Multichem commited on
Commit
e1d3879
·
verified ·
1 Parent(s): 5f09eb6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -2
app.py CHANGED
@@ -77,7 +77,7 @@ prop_table_options = ['NFL_GAME_PLAYER_RUSHING_YARDS', 'NFL_GAME_PLAYER_RECEIVIN
77
  prop_format = {'L3 Success': '{:.2%}', 'L6_Success': '{:.2%}', 'L10_success': '{:.2%}', 'Trending Over': '{:.2%}', 'Trending Under': '{:.2%}',
78
  'Implied Over': '{:.2%}', 'Implied Under': '{:.2%}', 'Over Edge': '{:.2%}', 'Under Edge': '{:.2%}'}
79
  all_sim_vars = ['NFL_GAME_PLAYER_PASSING_YARDS', 'NFL_GAME_PLAYER_RUSHING_YARDS', 'NFL_GAME_PLAYER_RECEIVING_YARDS', 'NFL_GAME_PLAYER_RECEIVING_RECEPTIONS', 'NFL_GAME_PLAYER_RUSHING_ATTEMPTS', 'NFL_GAME_PLAYER_PASSING_ATTEMPTS']
80
- sim_all_hold = pd.DataFrame(columns=['Player', 'Team', 'Prop type', 'Prop', 'Mean_Outcome', 'Imp Over', 'Over%', 'Imp Under', 'Under%', 'Bet?', 'Edge'])
81
 
82
  tab1, tab2, tab3, tab4, tab5, tab6 = st.tabs(["Game Betting Model", "QB Projections", "RB/WR/TE Projections", "Player Prop Trends", "Player Prop Simulations", "Stat Specific Simulations"])
83
 
@@ -631,7 +631,7 @@ with tab6:
631
 
632
  final_outcomes = sim_all_hold
633
 
634
- # final_outcomes = final_outcomes.dropna()
635
  final_outcomes = final_outcomes.sort_values(by='Edge', ascending=False)
636
 
637
  with df_hold_container:
 
77
  prop_format = {'L3 Success': '{:.2%}', 'L6_Success': '{:.2%}', 'L10_success': '{:.2%}', 'Trending Over': '{:.2%}', 'Trending Under': '{:.2%}',
78
  'Implied Over': '{:.2%}', 'Implied Under': '{:.2%}', 'Over Edge': '{:.2%}', 'Under Edge': '{:.2%}'}
79
  all_sim_vars = ['NFL_GAME_PLAYER_PASSING_YARDS', 'NFL_GAME_PLAYER_RUSHING_YARDS', 'NFL_GAME_PLAYER_RECEIVING_YARDS', 'NFL_GAME_PLAYER_RECEIVING_RECEPTIONS', 'NFL_GAME_PLAYER_RUSHING_ATTEMPTS', 'NFL_GAME_PLAYER_PASSING_ATTEMPTS']
80
+ sim_all_hold = pd.DataFrame(columns=['Player', 'Team', 'Prop', 'Mean_Outcome', 'Imp Over', 'Over%', 'Imp Under', 'Under%', 'Bet?', 'Edge'])
81
 
82
  tab1, tab2, tab3, tab4, tab5, tab6 = st.tabs(["Game Betting Model", "QB Projections", "RB/WR/TE Projections", "Player Prop Trends", "Player Prop Simulations", "Stat Specific Simulations"])
83
 
 
631
 
632
  final_outcomes = sim_all_hold
633
 
634
+ final_outcomes = final_outcomes.dropna()
635
  final_outcomes = final_outcomes.sort_values(by='Edge', ascending=False)
636
 
637
  with df_hold_container: