Spaces:
Running
Running
James McCool
commited on
Commit
·
e066741
1
Parent(s):
4c34346
cleaned up the stat specific sim
Browse files
app.py
CHANGED
@@ -408,35 +408,39 @@ with tab6:
|
|
408 |
with df_hold_container.container():
|
409 |
if prop_type_var == 'All Props':
|
410 |
if game_select_var == 'Aggregate':
|
|
|
411 |
sim_vars = ['NFL_GAME_PLAYER_PASSING_YARDS', 'NFL_GAME_PLAYER_RUSHING_YARDS', 'NFL_GAME_PLAYER_PASSING_ATTEMPTS', 'NFL_GAME_PLAYER_PASSING_TOUCHDOWNS', 'NFL_GAME_PLAYER_RUSHING_ATTEMPTS',
|
412 |
'NFL_GAME_PLAYER_RECEIVING_RECEPTIONS', 'NFL_GAME_PLAYER_RECEIVING_YARDS', 'NFL_GAME_PLAYER_RECEIVING_TOUCHDOWNS']
|
413 |
elif game_select_var == 'Pick6':
|
|
|
414 |
sim_vars = ['Rush + Rec Yards', 'Rush + Rec TDs', 'Passing Yards', 'Passing Attempts', 'Passing TDs', 'Rushing Attempts', 'Rushing Yards', 'Receptions', 'Receiving Yards', 'Receiving TDs']
|
|
|
|
|
|
|
415 |
for prop in sim_vars:
|
416 |
-
|
417 |
-
if game_select_var == 'Aggregate':
|
418 |
-
prop_df_raw = prop_frame[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type']]
|
419 |
-
elif game_select_var == 'Pick6':
|
420 |
-
prop_df_raw = pick_frame[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type']]
|
421 |
-
|
422 |
for books in book_selections:
|
423 |
prop_df = prop_df_raw[prop_df_raw['book'] == books]
|
424 |
prop_df = prop_df[prop_df['prop_type'] == prop]
|
425 |
prop_df = prop_df[~((prop_df['over_prop'] < 15) & (prop_df['prop_type'] == 'NFL_GAME_PLAYER_RUSHING_YARDS'))]
|
426 |
prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line']]
|
427 |
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
428 |
-
prop_df = prop_df.drop_duplicates(subset=['Player'])
|
429 |
-
prop_df = prop_df[prop_df['Prop'] != 0]
|
430 |
prop_df['Over'] = 1 / prop_df['over_line']
|
431 |
prop_df['Under'] = 1 / prop_df['under_line']
|
432 |
-
df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
433 |
-
df = df.reset_index(drop=True)
|
434 |
|
435 |
-
prop_dict = dict(zip(
|
436 |
-
|
437 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
438 |
team_dict = dict(zip(df.Player, df.Team))
|
439 |
-
under_dict = dict(zip(df.Player, df.Under))
|
440 |
|
441 |
total_sims = 1000
|
442 |
|
@@ -521,9 +525,12 @@ with tab6:
|
|
521 |
sim_all_hold = pd.concat([sim_all_hold, leg_outcomes], ignore_index=True)
|
522 |
|
523 |
final_outcomes = sim_all_hold
|
524 |
-
st.write(f'finished {prop}')
|
525 |
|
526 |
elif prop_type_var != 'All Props':
|
|
|
|
|
|
|
527 |
if game_select_var == 'Aggregate':
|
528 |
prop_df_raw = prop_frame[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type']]
|
529 |
elif game_select_var == 'Pick6':
|
@@ -571,18 +578,22 @@ with tab6:
|
|
571 |
|
572 |
prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line']]
|
573 |
prop_df = prop_df.rename(columns={"over_prop": "Prop"})
|
574 |
-
prop_df = prop_df[prop_df['Prop'] != 0]
|
575 |
-
prop_df = prop_df.drop_duplicates(subset=['Player'])
|
576 |
prop_df['Over'] = 1 / prop_df['over_line']
|
577 |
prop_df['Under'] = 1 / prop_df['under_line']
|
578 |
-
|
579 |
-
|
580 |
-
|
581 |
-
|
582 |
-
|
583 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
584 |
team_dict = dict(zip(df.Player, df.Team))
|
585 |
-
under_dict = dict(zip(df.Player, df.Under))
|
586 |
|
587 |
total_sims = 1000
|
588 |
|
@@ -667,7 +678,7 @@ with tab6:
|
|
667 |
sim_all_hold = pd.concat([sim_all_hold, leg_outcomes], ignore_index=True)
|
668 |
|
669 |
final_outcomes = sim_all_hold
|
670 |
-
st.write(f'finished {prop_type_var}')
|
671 |
|
672 |
final_outcomes = final_outcomes.dropna()
|
673 |
if game_select_var == 'Pick6':
|
|
|
408 |
with df_hold_container.container():
|
409 |
if prop_type_var == 'All Props':
|
410 |
if game_select_var == 'Aggregate':
|
411 |
+
prop_df_raw = prop_frame[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type']]
|
412 |
sim_vars = ['NFL_GAME_PLAYER_PASSING_YARDS', 'NFL_GAME_PLAYER_RUSHING_YARDS', 'NFL_GAME_PLAYER_PASSING_ATTEMPTS', 'NFL_GAME_PLAYER_PASSING_TOUCHDOWNS', 'NFL_GAME_PLAYER_RUSHING_ATTEMPTS',
|
413 |
'NFL_GAME_PLAYER_RECEIVING_RECEPTIONS', 'NFL_GAME_PLAYER_RECEIVING_YARDS', 'NFL_GAME_PLAYER_RECEIVING_TOUCHDOWNS']
|
414 |
elif game_select_var == 'Pick6':
|
415 |
+
prop_df_raw = pick_frame[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type']]
|
416 |
sim_vars = ['Rush + Rec Yards', 'Rush + Rec TDs', 'Passing Yards', 'Passing Attempts', 'Passing TDs', 'Rushing Attempts', 'Rushing Yards', 'Receptions', 'Receiving Yards', 'Receiving TDs']
|
417 |
+
|
418 |
+
player_df = overall_stats.copy()
|
419 |
+
|
420 |
for prop in sim_vars:
|
421 |
+
|
|
|
|
|
|
|
|
|
|
|
422 |
for books in book_selections:
|
423 |
prop_df = prop_df_raw[prop_df_raw['book'] == books]
|
424 |
prop_df = prop_df[prop_df['prop_type'] == prop]
|
425 |
prop_df = prop_df[~((prop_df['over_prop'] < 15) & (prop_df['prop_type'] == 'NFL_GAME_PLAYER_RUSHING_YARDS'))]
|
426 |
prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line']]
|
427 |
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
|
|
|
|
428 |
prop_df['Over'] = 1 / prop_df['over_line']
|
429 |
prop_df['Under'] = 1 / prop_df['under_line']
|
|
|
|
|
430 |
|
431 |
+
prop_dict = dict(zip(prop_df.Player, prop_df.Prop))
|
432 |
+
prop_type_dict = dict(zip(prop_df.Player, prop_df.prop_type))
|
433 |
+
book_dict = dict(zip(prop_df.Player, prop_df.book))
|
434 |
+
over_dict = dict(zip(prop_df.Player, prop_df.Over))
|
435 |
+
under_dict = dict(zip(prop_df.Player, prop_df.Under))
|
436 |
+
|
437 |
+
player_df['book'] = player_df['Player'].map(book_dict)
|
438 |
+
player_df['Prop'] = player_df['Player'].map(prop_dict)
|
439 |
+
player_df['prop_type'] = player_df['Player'].map(prop_type_dict)
|
440 |
+
|
441 |
+
df = player_df.reset_index(drop=True)
|
442 |
+
|
443 |
team_dict = dict(zip(df.Player, df.Team))
|
|
|
444 |
|
445 |
total_sims = 1000
|
446 |
|
|
|
525 |
sim_all_hold = pd.concat([sim_all_hold, leg_outcomes], ignore_index=True)
|
526 |
|
527 |
final_outcomes = sim_all_hold
|
528 |
+
st.write(f'finished {prop} for {books}')
|
529 |
|
530 |
elif prop_type_var != 'All Props':
|
531 |
+
|
532 |
+
player_df = overall_stats.copy()
|
533 |
+
|
534 |
if game_select_var == 'Aggregate':
|
535 |
prop_df_raw = prop_frame[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type']]
|
536 |
elif game_select_var == 'Pick6':
|
|
|
578 |
|
579 |
prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line']]
|
580 |
prop_df = prop_df.rename(columns={"over_prop": "Prop"})
|
|
|
|
|
581 |
prop_df['Over'] = 1 / prop_df['over_line']
|
582 |
prop_df['Under'] = 1 / prop_df['under_line']
|
583 |
+
|
584 |
+
prop_dict = dict(zip(prop_df.Player, prop_df.Prop))
|
585 |
+
prop_type_dict = dict(zip(prop_df.Player, prop_df.prop_type))
|
586 |
+
book_dict = dict(zip(prop_df.Player, prop_df.book))
|
587 |
+
over_dict = dict(zip(prop_df.Player, prop_df.Over))
|
588 |
+
under_dict = dict(zip(prop_df.Player, prop_df.Under))
|
589 |
+
|
590 |
+
player_df['book'] = player_df['Player'].map(book_dict)
|
591 |
+
player_df['Prop'] = player_df['Player'].map(prop_dict)
|
592 |
+
player_df['prop_type'] = player_df['Player'].map(prop_type_dict)
|
593 |
+
|
594 |
+
df = player_df.reset_index(drop=True)
|
595 |
+
|
596 |
team_dict = dict(zip(df.Player, df.Team))
|
|
|
597 |
|
598 |
total_sims = 1000
|
599 |
|
|
|
678 |
sim_all_hold = pd.concat([sim_all_hold, leg_outcomes], ignore_index=True)
|
679 |
|
680 |
final_outcomes = sim_all_hold
|
681 |
+
st.write(f'finished {prop_type_var} for {books}')
|
682 |
|
683 |
final_outcomes = final_outcomes.dropna()
|
684 |
if game_select_var == 'Pick6':
|