Multichem commited on
Commit
6f6b48a
·
1 Parent(s): d7129dc

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -14
app.py CHANGED
@@ -1267,7 +1267,7 @@ with tab2:
1267
  for checkVar in range(len(team_list)):
1268
  player_freq['Team'] = player_freq['Team'].replace(item_list, team_list)
1269
 
1270
- player_freq = player_freq[['Player', 'Position', 'Team', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
1271
 
1272
  qb_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,0:1].values, return_counts=True)),
1273
  columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
@@ -1281,7 +1281,7 @@ with tab2:
1281
  for checkVar in range(len(team_list)):
1282
  qb_freq['Team'] = qb_freq['Team'].replace(item_list, team_list)
1283
 
1284
- qb_freq = qb_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
1285
 
1286
  rb_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,[1, 2]].values, return_counts=True)),
1287
  columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
@@ -1295,7 +1295,7 @@ with tab2:
1295
  for checkVar in range(len(team_list)):
1296
  rb_freq['Team'] = rb_freq['Team'].replace(item_list, team_list)
1297
 
1298
- rb_freq = rb_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
1299
 
1300
  wr_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,[3, 4, 5]].values, return_counts=True)),
1301
  columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
@@ -1309,7 +1309,7 @@ with tab2:
1309
  for checkVar in range(len(team_list)):
1310
  wr_freq['Team'] = wr_freq['Team'].replace(item_list, team_list)
1311
 
1312
- wr_freq = wr_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
1313
 
1314
  te_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,[6]].values, return_counts=True)),
1315
  columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
@@ -1323,7 +1323,7 @@ with tab2:
1323
  for checkVar in range(len(team_list)):
1324
  te_freq['Team'] = te_freq['Team'].replace(item_list, team_list)
1325
 
1326
- te_freq = te_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
1327
 
1328
  flex_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,[7]].values, return_counts=True)),
1329
  columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
@@ -1337,7 +1337,7 @@ with tab2:
1337
  for checkVar in range(len(team_list)):
1338
  flex_freq['Team'] = flex_freq['Team'].replace(item_list, team_list)
1339
 
1340
- flex_freq = flex_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
1341
 
1342
  dst_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,8:9].values, return_counts=True)),
1343
  columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
@@ -1351,7 +1351,7 @@ with tab2:
1351
  for checkVar in range(len(team_list)):
1352
  dst_freq['Team'] = dst_freq['Team'].replace(item_list, team_list)
1353
 
1354
- dst_freq = dst_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
1355
 
1356
  with st.container():
1357
  simulate_container = st.empty()
@@ -1378,7 +1378,7 @@ with tab2:
1378
  freq_container = st.empty()
1379
  tab1, tab2, tab3, tab4, tab5, tab6, tab7 = st.tabs(['Overall Exposures', 'QB Exposures', 'RB Exposures', 'WR Exposures', 'TE Exposures', 'FLEX Exposures', 'DST Exposures'])
1380
  with tab1:
1381
- st.dataframe(player_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
1382
  st.download_button(
1383
  label="Export Exposures",
1384
  data=convert_df_to_csv(st.session_state.player_freq),
@@ -1386,7 +1386,7 @@ with tab2:
1386
  mime='text/csv',
1387
  )
1388
  with tab2:
1389
- st.dataframe(qb_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
1390
  st.download_button(
1391
  label="Export Exposures",
1392
  data=convert_df_to_csv(st.session_state.qb_freq),
@@ -1394,7 +1394,7 @@ with tab2:
1394
  mime='text/csv',
1395
  )
1396
  with tab3:
1397
- st.dataframe(rb_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
1398
  st.download_button(
1399
  label="Export Exposures",
1400
  data=convert_df_to_csv(st.session_state.rb_freq),
@@ -1402,7 +1402,7 @@ with tab2:
1402
  mime='text/csv',
1403
  )
1404
  with tab4:
1405
- st.dataframe(wr_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
1406
  st.download_button(
1407
  label="Export Exposures",
1408
  data=convert_df_to_csv(st.session_state.wr_freq),
@@ -1410,7 +1410,7 @@ with tab2:
1410
  mime='text/csv',
1411
  )
1412
  with tab5:
1413
- st.dataframe(te_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
1414
  st.download_button(
1415
  label="Export Exposures",
1416
  data=convert_df_to_csv(st.session_state.te_freq),
@@ -1418,7 +1418,7 @@ with tab2:
1418
  mime='text/csv',
1419
  )
1420
  with tab6:
1421
- st.dataframe(flex_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
1422
  st.download_button(
1423
  label="Export Exposures",
1424
  data=convert_df_to_csv(st.session_state.flex_freq),
@@ -1426,7 +1426,7 @@ with tab2:
1426
  mime='text/csv',
1427
  )
1428
  with tab7:
1429
- st.dataframe(dst_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
1430
  st.download_button(
1431
  label="Export Exposures",
1432
  data=convert_df_to_csv(st.session_state.dst_freq),
 
1267
  for checkVar in range(len(team_list)):
1268
  player_freq['Team'] = player_freq['Team'].replace(item_list, team_list)
1269
 
1270
+ st.session_state.player_freq = player_freq[['Player', 'Position', 'Team', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
1271
 
1272
  qb_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,0:1].values, return_counts=True)),
1273
  columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
 
1281
  for checkVar in range(len(team_list)):
1282
  qb_freq['Team'] = qb_freq['Team'].replace(item_list, team_list)
1283
 
1284
+ st.session_state.qb_freq = qb_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
1285
 
1286
  rb_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,[1, 2]].values, return_counts=True)),
1287
  columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
 
1295
  for checkVar in range(len(team_list)):
1296
  rb_freq['Team'] = rb_freq['Team'].replace(item_list, team_list)
1297
 
1298
+ st.session_state.rb_freq = rb_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
1299
 
1300
  wr_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,[3, 4, 5]].values, return_counts=True)),
1301
  columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
 
1309
  for checkVar in range(len(team_list)):
1310
  wr_freq['Team'] = wr_freq['Team'].replace(item_list, team_list)
1311
 
1312
+ st.session_state.wr_freq = wr_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
1313
 
1314
  te_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,[6]].values, return_counts=True)),
1315
  columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
 
1323
  for checkVar in range(len(team_list)):
1324
  te_freq['Team'] = te_freq['Team'].replace(item_list, team_list)
1325
 
1326
+ st.session_state.te_freq = te_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
1327
 
1328
  flex_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,[7]].values, return_counts=True)),
1329
  columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
 
1337
  for checkVar in range(len(team_list)):
1338
  flex_freq['Team'] = flex_freq['Team'].replace(item_list, team_list)
1339
 
1340
+ st.session_state.flex_freq = flex_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
1341
 
1342
  dst_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,8:9].values, return_counts=True)),
1343
  columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
 
1351
  for checkVar in range(len(team_list)):
1352
  dst_freq['Team'] = dst_freq['Team'].replace(item_list, team_list)
1353
 
1354
+ st.session_state.dst_freq = dst_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
1355
 
1356
  with st.container():
1357
  simulate_container = st.empty()
 
1378
  freq_container = st.empty()
1379
  tab1, tab2, tab3, tab4, tab5, tab6, tab7 = st.tabs(['Overall Exposures', 'QB Exposures', 'RB Exposures', 'WR Exposures', 'TE Exposures', 'FLEX Exposures', 'DST Exposures'])
1380
  with tab1:
1381
+ st.dataframe(st.session_state.player_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
1382
  st.download_button(
1383
  label="Export Exposures",
1384
  data=convert_df_to_csv(st.session_state.player_freq),
 
1386
  mime='text/csv',
1387
  )
1388
  with tab2:
1389
+ st.dataframe(st.session_state.qb_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
1390
  st.download_button(
1391
  label="Export Exposures",
1392
  data=convert_df_to_csv(st.session_state.qb_freq),
 
1394
  mime='text/csv',
1395
  )
1396
  with tab3:
1397
+ st.dataframe(st.session_state.rb_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
1398
  st.download_button(
1399
  label="Export Exposures",
1400
  data=convert_df_to_csv(st.session_state.rb_freq),
 
1402
  mime='text/csv',
1403
  )
1404
  with tab4:
1405
+ st.dataframe(st.session_state.wr_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
1406
  st.download_button(
1407
  label="Export Exposures",
1408
  data=convert_df_to_csv(st.session_state.wr_freq),
 
1410
  mime='text/csv',
1411
  )
1412
  with tab5:
1413
+ st.dataframe(st.session_state.te_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
1414
  st.download_button(
1415
  label="Export Exposures",
1416
  data=convert_df_to_csv(st.session_state.te_freq),
 
1418
  mime='text/csv',
1419
  )
1420
  with tab6:
1421
+ st.dataframe(st.session_state.flex_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
1422
  st.download_button(
1423
  label="Export Exposures",
1424
  data=convert_df_to_csv(st.session_state.flex_freq),
 
1426
  mime='text/csv',
1427
  )
1428
  with tab7:
1429
+ st.dataframe(st.session_state.dst_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
1430
  st.download_button(
1431
  label="Export Exposures",
1432
  data=convert_df_to_csv(st.session_state.dst_freq),