Multichem commited on
Commit
97b519b
·
1 Parent(s): b291bb6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +81 -78
app.py CHANGED
@@ -890,6 +890,7 @@ with tab2:
890
 
891
  with col2:
892
  if st.button("Simulate Contest"):
 
893
  try:
894
  del dst_freq
895
  del flex_freq
@@ -1223,6 +1224,8 @@ with tab2:
1223
  # Data Copying
1224
  Sim_Winner_Export = Sim_Winner_Frame.copy()
1225
 
 
 
1226
  # Conditional Replacement
1227
  columns_to_replace = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST']
1228
 
@@ -1332,85 +1335,85 @@ with tab2:
1332
  dst_freq['Team'] = dst_freq['Team'].replace(item_list, team_list)
1333
 
1334
  dst_freq = dst_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1335
 
1336
- with st.container():
1337
- player_split_var2 = st.radio("Are you wanting to isolate any lineups with specific players?", ('Full Players', 'Specific Players'))
1338
- if player_split_var2 == 'Specific Players':
1339
- find_var2 = st.multiselect('Which players must be included in the lineups?', options = player_freq['Player'].unique())
1340
- elif player_split_var2 == 'Full Players':
1341
- find_var2 = static_exposure.Player.values.tolist()
1342
- if player_split_var2 == 'Specific Players':
1343
- Sim_Winner_Frame = Sim_Winner_Frame[np.equal.outer(Sim_Winner_Frame.to_numpy(copy=False), find_var2).any(axis=1).all(axis=1)]
1344
- elif player_split_var2 == 'Full Players':
1345
- Sim_Winner_Frame = Sim_Winner_Frame
1346
-
1347
- with st.container():
1348
- display_winner_dataframe = Sim_Winner_Frame.copy()
1349
- st.dataframe(display_winner_dataframe.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').background_gradient(cmap='RdYlGn_r', subset=['Own']).format(precision=2), use_container_width = True)
1350
-
1351
- st.download_button(
1352
- label="Export Tables",
1353
- data=convert_df_to_csv(Sim_Winner_Export),
1354
- file_name='NFL_consim_export.csv',
1355
- mime='text/csv',
1356
- )
1357
-
1358
- with st.container():
1359
- freq_container = st.empty()
1360
- tab1, tab2, tab3, tab4, tab5, tab6, tab7 = st.tabs(['Overall Exposures', 'QB Exposures', 'RB Exposures', 'WR Exposures', 'TE Exposures', 'FLEX Exposures', 'DST Exposures'])
1361
- with tab1:
1362
- st.dataframe(player_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
1363
- st.download_button(
1364
- label="Export Exposures",
1365
- data=convert_df_to_csv(player_freq),
1366
- file_name='player_freq_export.csv',
1367
- mime='text/csv',
1368
- )
1369
- with tab2:
1370
- st.dataframe(qb_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
1371
- st.download_button(
1372
- label="Export Exposures",
1373
- data=convert_df_to_csv(qb_freq),
1374
- file_name='qb_freq_export.csv',
1375
- mime='text/csv',
1376
- )
1377
- with tab3:
1378
- st.dataframe(rb_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
1379
  st.download_button(
1380
- label="Export Exposures",
1381
- data=convert_df_to_csv(rb_freq),
1382
- file_name='rb_freq_export.csv',
1383
  mime='text/csv',
1384
  )
1385
- with tab4:
1386
- st.dataframe(wr_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
1387
- st.download_button(
1388
- label="Export Exposures",
1389
- data=convert_df_to_csv(wr_freq),
1390
- file_name='wr_freq_export.csv',
1391
- mime='text/csv',
1392
- )
1393
- with tab5:
1394
- st.dataframe(te_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
1395
- st.download_button(
1396
- label="Export Exposures",
1397
- data=convert_df_to_csv(te_freq),
1398
- file_name='te_freq_export.csv',
1399
- mime='text/csv',
1400
- )
1401
- with tab6:
1402
- st.dataframe(flex_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
1403
- st.download_button(
1404
- label="Export Exposures",
1405
- data=convert_df_to_csv(flex_freq),
1406
- file_name='flex_freq_export.csv',
1407
- mime='text/csv',
1408
- )
1409
- with tab7:
1410
- st.dataframe(dst_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
1411
- st.download_button(
1412
- label="Export Exposures",
1413
- data=convert_df_to_csv(dst_freq),
1414
- file_name='dst_freq_export.csv',
1415
- mime='text/csv',
1416
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
890
 
891
  with col2:
892
  if st.button("Simulate Contest"):
893
+ sim_done = 0
894
  try:
895
  del dst_freq
896
  del flex_freq
 
1224
  # Data Copying
1225
  Sim_Winner_Export = Sim_Winner_Frame.copy()
1226
 
1227
+ sim_done = 1
1228
+
1229
  # Conditional Replacement
1230
  columns_to_replace = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST']
1231
 
 
1335
  dst_freq['Team'] = dst_freq['Team'].replace(item_list, team_list)
1336
 
1337
  dst_freq = dst_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
1338
+ if sim_done == 1:
1339
+ with st.container():
1340
+ player_split_var2 = st.radio("Are you wanting to isolate any lineups with specific players?", ('Full Players', 'Specific Players'))
1341
+ if player_split_var2 == 'Specific Players':
1342
+ find_var2 = st.multiselect('Which players must be included in the lineups?', options = player_freq['Player'].unique())
1343
+ elif player_split_var2 == 'Full Players':
1344
+ find_var2 = static_exposure.Player.values.tolist()
1345
+ if player_split_var2 == 'Specific Players':
1346
+ Sim_Winner_Frame = Sim_Winner_Frame[np.equal.outer(Sim_Winner_Frame.to_numpy(copy=False), find_var2).any(axis=1).all(axis=1)]
1347
+ elif player_split_var2 == 'Full Players':
1348
+ Sim_Winner_Frame = Sim_Winner_Frame
1349
+
1350
+ with st.container():
1351
+ display_winner_dataframe = Sim_Winner_Frame.copy()
1352
+ st.dataframe(display_winner_dataframe.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').background_gradient(cmap='RdYlGn_r', subset=['Own']).format(precision=2), use_container_width = True)
1353
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1354
  st.download_button(
1355
+ label="Export Tables",
1356
+ data=convert_df_to_csv(Sim_Winner_Export),
1357
+ file_name='NFL_consim_export.csv',
1358
  mime='text/csv',
1359
  )
1360
+
1361
+ with st.container():
1362
+ freq_container = st.empty()
1363
+ tab1, tab2, tab3, tab4, tab5, tab6, tab7 = st.tabs(['Overall Exposures', 'QB Exposures', 'RB Exposures', 'WR Exposures', 'TE Exposures', 'FLEX Exposures', 'DST Exposures'])
1364
+ with tab1:
1365
+ st.dataframe(player_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
1366
+ st.download_button(
1367
+ label="Export Exposures",
1368
+ data=convert_df_to_csv(player_freq),
1369
+ file_name='player_freq_export.csv',
1370
+ mime='text/csv',
1371
+ )
1372
+ with tab2:
1373
+ st.dataframe(qb_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
1374
+ st.download_button(
1375
+ label="Export Exposures",
1376
+ data=convert_df_to_csv(qb_freq),
1377
+ file_name='qb_freq_export.csv',
1378
+ mime='text/csv',
1379
+ )
1380
+ with tab3:
1381
+ st.dataframe(rb_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
1382
+ st.download_button(
1383
+ label="Export Exposures",
1384
+ data=convert_df_to_csv(rb_freq),
1385
+ file_name='rb_freq_export.csv',
1386
+ mime='text/csv',
1387
+ )
1388
+ with tab4:
1389
+ st.dataframe(wr_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
1390
+ st.download_button(
1391
+ label="Export Exposures",
1392
+ data=convert_df_to_csv(wr_freq),
1393
+ file_name='wr_freq_export.csv',
1394
+ mime='text/csv',
1395
+ )
1396
+ with tab5:
1397
+ st.dataframe(te_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
1398
+ st.download_button(
1399
+ label="Export Exposures",
1400
+ data=convert_df_to_csv(te_freq),
1401
+ file_name='te_freq_export.csv',
1402
+ mime='text/csv',
1403
+ )
1404
+ with tab6:
1405
+ st.dataframe(flex_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
1406
+ st.download_button(
1407
+ label="Export Exposures",
1408
+ data=convert_df_to_csv(flex_freq),
1409
+ file_name='flex_freq_export.csv',
1410
+ mime='text/csv',
1411
+ )
1412
+ with tab7:
1413
+ st.dataframe(dst_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
1414
+ st.download_button(
1415
+ label="Export Exposures",
1416
+ data=convert_df_to_csv(dst_freq),
1417
+ file_name='dst_freq_export.csv',
1418
+ mime='text/csv',
1419
+ )