Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1267,7 +1267,7 @@ with tab2:
|
|
1267 |
for checkVar in range(len(team_list)):
|
1268 |
player_freq['Team'] = player_freq['Team'].replace(item_list, team_list)
|
1269 |
|
1270 |
-
player_freq = player_freq[['Player', 'Position', 'Team', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
1271 |
|
1272 |
qb_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,0:1].values, return_counts=True)),
|
1273 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
@@ -1281,7 +1281,7 @@ with tab2:
|
|
1281 |
for checkVar in range(len(team_list)):
|
1282 |
qb_freq['Team'] = qb_freq['Team'].replace(item_list, team_list)
|
1283 |
|
1284 |
-
qb_freq = qb_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
1285 |
|
1286 |
rb_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,[1, 2]].values, return_counts=True)),
|
1287 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
@@ -1295,7 +1295,7 @@ with tab2:
|
|
1295 |
for checkVar in range(len(team_list)):
|
1296 |
rb_freq['Team'] = rb_freq['Team'].replace(item_list, team_list)
|
1297 |
|
1298 |
-
rb_freq = rb_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
1299 |
|
1300 |
wr_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,[3, 4, 5]].values, return_counts=True)),
|
1301 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
@@ -1309,7 +1309,7 @@ with tab2:
|
|
1309 |
for checkVar in range(len(team_list)):
|
1310 |
wr_freq['Team'] = wr_freq['Team'].replace(item_list, team_list)
|
1311 |
|
1312 |
-
wr_freq = wr_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
1313 |
|
1314 |
te_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,[6]].values, return_counts=True)),
|
1315 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
@@ -1323,7 +1323,7 @@ with tab2:
|
|
1323 |
for checkVar in range(len(team_list)):
|
1324 |
te_freq['Team'] = te_freq['Team'].replace(item_list, team_list)
|
1325 |
|
1326 |
-
te_freq = te_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
1327 |
|
1328 |
flex_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,[7]].values, return_counts=True)),
|
1329 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
@@ -1337,7 +1337,7 @@ with tab2:
|
|
1337 |
for checkVar in range(len(team_list)):
|
1338 |
flex_freq['Team'] = flex_freq['Team'].replace(item_list, team_list)
|
1339 |
|
1340 |
-
flex_freq = flex_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
1341 |
|
1342 |
dst_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,8:9].values, return_counts=True)),
|
1343 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
@@ -1351,7 +1351,7 @@ with tab2:
|
|
1351 |
for checkVar in range(len(team_list)):
|
1352 |
dst_freq['Team'] = dst_freq['Team'].replace(item_list, team_list)
|
1353 |
|
1354 |
-
dst_freq = dst_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
1355 |
|
1356 |
with st.container():
|
1357 |
simulate_container = st.empty()
|
@@ -1378,7 +1378,7 @@ with tab2:
|
|
1378 |
freq_container = st.empty()
|
1379 |
tab1, tab2, tab3, tab4, tab5, tab6, tab7 = st.tabs(['Overall Exposures', 'QB Exposures', 'RB Exposures', 'WR Exposures', 'TE Exposures', 'FLEX Exposures', 'DST Exposures'])
|
1380 |
with tab1:
|
1381 |
-
st.dataframe(player_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
1382 |
st.download_button(
|
1383 |
label="Export Exposures",
|
1384 |
data=convert_df_to_csv(st.session_state.player_freq),
|
@@ -1386,7 +1386,7 @@ with tab2:
|
|
1386 |
mime='text/csv',
|
1387 |
)
|
1388 |
with tab2:
|
1389 |
-
st.dataframe(qb_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
1390 |
st.download_button(
|
1391 |
label="Export Exposures",
|
1392 |
data=convert_df_to_csv(st.session_state.qb_freq),
|
@@ -1394,7 +1394,7 @@ with tab2:
|
|
1394 |
mime='text/csv',
|
1395 |
)
|
1396 |
with tab3:
|
1397 |
-
st.dataframe(rb_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
1398 |
st.download_button(
|
1399 |
label="Export Exposures",
|
1400 |
data=convert_df_to_csv(st.session_state.rb_freq),
|
@@ -1402,7 +1402,7 @@ with tab2:
|
|
1402 |
mime='text/csv',
|
1403 |
)
|
1404 |
with tab4:
|
1405 |
-
st.dataframe(wr_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
1406 |
st.download_button(
|
1407 |
label="Export Exposures",
|
1408 |
data=convert_df_to_csv(st.session_state.wr_freq),
|
@@ -1410,7 +1410,7 @@ with tab2:
|
|
1410 |
mime='text/csv',
|
1411 |
)
|
1412 |
with tab5:
|
1413 |
-
st.dataframe(te_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
1414 |
st.download_button(
|
1415 |
label="Export Exposures",
|
1416 |
data=convert_df_to_csv(st.session_state.te_freq),
|
@@ -1418,7 +1418,7 @@ with tab2:
|
|
1418 |
mime='text/csv',
|
1419 |
)
|
1420 |
with tab6:
|
1421 |
-
st.dataframe(flex_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
1422 |
st.download_button(
|
1423 |
label="Export Exposures",
|
1424 |
data=convert_df_to_csv(st.session_state.flex_freq),
|
@@ -1426,7 +1426,7 @@ with tab2:
|
|
1426 |
mime='text/csv',
|
1427 |
)
|
1428 |
with tab7:
|
1429 |
-
st.dataframe(dst_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
1430 |
st.download_button(
|
1431 |
label="Export Exposures",
|
1432 |
data=convert_df_to_csv(st.session_state.dst_freq),
|
|
|
1267 |
for checkVar in range(len(team_list)):
|
1268 |
player_freq['Team'] = player_freq['Team'].replace(item_list, team_list)
|
1269 |
|
1270 |
+
st.session_state.player_freq = player_freq[['Player', 'Position', 'Team', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
1271 |
|
1272 |
qb_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,0:1].values, return_counts=True)),
|
1273 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
|
|
1281 |
for checkVar in range(len(team_list)):
|
1282 |
qb_freq['Team'] = qb_freq['Team'].replace(item_list, team_list)
|
1283 |
|
1284 |
+
st.session_state.qb_freq = qb_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
1285 |
|
1286 |
rb_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,[1, 2]].values, return_counts=True)),
|
1287 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
|
|
1295 |
for checkVar in range(len(team_list)):
|
1296 |
rb_freq['Team'] = rb_freq['Team'].replace(item_list, team_list)
|
1297 |
|
1298 |
+
st.session_state.rb_freq = rb_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
1299 |
|
1300 |
wr_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,[3, 4, 5]].values, return_counts=True)),
|
1301 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
|
|
1309 |
for checkVar in range(len(team_list)):
|
1310 |
wr_freq['Team'] = wr_freq['Team'].replace(item_list, team_list)
|
1311 |
|
1312 |
+
st.session_state.wr_freq = wr_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
1313 |
|
1314 |
te_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,[6]].values, return_counts=True)),
|
1315 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
|
|
1323 |
for checkVar in range(len(team_list)):
|
1324 |
te_freq['Team'] = te_freq['Team'].replace(item_list, team_list)
|
1325 |
|
1326 |
+
st.session_state.te_freq = te_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
1327 |
|
1328 |
flex_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,[7]].values, return_counts=True)),
|
1329 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
|
|
1337 |
for checkVar in range(len(team_list)):
|
1338 |
flex_freq['Team'] = flex_freq['Team'].replace(item_list, team_list)
|
1339 |
|
1340 |
+
st.session_state.flex_freq = flex_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
1341 |
|
1342 |
dst_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,8:9].values, return_counts=True)),
|
1343 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
|
|
1351 |
for checkVar in range(len(team_list)):
|
1352 |
dst_freq['Team'] = dst_freq['Team'].replace(item_list, team_list)
|
1353 |
|
1354 |
+
st.session_state.dst_freq = dst_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
1355 |
|
1356 |
with st.container():
|
1357 |
simulate_container = st.empty()
|
|
|
1378 |
freq_container = st.empty()
|
1379 |
tab1, tab2, tab3, tab4, tab5, tab6, tab7 = st.tabs(['Overall Exposures', 'QB Exposures', 'RB Exposures', 'WR Exposures', 'TE Exposures', 'FLEX Exposures', 'DST Exposures'])
|
1380 |
with tab1:
|
1381 |
+
st.dataframe(st.session_state.player_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
1382 |
st.download_button(
|
1383 |
label="Export Exposures",
|
1384 |
data=convert_df_to_csv(st.session_state.player_freq),
|
|
|
1386 |
mime='text/csv',
|
1387 |
)
|
1388 |
with tab2:
|
1389 |
+
st.dataframe(st.session_state.qb_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
1390 |
st.download_button(
|
1391 |
label="Export Exposures",
|
1392 |
data=convert_df_to_csv(st.session_state.qb_freq),
|
|
|
1394 |
mime='text/csv',
|
1395 |
)
|
1396 |
with tab3:
|
1397 |
+
st.dataframe(st.session_state.rb_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
1398 |
st.download_button(
|
1399 |
label="Export Exposures",
|
1400 |
data=convert_df_to_csv(st.session_state.rb_freq),
|
|
|
1402 |
mime='text/csv',
|
1403 |
)
|
1404 |
with tab4:
|
1405 |
+
st.dataframe(st.session_state.wr_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
1406 |
st.download_button(
|
1407 |
label="Export Exposures",
|
1408 |
data=convert_df_to_csv(st.session_state.wr_freq),
|
|
|
1410 |
mime='text/csv',
|
1411 |
)
|
1412 |
with tab5:
|
1413 |
+
st.dataframe(st.session_state.te_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
1414 |
st.download_button(
|
1415 |
label="Export Exposures",
|
1416 |
data=convert_df_to_csv(st.session_state.te_freq),
|
|
|
1418 |
mime='text/csv',
|
1419 |
)
|
1420 |
with tab6:
|
1421 |
+
st.dataframe(st.session_state.flex_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
1422 |
st.download_button(
|
1423 |
label="Export Exposures",
|
1424 |
data=convert_df_to_csv(st.session_state.flex_freq),
|
|
|
1426 |
mime='text/csv',
|
1427 |
)
|
1428 |
with tab7:
|
1429 |
+
st.dataframe(st.session_state.dst_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
1430 |
st.download_button(
|
1431 |
label="Export Exposures",
|
1432 |
data=convert_df_to_csv(st.session_state.dst_freq),
|