFL_GAME_PLAYER_RECEIVING_RECEPTIONS', 'NFL_GAME_PLAYER_RECEIVING_YARDS', 'NFL_GAME_PLAYER_RECEIVING_TOUCHDOWNS']
413
  elif game_select_var == 'Pick6':
 
414
  sim_vars = ['Rush + Rec Yards', 'Rush + Rec TDs', 'Passing Yards', 'Passing Attempts', 'Passing TDs', 'Rushing Attempts', 'Rushing Yards', 'Receptions', 'Receiving Yards', 'Receiving TDs']
 
 
 
415
  for prop in sim_vars:
416
-
417
- if game_select_var == 'Aggregate':
418
- prop_df_raw = prop_frame[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type']]
419
- elif game_select_var == 'Pick6':
420
- prop_df_raw = pick_frame[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type']]
421
-
422
  for books in book_selections:
423
  prop_df = prop_df_raw[prop_df_raw['book'] == books]
424
  prop_df = prop_df[prop_df['prop_type'] == prop]
425
  prop_df = prop_df[~((prop_df['over_prop'] < 15) & (prop_df['prop_type'] == 'NFL_GAME_PLAYER_RUSHING_YARDS'))]
426
  prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line']]
427
  prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
428
- prop_df = prop_df.drop_duplicates(subset=['Player'])
429
- prop_df = prop_df[prop_df['Prop'] != 0]
430
  prop_df['Over'] = 1 / prop_df['over_line']
431
  prop_df['Under'] = 1 / prop_df['under_line']
432
- df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
433
- df = df.reset_index(drop=True)
434
 
435
- prop_dict = dict(zip(df.Player, df.Prop))
436
- book_dict = dict(zip(df.Player, df.book))
437
- over_dict = dict(zip(df.Player, df.Over))
 
 
 
 
 
 
 
 
 
438
  team_dict = dict(zip(df.Player, df.Team))
439
- under_dict = dict(zip(df.Player, df.Under))
440
 
441
  total_sims = 1000
442
 
@@ -521,9 +525,12 @@ with tab6:
521
  sim_all_hold = pd.concat([sim_all_hold, leg_outcomes], ignore_index=True)
522
 
523
  final_outcomes = sim_all_hold
524
- st.write(f'finished {prop}')
525
 
526
  elif prop_type_var != 'All Props':
 
 
 
527
  if game_select_var == 'Aggregate':
528
  prop_df_raw = prop_frame[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type']]
529
  elif game_select_var == 'Pick6':
@@ -571,18 +578,22 @@ with tab6:
571
 
572
  prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line']]
573
  prop_df = prop_df.rename(columns={"over_prop": "Prop"})
574
- prop_df = prop_df[prop_df['Prop'] != 0]
575
- prop_df = prop_df.drop_duplicates(subset=['Player'])
576
  prop_df['Over'] = 1 / prop_df['over_line']
577
  prop_df['Under'] = 1 / prop_df['under_line']
578
- df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
579
- df = df.reset_index(drop=True)
580
-
581
- prop_dict = dict(zip(df.Player, df.Prop))
582
- book_dict = dict(zip(df.Player, df.book))
583
- over_dict = dict(zip(df.Player, df.Over))
 
 
 
 
 
 
 
584
  team_dict = dict(zip(df.Player, df.Team))
585
- under_dict = dict(zip(df.Player, df.Under))
586
 
587
  total_sims = 1000
588
 
@@ -667,7 +678,7 @@ with tab6:
667
  sim_all_hold = pd.concat([sim_all_hold, leg_outcomes], ignore_index=True)
668
 
669
  final_outcomes = sim_all_hold
670
- st.write(f'finished {prop_type_var}')
671
 
672
  final_outcomes = final_outcomes.dropna()
673
  if game_select_var == 'Pick6':
 
408
  with df_hold_container.container():
409
  if prop_type_var == 'All Props':
410
  if game_select_var == 'Aggregate':
411
+ prop_df_raw = prop_frame[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type']]
412
  sim_vars = ['NFL_GAME_PLAYER_PASSING_YARDS', 'NFL_GAME_PLAYER_RUSHING_YARDS', 'NFL_GAME_PLAYER_PASSING_ATTEMPTS', 'NFL_GAME_PLAYER_PASSING_TOUCHDOWNS', 'NFL_GAME_PLAYER_RUSHING_ATTEMPTS',
413
  'NFL_GAME_PLAYER_RECEIVING_RECEPTIONS', 'NFL_GAME_PLAYER_RECEIVING_YARDS', 'NFL_GAME_PLAYER_RECEIVING_TOUCHDOWNS']
414
  elif game_select_var == 'Pick6':
415
+ prop_df_raw = pick_frame[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type']]
416
  sim_vars = ['Rush + Rec Yards', 'Rush + Rec TDs', 'Passing Yards', 'Passing Attempts', 'Passing TDs', 'Rushing Attempts', 'Rushing Yards', 'Receptions', 'Receiving Yards', 'Receiving TDs']
417
+
418
+ player_df = overall_stats.copy()
419
+
420
  for prop in sim_vars:
421
+
 
 
 
 
 
422
  for books in book_selections:
423
  prop_df = prop_df_raw[prop_df_raw['book'] == books]
424
  prop_df = prop_df[prop_df['prop_type'] == prop]
425
  prop_df = prop_df[~((prop_df['over_prop'] < 15) & (prop_df['prop_type'] == 'NFL_GAME_PLAYER_RUSHING_YARDS'))]
426
  prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line']]
427
  prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
 
 
428
  prop_df['Over'] = 1 / prop_df['over_line']
429
  prop_df['Under'] = 1 / prop_df['under_line']
 
 
430
 
431
+ prop_dict = dict(zip(prop_df.Player, prop_df.Prop))
432
+ prop_type_dict = dict(zip(prop_df.Player, prop_df.prop_type))
433
+ book_dict = dict(zip(prop_df.Player, prop_df.book))
434
+ over_dict = dict(zip(prop_df.Player, prop_df.Over))
435
+ under_dict = dict(zip(prop_df.Player, prop_df.Under))
436
+
437
+ player_df['book'] = player_df['Player'].map(book_dict)
438
+ player_df['Prop'] = player_df['Player'].map(prop_dict)
439
+ player_df['prop_type'] = player_df['Player'].map(prop_type_dict)
440
+
441
+ df = player_df.reset_index(drop=True)
442
+
443
  team_dict = dict(zip(df.Player, df.Team))
 
444
 
445
  total_sims = 1000
446
 
 
525
  sim_all_hold = pd.concat([sim_all_hold, leg_outcomes], ignore_index=True)
526
 
527
  final_outcomes = sim_all_hold
528
+ st.write(f'finished {prop} for {books}')
529
 
530
  elif prop_type_var != 'All Props':
531
+
532
+ player_df = overall_stats.copy()
533
+
534
  if game_select_var == 'Aggregate':
535
  prop_df_raw = prop_frame[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type']]
536
  elif game_select_var == 'Pick6':
 
578
 
579
  prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line']]
580
  prop_df = prop_df.rename(columns={"over_prop": "Prop"})
 
 
581
  prop_df['Over'] = 1 / prop_df['over_line']
582
  prop_df['Under'] = 1 / prop_df['under_line']
583
+
584
+ prop_dict = dict(zip(prop_df.Player, prop_df.Prop))
585
+ prop_type_dict = dict(zip(prop_df.Player, prop_df.prop_type))
586
+ book_dict = dict(zip(prop_df.Player, prop_df.book))
587
+ over_dict = dict(zip(prop_df.Player, prop_df.Over))
588
+ under_dict = dict(zip(prop_df.Player, prop_df.Under))
589
+
590
+ player_df['book'] = player_df['Player'].map(book_dict)
591
+ player_df['Prop'] = player_df['Player'].map(prop_dict)
592
+ player_df['prop_type'] = player_df['Player'].map(prop_type_dict)
593
+
594
+ df = player_df.reset_index(drop=True)
595
+
596
  team_dict = dict(zip(df.Player, df.Team))
 
597
 
598
  total_sims = 1000
599
 
 
678
  sim_all_hold = pd.concat([sim_all_hold, leg_outcomes], ignore_index=True)
679
 
680
  final_outcomes = sim_all_hold
681
+ st.write(f'finished {prop_type_var} for {books}')
682
 
683
  final_outcomes = final_outcomes.dropna()
684
  if game_select_var == 'Pick6':