Multichem commited on
Commit
154dd95
·
1 Parent(s): 4417fca

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +69 -69
app.py CHANGED
@@ -1336,8 +1336,8 @@ with tab2:
1336
  dst_freq['Team'] = dst_freq['Team'].replace(item_list, team_list)
1337
 
1338
  dst_freq = dst_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
1339
- if sim_done == 1:
1340
- with st.container():
1341
  player_split_var2 = st.radio("Are you wanting to isolate any lineups with specific players?", ('Full Players', 'Specific Players'))
1342
  if player_split_var2 == 'Specific Players':
1343
  find_var2 = st.multiselect('Which players must be included in the lineups?', options = player_freq['Player'].unique())
@@ -1348,73 +1348,73 @@ with tab2:
1348
  elif player_split_var2 == 'Full Players':
1349
  Sim_Winner_Frame = Sim_Winner_Frame
1350
 
1351
- with st.container():
1352
- display_winner_dataframe = Sim_Winner_Frame.copy()
1353
- st.dataframe(display_winner_dataframe.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').background_gradient(cmap='RdYlGn_r', subset=['Own']).format(precision=2), use_container_width = True)
1354
-
1355
- st.download_button(
1356
- label="Export Tables",
1357
- data=convert_df_to_csv(Sim_Winner_Export),
1358
- file_name='NFL_consim_export.csv',
1359
- mime='text/csv',
1360
- )
1361
-
1362
- with st.container():
1363
- freq_container = st.empty()
1364
- tab1, tab2, tab3, tab4, tab5, tab6, tab7 = st.tabs(['Overall Exposures', 'QB Exposures', 'RB Exposures', 'WR Exposures', 'TE Exposures', 'FLEX Exposures', 'DST Exposures'])
1365
- with tab1:
1366
- st.dataframe(player_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
1367
- st.download_button(
1368
- label="Export Exposures",
1369
- data=convert_df_to_csv(player_freq),
1370
- file_name='player_freq_export.csv',
1371
- mime='text/csv',
1372
- )
1373
- with tab2:
1374
- st.dataframe(qb_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
1375
- st.download_button(
1376
- label="Export Exposures",
1377
- data=convert_df_to_csv(qb_freq),
1378
- file_name='qb_freq_export.csv',
1379
- mime='text/csv',
1380
- )
1381
- with tab3:
1382
- st.dataframe(rb_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
1383
- st.download_button(
1384
- label="Export Exposures",
1385
- data=convert_df_to_csv(rb_freq),
1386
- file_name='rb_freq_export.csv',
1387
- mime='text/csv',
1388
- )
1389
- with tab4:
1390
- st.dataframe(wr_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
1391
- st.download_button(
1392
- label="Export Exposures",
1393
- data=convert_df_to_csv(wr_freq),
1394
- file_name='wr_freq_export.csv',
1395
- mime='text/csv',
1396
- )
1397
- with tab5:
1398
- st.dataframe(te_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
1399
- st.download_button(
1400
- label="Export Exposures",
1401
- data=convert_df_to_csv(te_freq),
1402
- file_name='te_freq_export.csv',
1403
- mime='text/csv',
1404
- )
1405
- with tab6:
1406
- st.dataframe(flex_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
1407
  st.download_button(
1408
- label="Export Exposures",
1409
- data=convert_df_to_csv(flex_freq),
1410
- file_name='flex_freq_export.csv',
1411
  mime='text/csv',
1412
  )
1413
- with tab7:
1414
- st.dataframe(dst_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
1415
- st.download_button(
1416
- label="Export Exposures",
1417
- data=convert_df_to_csv(dst_freq),
1418
- file_name='dst_freq_export.csv',
1419
- mime='text/csv',
1420
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1336
  dst_freq['Team'] = dst_freq['Team'].replace(item_list, team_list)
1337
 
1338
  dst_freq = dst_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
1339
+ with st.container():
1340
+ if sim_done == 1:
1341
  player_split_var2 = st.radio("Are you wanting to isolate any lineups with specific players?", ('Full Players', 'Specific Players'))
1342
  if player_split_var2 == 'Specific Players':
1343
  find_var2 = st.multiselect('Which players must be included in the lineups?', options = player_freq['Player'].unique())
 
1348
  elif player_split_var2 == 'Full Players':
1349
  Sim_Winner_Frame = Sim_Winner_Frame
1350
 
1351
+ with st.container():
1352
+ display_winner_dataframe = Sim_Winner_Frame.copy()
1353
+ st.dataframe(display_winner_dataframe.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').background_gradient(cmap='RdYlGn_r', subset=['Own']).format(precision=2), use_container_width = True)
1354
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1355
  st.download_button(
1356
+ label="Export Tables",
1357
+ data=convert_df_to_csv(Sim_Winner_Export),
1358
+ file_name='NFL_consim_export.csv',
1359
  mime='text/csv',
1360
  )
1361
+
1362
+ with st.container():
1363
+ freq_container = st.empty()
1364
+ tab1, tab2, tab3, tab4, tab5, tab6, tab7 = st.tabs(['Overall Exposures', 'QB Exposures', 'RB Exposures', 'WR Exposures', 'TE Exposures', 'FLEX Exposures', 'DST Exposures'])
1365
+ with tab1:
1366
+ st.dataframe(player_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
1367
+ st.download_button(
1368
+ label="Export Exposures",
1369
+ data=convert_df_to_csv(player_freq),
1370
+ file_name='player_freq_export.csv',
1371
+ mime='text/csv',
1372
+ )
1373
+ with tab2:
1374
+ st.dataframe(qb_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
1375
+ st.download_button(
1376
+ label="Export Exposures",
1377
+ data=convert_df_to_csv(qb_freq),
1378
+ file_name='qb_freq_export.csv',
1379
+ mime='text/csv',
1380
+ )
1381
+ with tab3:
1382
+ st.dataframe(rb_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
1383
+ st.download_button(
1384
+ label="Export Exposures",
1385
+ data=convert_df_to_csv(rb_freq),
1386
+ file_name='rb_freq_export.csv',
1387
+ mime='text/csv',
1388
+ )
1389
+ with tab4:
1390
+ st.dataframe(wr_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
1391
+ st.download_button(
1392
+ label="Export Exposures",
1393
+ data=convert_df_to_csv(wr_freq),
1394
+ file_name='wr_freq_export.csv',
1395
+ mime='text/csv',
1396
+ )
1397
+ with tab5:
1398
+ st.dataframe(te_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
1399
+ st.download_button(
1400
+ label="Export Exposures",
1401
+ data=convert_df_to_csv(te_freq),
1402
+ file_name='te_freq_export.csv',
1403
+ mime='text/csv',
1404
+ )
1405
+ with tab6:
1406
+ st.dataframe(flex_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
1407
+ st.download_button(
1408
+ label="Export Exposures",
1409
+ data=convert_df_to_csv(flex_freq),
1410
+ file_name='flex_freq_export.csv',
1411
+ mime='text/csv',
1412
+ )
1413
+ with tab7:
1414
+ st.dataframe(dst_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
1415
+ st.download_button(
1416
+ label="Export Exposures",
1417
+ data=convert_df_to_csv(dst_freq),
1418
+ file_name='dst_freq_export.csv',
1419
+ mime='text/csv',
1420
+ )