Spaces:
Running
Running
James McCool
commited on
Commit
·
6f36c66
1
Parent(s):
f69b920
Refactor seed frame initialization functions to accept 'sharp_split' parameter, enhancing flexibility in data handling. Update contest simulation logic to conditionally load seed frames based on selected slate and site, improving user experience and code maintainability.
Browse files
app.py
CHANGED
@@ -55,7 +55,7 @@ dk_columns = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'sal
|
|
55 |
fd_columns = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
|
56 |
|
57 |
@st.cache_data(ttl = 600)
|
58 |
-
def init_DK_seed_frames():
|
59 |
|
60 |
collection = db["DK_NFL_seed_frame"]
|
61 |
cursor = collection.find()
|
@@ -63,11 +63,12 @@ def init_DK_seed_frames():
|
|
63 |
raw_display = pd.DataFrame(list(cursor))
|
64 |
raw_display = raw_display[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
65 |
DK_seed = raw_display.to_numpy()
|
|
|
66 |
|
67 |
-
return
|
68 |
|
69 |
@st.cache_data(ttl = 600)
|
70 |
-
def init_DK_Secondary_seed_frames():
|
71 |
|
72 |
collection = db["DK_NFL_Secondary_seed_frame"]
|
73 |
cursor = collection.find()
|
@@ -75,11 +76,12 @@ def init_DK_Secondary_seed_frames():
|
|
75 |
raw_display = pd.DataFrame(list(cursor))
|
76 |
raw_display = raw_display[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
77 |
DK_seed = raw_display.to_numpy()
|
|
|
78 |
|
79 |
-
return
|
80 |
|
81 |
@st.cache_data(ttl = 599)
|
82 |
-
def init_FD_seed_frames():
|
83 |
|
84 |
collection = db["FD_NFL_seed_frame"]
|
85 |
cursor = collection.find()
|
@@ -87,11 +89,12 @@ def init_FD_seed_frames():
|
|
87 |
raw_display = pd.DataFrame(list(cursor))
|
88 |
raw_display = raw_display[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
89 |
FD_seed = raw_display.to_numpy()
|
|
|
90 |
|
91 |
-
return
|
92 |
|
93 |
@st.cache_data(ttl = 599)
|
94 |
-
def init_FD_Secondary_seed_frames():
|
95 |
|
96 |
collection = db["FD_NFL_Secondary_seed_frame"]
|
97 |
cursor = collection.find()
|
@@ -99,8 +102,10 @@ def init_FD_Secondary_seed_frames():
|
|
99 |
raw_display = pd.DataFrame(list(cursor))
|
100 |
raw_display = raw_display[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
101 |
FD_seed = raw_display.to_numpy()
|
|
|
102 |
|
103 |
-
|
|
|
104 |
|
105 |
@st.cache_data(ttl = 599)
|
106 |
def init_baselines():
|
@@ -146,10 +151,9 @@ def calculate_FD_value_frequencies(np_array):
|
|
146 |
return combined_array
|
147 |
|
148 |
@st.cache_data
|
149 |
-
def sim_contest(Sim_size, seed_frame, maps_dict,
|
150 |
SimVar = 1
|
151 |
Sim_Winners = []
|
152 |
-
fp_array = seed_frame[:sharp_split, :]
|
153 |
|
154 |
# Pre-vectorize functions
|
155 |
vec_projection_map = np.vectorize(maps_dict['Projection_map'].__getitem__)
|
@@ -301,22 +305,6 @@ with tab1:
|
|
301 |
|
302 |
sim_slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate'), key='sim_slate_var1')
|
303 |
sim_site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='sim_site_var1')
|
304 |
-
if sim_site_var1 == 'Draftkings':
|
305 |
-
if sim_slate_var1 == 'Main Slate':
|
306 |
-
DK_seed = init_DK_seed_frames()
|
307 |
-
elif sim_slate_var1 == 'Secondary Slate':
|
308 |
-
DK_seed = init_DK_Secondary_seed_frames()
|
309 |
-
|
310 |
-
raw_baselines = dk_raw
|
311 |
-
column_names = dk_columns
|
312 |
-
elif sim_site_var1 == 'Fanduel':
|
313 |
-
if sim_slate_var1 == 'Main Slate':
|
314 |
-
FD_seed = init_FD_seed_frames()
|
315 |
-
elif sim_slate_var1 == 'Secondary Slate':
|
316 |
-
FD_seed = init_FD_Secondary_seed_frames()
|
317 |
-
|
318 |
-
raw_baselines = fd_raw
|
319 |
-
column_names = fd_columns
|
320 |
|
321 |
contest_var1 = st.selectbox("What contest size are you simulating?", ('Small', 'Medium', 'Large', 'Custom'))
|
322 |
if contest_var1 == 'Small':
|
@@ -343,6 +331,14 @@ with tab1:
|
|
343 |
with col2:
|
344 |
if st.button("Run Contest Sim"):
|
345 |
if 'working_seed' in st.session_state:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
346 |
st.session_state.maps_dict = {
|
347 |
'Projection_map':dict(zip(raw_baselines.Player,raw_baselines.Median)),
|
348 |
'Salary_map':dict(zip(raw_baselines.Player,raw_baselines.Salary)),
|
@@ -351,7 +347,7 @@ with tab1:
|
|
351 |
'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)),
|
352 |
'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev))
|
353 |
}
|
354 |
-
Sim_Winners = sim_contest(1000, st.session_state.working_seed, st.session_state.maps_dict,
|
355 |
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners))
|
356 |
|
357 |
#st.table(Sim_Winner_Frame)
|
@@ -378,9 +374,21 @@ with tab1:
|
|
378 |
|
379 |
else:
|
380 |
if sim_site_var1 == 'Draftkings':
|
381 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
382 |
elif sim_site_var1 == 'Fanduel':
|
383 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
384 |
st.session_state.maps_dict = {
|
385 |
'Projection_map':dict(zip(raw_baselines.Player,raw_baselines.Median)),
|
386 |
'Salary_map':dict(zip(raw_baselines.Player,raw_baselines.Salary)),
|
@@ -389,7 +397,7 @@ with tab1:
|
|
389 |
'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)),
|
390 |
'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev))
|
391 |
}
|
392 |
-
Sim_Winners = sim_contest(1000, st.session_state.working_seed, st.session_state.maps_dict,
|
393 |
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners))
|
394 |
|
395 |
#st.table(Sim_Winner_Frame)
|
|
|
55 |
fd_columns = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
|
56 |
|
57 |
@st.cache_data(ttl = 600)
|
58 |
+
def init_DK_seed_frames(sharp_split):
|
59 |
|
60 |
collection = db["DK_NFL_seed_frame"]
|
61 |
cursor = collection.find()
|
|
|
63 |
raw_display = pd.DataFrame(list(cursor))
|
64 |
raw_display = raw_display[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
65 |
DK_seed = raw_display.to_numpy()
|
66 |
+
fp_array = DK_seed[:sharp_split, :]
|
67 |
|
68 |
+
return fp_array
|
69 |
|
70 |
@st.cache_data(ttl = 600)
|
71 |
+
def init_DK_Secondary_seed_frames(sharp_split):
|
72 |
|
73 |
collection = db["DK_NFL_Secondary_seed_frame"]
|
74 |
cursor = collection.find()
|
|
|
76 |
raw_display = pd.DataFrame(list(cursor))
|
77 |
raw_display = raw_display[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
78 |
DK_seed = raw_display.to_numpy()
|
79 |
+
fp_array = DK_seed[:sharp_split, :]
|
80 |
|
81 |
+
return fp_array
|
82 |
|
83 |
@st.cache_data(ttl = 599)
|
84 |
+
def init_FD_seed_frames(sharp_split):
|
85 |
|
86 |
collection = db["FD_NFL_seed_frame"]
|
87 |
cursor = collection.find()
|
|
|
89 |
raw_display = pd.DataFrame(list(cursor))
|
90 |
raw_display = raw_display[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
91 |
FD_seed = raw_display.to_numpy()
|
92 |
+
fp_array = FD_seed[:sharp_split, :]
|
93 |
|
94 |
+
return fp_array
|
95 |
|
96 |
@st.cache_data(ttl = 599)
|
97 |
+
def init_FD_Secondary_seed_frames(sharp_split):
|
98 |
|
99 |
collection = db["FD_NFL_Secondary_seed_frame"]
|
100 |
cursor = collection.find()
|
|
|
102 |
raw_display = pd.DataFrame(list(cursor))
|
103 |
raw_display = raw_display[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
104 |
FD_seed = raw_display.to_numpy()
|
105 |
+
fp_array = FD_seed[:sharp_split, :]
|
106 |
|
107 |
+
|
108 |
+
return fp_array
|
109 |
|
110 |
@st.cache_data(ttl = 599)
|
111 |
def init_baselines():
|
|
|
151 |
return combined_array
|
152 |
|
153 |
@st.cache_data
|
154 |
+
def sim_contest(Sim_size, seed_frame, maps_dict, Contest_Size):
|
155 |
SimVar = 1
|
156 |
Sim_Winners = []
|
|
|
157 |
|
158 |
# Pre-vectorize functions
|
159 |
vec_projection_map = np.vectorize(maps_dict['Projection_map'].__getitem__)
|
|
|
305 |
|
306 |
sim_slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate'), key='sim_slate_var1')
|
307 |
sim_site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='sim_site_var1')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
308 |
|
309 |
contest_var1 = st.selectbox("What contest size are you simulating?", ('Small', 'Medium', 'Large', 'Custom'))
|
310 |
if contest_var1 == 'Small':
|
|
|
331 |
with col2:
|
332 |
if st.button("Run Contest Sim"):
|
333 |
if 'working_seed' in st.session_state:
|
334 |
+
if sim_site_var1 == 'Draftkings':
|
335 |
+
|
336 |
+
raw_baselines = dk_raw
|
337 |
+
column_names = dk_columns
|
338 |
+
elif sim_site_var1 == 'Fanduel':
|
339 |
+
|
340 |
+
raw_baselines = fd_raw
|
341 |
+
column_names = fd_columns
|
342 |
st.session_state.maps_dict = {
|
343 |
'Projection_map':dict(zip(raw_baselines.Player,raw_baselines.Median)),
|
344 |
'Salary_map':dict(zip(raw_baselines.Player,raw_baselines.Salary)),
|
|
|
347 |
'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)),
|
348 |
'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev))
|
349 |
}
|
350 |
+
Sim_Winners = sim_contest(1000, st.session_state.working_seed, st.session_state.maps_dict, Contest_Size)
|
351 |
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners))
|
352 |
|
353 |
#st.table(Sim_Winner_Frame)
|
|
|
374 |
|
375 |
else:
|
376 |
if sim_site_var1 == 'Draftkings':
|
377 |
+
if sim_slate_var1 == 'Main Slate':
|
378 |
+
st.session_state.working_seed = init_DK_seed_frames(sharp_split)
|
379 |
+
elif sim_slate_var1 == 'Secondary Slate':
|
380 |
+
st.session_state.working_seed = init_DK_Secondary_seed_frames(sharp_split)
|
381 |
+
|
382 |
+
raw_baselines = dk_raw
|
383 |
+
column_names = dk_columns
|
384 |
elif sim_site_var1 == 'Fanduel':
|
385 |
+
if sim_slate_var1 == 'Main Slate':
|
386 |
+
st.session_state.working_seed = init_FD_seed_frames(sharp_split)
|
387 |
+
elif sim_slate_var1 == 'Secondary Slate':
|
388 |
+
st.session_state.working_seed = init_FD_Secondary_seed_frames(sharp_split)
|
389 |
+
|
390 |
+
raw_baselines = fd_raw
|
391 |
+
column_names = fd_columns
|
392 |
st.session_state.maps_dict = {
|
393 |
'Projection_map':dict(zip(raw_baselines.Player,raw_baselines.Median)),
|
394 |
'Salary_map':dict(zip(raw_baselines.Player,raw_baselines.Salary)),
|
|
|
397 |
'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)),
|
398 |
'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev))
|
399 |
}
|
400 |
+
Sim_Winners = sim_contest(1000, st.session_state.working_seed, st.session_state.maps_dict, Contest_Size)
|
401 |
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners))
|
402 |
|
403 |
#st.table(Sim_Winner_Frame)
|