Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -887,8 +887,10 @@ with tab2:
|
|
887 |
sharp_split = .75
|
888 |
Strength_var = .01
|
889 |
scaling_var = 15
|
890 |
-
|
891 |
-
|
|
|
|
|
892 |
|
893 |
with col2:
|
894 |
with st.container():
|
@@ -1221,10 +1223,10 @@ with tab2:
|
|
1221 |
Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict)
|
1222 |
|
1223 |
# Sorting
|
1224 |
-
Sim_Winner_Frame = Sim_Winner_Frame.sort_values(by='GPP_Proj', ascending=False)
|
1225 |
|
1226 |
# Data Copying
|
1227 |
-
Sim_Winner_Export = Sim_Winner_Frame.copy()
|
1228 |
|
1229 |
# Conditional Replacement
|
1230 |
columns_to_replace = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST']
|
@@ -1235,7 +1237,7 @@ with tab2:
|
|
1235 |
replace_dict = fdid_dict
|
1236 |
|
1237 |
for col in columns_to_replace:
|
1238 |
-
Sim_Winner_Export[col].replace(replace_dict, inplace=True)
|
1239 |
|
1240 |
|
1241 |
player_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,0:9].values, return_counts=True)),
|
@@ -1338,11 +1340,13 @@ with tab2:
|
|
1338 |
|
1339 |
with st.container():
|
1340 |
simulate_container = st.empty()
|
1341 |
-
|
|
|
|
|
1342 |
|
1343 |
st.download_button(
|
1344 |
label="Export Tables",
|
1345 |
-
data=convert_df_to_csv(Sim_Winner_Export),
|
1346 |
file_name='NFL_consim_export.csv',
|
1347 |
mime='text/csv',
|
1348 |
)
|
|
|
887 |
sharp_split = .75
|
888 |
Strength_var = .01
|
889 |
scaling_var = 15
|
890 |
+
if 'Sim_Winner_Frame' not in st.session_state:
|
891 |
+
st.session_state.Sim_Winner_Frame = pd.DataFrame(columns=['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'User/Field', 'Salary', 'Projection', 'Own', 'Fantasy', 'GPP_Proj'])
|
892 |
+
if 'Sim_Winner_Export' not in st.session_state:
|
893 |
+
st.session_state.Sim_Winner_Export = pd.DataFrame(columns=['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'User/Field', 'Salary', 'Projection', 'Own', 'Fantasy', 'GPP_Proj'])
|
894 |
|
895 |
with col2:
|
896 |
with st.container():
|
|
|
1223 |
Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict)
|
1224 |
|
1225 |
# Sorting
|
1226 |
+
st.session_state.Sim_Winner_Frame = Sim_Winner_Frame.sort_values(by='GPP_Proj', ascending=False)
|
1227 |
|
1228 |
# Data Copying
|
1229 |
+
st.session_state.Sim_Winner_Export = Sim_Winner_Frame.copy()
|
1230 |
|
1231 |
# Conditional Replacement
|
1232 |
columns_to_replace = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST']
|
|
|
1237 |
replace_dict = fdid_dict
|
1238 |
|
1239 |
for col in columns_to_replace:
|
1240 |
+
st.session_state.Sim_Winner_Export[col].replace(replace_dict, inplace=True)
|
1241 |
|
1242 |
|
1243 |
player_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,0:9].values, return_counts=True)),
|
|
|
1340 |
|
1341 |
with st.container():
|
1342 |
simulate_container = st.empty()
|
1343 |
+
if "df" not in st.session_state:
|
1344 |
+
st.session_state["df"] = None
|
1345 |
+
st.dataframe(st.session_state.Sim_Winner_Frame.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').background_gradient(cmap='RdYlGn_r', subset=['Own']).format(precision=2), use_container_width = True)
|
1346 |
|
1347 |
st.download_button(
|
1348 |
label="Export Tables",
|
1349 |
+
data=convert_df_to_csv(st.session_state.Sim_Winner_Export),
|
1350 |
file_name='NFL_consim_export.csv',
|
1351 |
mime='text/csv',
|
1352 |
)
|