Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -5,15 +5,11 @@ for name in dir():
|
|
5 |
if not name.startswith('_'):
|
6 |
del globals()[name]
|
7 |
|
8 |
-
import pulp
|
9 |
import numpy as np
|
10 |
import pandas as pd
|
11 |
import streamlit as st
|
12 |
import gspread
|
13 |
-
import time
|
14 |
import random
|
15 |
-
import scipy.stats
|
16 |
-
import os
|
17 |
|
18 |
@st.cache_resource
|
19 |
def init_conn():
|
@@ -38,30 +34,8 @@ def init_conn():
|
|
38 |
|
39 |
gc = init_conn()
|
40 |
|
41 |
-
game_format = {'Win Percentage': '{:.2%}','First Inning Lead Percentage': '{:.2%}',
|
42 |
-
'Fifth Inning Lead Percentage': '{:.2%}', '8+ runs': '{:.2%}', 'DK LevX': '{:.2%}', 'FD LevX': '{:.2%}'}
|
43 |
-
|
44 |
-
player_roo_format = {'Top_finish': '{:.2%}','Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}', '20+%': '{:.2%}', '2x%': '{:.2%}', '3x%': '{:.2%}',
|
45 |
-
'4x%': '{:.2%}','GPP%': '{:.2%}'}
|
46 |
-
|
47 |
freq_format = {'Proj Own': '{:.2%}', 'Exposure': '{:.2%}', 'Edge': '{:.2%}'}
|
48 |
|
49 |
-
@st.cache_resource(ttl = 300)
|
50 |
-
def set_slate_teams():
|
51 |
-
sh = gc.open_by_url('https://docs.google.com/spreadsheets/d/1I_1Ve3F4tftgfLQQoRKOJ351XfEG48s36OxXUKxmgS8/edit#gid=1391856348')
|
52 |
-
worksheet = sh.worksheet('Site_Info')
|
53 |
-
raw_display = pd.DataFrame(worksheet.get_all_records())
|
54 |
-
|
55 |
-
return raw_display
|
56 |
-
|
57 |
-
@st.cache_resource(ttl = 300)
|
58 |
-
def player_stat_table():
|
59 |
-
sh = gc.open_by_url('https://docs.google.com/spreadsheets/d/1I_1Ve3F4tftgfLQQoRKOJ351XfEG48s36OxXUKxmgS8/edit#gid=1391856348')
|
60 |
-
worksheet = sh.worksheet('Player_Projections')
|
61 |
-
raw_display = pd.DataFrame(worksheet.get_all_records())
|
62 |
-
|
63 |
-
return raw_display
|
64 |
-
|
65 |
@st.cache_resource(ttl = 300)
|
66 |
def load_dk_player_projections():
|
67 |
sh = gc.open_by_url('https://docs.google.com/spreadsheets/d/1I_1Ve3F4tftgfLQQoRKOJ351XfEG48s36OxXUKxmgS8/edit#gid=1391856348')
|
@@ -251,6 +225,8 @@ def create_random_portfolio(Total_Sample_Size, raw_baselines):
|
|
251 |
RandomPortfolio = pd.DataFrame(np.hstack(all_choices), columns=['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST'])
|
252 |
RandomPortfolio['User/Field'] = 0
|
253 |
|
|
|
|
|
254 |
del O_merge
|
255 |
|
256 |
return RandomPortfolio, maps_dict, ranges_dict, full_pos_player_dict
|
@@ -263,28 +239,6 @@ def get_correlated_portfolio_for_sim(Total_Sample_Size):
|
|
263 |
stack_num = random.randint(1, 3)
|
264 |
stacking_dict = create_stack_options(raw_baselines, stack_num)
|
265 |
|
266 |
-
# # Create a dictionary for mapping positions to their corresponding dictionaries
|
267 |
-
# dict_map = {
|
268 |
-
# 'QB': qb_dict,
|
269 |
-
# 'RB1': full_pos_player_dict['pos_dicts'][0],
|
270 |
-
# 'RB2': full_pos_player_dict['pos_dicts'][0],
|
271 |
-
# 'WR1': full_pos_player_dict['pos_dicts'][1],
|
272 |
-
# 'WR2': full_pos_player_dict['pos_dicts'][1],
|
273 |
-
# 'WR3': full_pos_player_dict['pos_dicts'][1],
|
274 |
-
# 'TE': full_pos_player_dict['pos_dicts'][2],
|
275 |
-
# 'FLEX': full_pos_player_dict['pos_dicts'][3],
|
276 |
-
# 'DST': def_dict
|
277 |
-
# }
|
278 |
-
|
279 |
-
# # Apply mapping for each position
|
280 |
-
# for pos, mapping in dict_map.items():
|
281 |
-
# RandomPortfolio[pos] = RandomPortfolio[pos].map(mapping).astype("string[pyarrow]")
|
282 |
-
|
283 |
-
# # This part appears to be for filtering. Consider if it can be optimized depending on the data characteristics
|
284 |
-
# RandomPortfolio['plyr_list'] = RandomPortfolio.values.tolist()
|
285 |
-
# RandomPortfolio['plyr_count'] = RandomPortfolio['plyr_list'].apply(lambda x: len(set(x)))
|
286 |
-
# RandomPortfolio = RandomPortfolio[RandomPortfolio['plyr_count'] == 10].drop(columns=['plyr_list','plyr_count']).reset_index(drop=True)
|
287 |
-
|
288 |
RandomPortfolio['QB'] = pd.Series(list(RandomPortfolio['QB'].map(qb_dict)), dtype="string[pyarrow]")
|
289 |
RandomPortfolio['RB1'] = pd.Series(list(RandomPortfolio['RB1'].map(full_pos_player_dict['pos_dicts'][0])), dtype="string[pyarrow]")
|
290 |
RandomPortfolio['RB2'] = pd.Series(list(RandomPortfolio['RB2'].map(full_pos_player_dict['pos_dicts'][0])), dtype="string[pyarrow]")
|
@@ -305,8 +259,6 @@ def get_correlated_portfolio_for_sim(Total_Sample_Size):
|
|
305 |
del stack_num
|
306 |
del stacking_dict
|
307 |
|
308 |
-
|
309 |
-
|
310 |
RandomPortfolio['QBs'] = RandomPortfolio['QB'].map(maps_dict['Salary_map']).astype(np.int32)
|
311 |
RandomPortfolio['RB1s'] = RandomPortfolio['RB1'].map(maps_dict['Salary_map']).astype(np.int32)
|
312 |
RandomPortfolio['RB2s'] = RandomPortfolio['RB2'].map(maps_dict['Salary_map']).astype(np.int32)
|
@@ -838,26 +790,6 @@ with tab1:
|
|
838 |
with tab2:
|
839 |
col1, col2 = st.columns([1, 7])
|
840 |
with col1:
|
841 |
-
if 'Sim_Winner_Display' not in st.session_state:
|
842 |
-
st.session_state.Sim_Winner_Display = pd.DataFrame(columns=['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'User/Field', 'Salary', 'Projection', 'Own', 'Fantasy', 'GPP_Proj'])
|
843 |
-
if 'Sim_Winner_Frame' not in st.session_state:
|
844 |
-
st.session_state.Sim_Winner_Frame = pd.DataFrame(columns=['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'User/Field', 'Salary', 'Projection', 'Own', 'Fantasy', 'GPP_Proj'])
|
845 |
-
if 'Sim_Winner_Export' not in st.session_state:
|
846 |
-
st.session_state.Sim_Winner_Export = pd.DataFrame(columns=['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'User/Field', 'Salary', 'Projection', 'Own', 'Fantasy', 'GPP_Proj'])
|
847 |
-
if 'player_freq' not in st.session_state:
|
848 |
-
st.session_state.player_freq = pd.DataFrame(columns=['Player', 'Position', 'Team', 'Salary', 'Proj Own', 'Exposure', 'Edge'])
|
849 |
-
if 'qb_freq' not in st.session_state:
|
850 |
-
st.session_state.qb_freq = pd.DataFrame(columns=['Player', 'Position', 'Team', 'Salary', 'Proj Own', 'Exposure', 'Edge'])
|
851 |
-
if 'rb_freq' not in st.session_state:
|
852 |
-
st.session_state.rb_freq = pd.DataFrame(columns=['Player', 'Position', 'Team', 'Salary', 'Proj Own', 'Exposure', 'Edge'])
|
853 |
-
if 'wr_freq' not in st.session_state:
|
854 |
-
st.session_state.wr_freq = pd.DataFrame(columns=['Player', 'Position', 'Team', 'Salary', 'Proj Own', 'Exposure', 'Edge'])
|
855 |
-
if 'te_freq' not in st.session_state:
|
856 |
-
st.session_state.te_freq = pd.DataFrame(columns=['Player', 'Position', 'Team', 'Salary', 'Proj Own', 'Exposure', 'Edge'])
|
857 |
-
if 'flex_freq' not in st.session_state:
|
858 |
-
st.session_state.flex_freq = pd.DataFrame(columns=['Player', 'Position', 'Team', 'Salary', 'Proj Own', 'Exposure', 'Edge'])
|
859 |
-
if 'dst_freq' not in st.session_state:
|
860 |
-
st.session_state.dst_freq = pd.DataFrame(columns=['Player', 'Position', 'Team', 'Salary', 'Proj Own', 'Exposure', 'Edge'])
|
861 |
st.info(t_stamp)
|
862 |
if st.button("Load/Reset Data", key='reset1'):
|
863 |
st.cache_data.clear()
|
@@ -914,26 +846,6 @@ with tab2:
|
|
914 |
|
915 |
with col2:
|
916 |
with st.container():
|
917 |
-
# if 'Sim_Winner_Display' not in st.session_state:
|
918 |
-
# st.session_state.Sim_Winner_Display = pd.DataFrame(columns=['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'User/Field', 'Salary', 'Projection', 'Own', 'Fantasy', 'GPP_Proj'])
|
919 |
-
# if 'Sim_Winner_Frame' not in st.session_state:
|
920 |
-
# st.session_state.Sim_Winner_Frame = pd.DataFrame(columns=['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'User/Field', 'Salary', 'Projection', 'Own', 'Fantasy', 'GPP_Proj'])
|
921 |
-
# if 'Sim_Winner_Export' not in st.session_state:
|
922 |
-
# st.session_state.Sim_Winner_Export = pd.DataFrame(columns=['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'User/Field', 'Salary', 'Projection', 'Own', 'Fantasy', 'GPP_Proj'])
|
923 |
-
# if 'player_freq' not in st.session_state:
|
924 |
-
# st.session_state.player_freq = pd.DataFrame(columns=['Player', 'Position', 'Team', 'Salary', 'Proj Own', 'Exposure', 'Edge'])
|
925 |
-
# if 'qb_freq' not in st.session_state:
|
926 |
-
# st.session_state.qb_freq = pd.DataFrame(columns=['Player', 'Position', 'Team', 'Salary', 'Proj Own', 'Exposure', 'Edge'])
|
927 |
-
# if 'rb_freq' not in st.session_state:
|
928 |
-
# st.session_state.rb_freq = pd.DataFrame(columns=['Player', 'Position', 'Team', 'Salary', 'Proj Own', 'Exposure', 'Edge'])
|
929 |
-
# if 'wr_freq' not in st.session_state:
|
930 |
-
# st.session_state.wr_freq = pd.DataFrame(columns=['Player', 'Position', 'Team', 'Salary', 'Proj Own', 'Exposure', 'Edge'])
|
931 |
-
# if 'te_freq' not in st.session_state:
|
932 |
-
# st.session_state.te_freq = pd.DataFrame(columns=['Player', 'Position', 'Team', 'Salary', 'Proj Own', 'Exposure', 'Edge'])
|
933 |
-
# if 'flex_freq' not in st.session_state:
|
934 |
-
# st.session_state.flex_freq = pd.DataFrame(columns=['Player', 'Position', 'Team', 'Salary', 'Proj Own', 'Exposure', 'Edge'])
|
935 |
-
# if 'dst_freq' not in st.session_state:
|
936 |
-
# st.session_state.dst_freq = pd.DataFrame(columns=['Player', 'Position', 'Team', 'Salary', 'Proj Own', 'Exposure', 'Edge'])
|
937 |
if st.button("Simulate Contest"):
|
938 |
try:
|
939 |
del dst_freq
|
@@ -991,10 +903,11 @@ with tab2:
|
|
991 |
OwnFrame['Own'] = OwnFrame['Own%'] * (900 / OwnFrame['Own%'].sum())
|
992 |
Overall_Proj = OwnFrame[['Player', 'Team', 'Position', 'Median', 'Own', 'Salary']]
|
993 |
|
|
|
994 |
del OwnFrame
|
995 |
|
996 |
elif slate_var1 != 'User':
|
997 |
-
initial_proj = raw_baselines
|
998 |
drop_frame = initial_proj.drop_duplicates(subset = 'Player',keep = 'first')
|
999 |
OwnFrame = drop_frame[['Player', 'Team', 'Position', 'Median', 'Own', 'Floor', 'Ceiling', 'Salary']]
|
1000 |
if contest_var1 == 'Small':
|
@@ -1014,6 +927,7 @@ with tab2:
|
|
1014 |
OwnFrame['Own'] = OwnFrame['Own%'] * (900 / OwnFrame['Own%'].sum())
|
1015 |
Overall_Proj = OwnFrame[['Player', 'Team', 'Position', 'Median', 'Own', 'Salary']]
|
1016 |
|
|
|
1017 |
del initial_proj
|
1018 |
del drop_frame
|
1019 |
del OwnFrame
|
@@ -1254,12 +1168,15 @@ with tab2:
|
|
1254 |
del vec_stdev_map
|
1255 |
del sample_arrays
|
1256 |
del final_array
|
1257 |
-
|
|
|
1258 |
st.write('Contest simulation complete')
|
1259 |
# Initial setup
|
1260 |
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=FinalPortfolio.columns.tolist() + ['Fantasy'])
|
1261 |
Sim_Winner_Frame['GPP_Proj'] = (Sim_Winner_Frame['Projection'] + Sim_Winner_Frame['Fantasy']) / 2
|
1262 |
|
|
|
|
|
1263 |
# Type Casting
|
1264 |
type_cast_dict = {'Salary': int, 'Projection': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float16}
|
1265 |
Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict)
|
@@ -1270,6 +1187,8 @@ with tab2:
|
|
1270 |
# Data Copying
|
1271 |
st.session_state.Sim_Winner_Export = Sim_Winner_Frame.copy()
|
1272 |
|
|
|
|
|
1273 |
# Conditional Replacement
|
1274 |
columns_to_replace = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST']
|
1275 |
|
@@ -1285,7 +1204,7 @@ with tab2:
|
|
1285 |
st.session_state.Sim_Winner_Export[col].replace(replace_dict, inplace=True)
|
1286 |
|
1287 |
|
1288 |
-
player_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,0:9].values, return_counts=True)),
|
1289 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1290 |
player_freq['Freq'] = player_freq['Freq'].astype(int)
|
1291 |
player_freq['Position'] = player_freq['Player'].map(maps_dict['Pos_map'])
|
@@ -1298,8 +1217,9 @@ with tab2:
|
|
1298 |
player_freq['Team'] = player_freq['Team'].replace(item_list, team_list)
|
1299 |
|
1300 |
st.session_state.player_freq = player_freq[['Player', 'Position', 'Team', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
|
|
1301 |
|
1302 |
-
qb_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,0:1].values, return_counts=True)),
|
1303 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1304 |
qb_freq['Freq'] = qb_freq['Freq'].astype(int)
|
1305 |
qb_freq['Position'] = qb_freq['Player'].map(maps_dict['Pos_map'])
|
@@ -1312,8 +1232,9 @@ with tab2:
|
|
1312 |
qb_freq['Team'] = qb_freq['Team'].replace(item_list, team_list)
|
1313 |
|
1314 |
st.session_state.qb_freq = qb_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
|
|
1315 |
|
1316 |
-
rb_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,[1, 2]].values, return_counts=True)),
|
1317 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1318 |
rb_freq['Freq'] = rb_freq['Freq'].astype(int)
|
1319 |
rb_freq['Position'] = rb_freq['Player'].map(maps_dict['Pos_map'])
|
@@ -1326,8 +1247,9 @@ with tab2:
|
|
1326 |
rb_freq['Team'] = rb_freq['Team'].replace(item_list, team_list)
|
1327 |
|
1328 |
st.session_state.rb_freq = rb_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
|
|
1329 |
|
1330 |
-
wr_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,[3, 4, 5]].values, return_counts=True)),
|
1331 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1332 |
wr_freq['Freq'] = wr_freq['Freq'].astype(int)
|
1333 |
wr_freq['Position'] = wr_freq['Player'].map(maps_dict['Pos_map'])
|
@@ -1340,8 +1262,9 @@ with tab2:
|
|
1340 |
wr_freq['Team'] = wr_freq['Team'].replace(item_list, team_list)
|
1341 |
|
1342 |
st.session_state.wr_freq = wr_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
|
|
1343 |
|
1344 |
-
te_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,[6]].values, return_counts=True)),
|
1345 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1346 |
te_freq['Freq'] = te_freq['Freq'].astype(int)
|
1347 |
te_freq['Position'] = te_freq['Player'].map(maps_dict['Pos_map'])
|
@@ -1354,8 +1277,9 @@ with tab2:
|
|
1354 |
te_freq['Team'] = te_freq['Team'].replace(item_list, team_list)
|
1355 |
|
1356 |
st.session_state.te_freq = te_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
|
|
1357 |
|
1358 |
-
flex_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,[7]].values, return_counts=True)),
|
1359 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1360 |
flex_freq['Freq'] = flex_freq['Freq'].astype(int)
|
1361 |
flex_freq['Position'] = flex_freq['Player'].map(maps_dict['Pos_map'])
|
@@ -1368,8 +1292,9 @@ with tab2:
|
|
1368 |
flex_freq['Team'] = flex_freq['Team'].replace(item_list, team_list)
|
1369 |
|
1370 |
st.session_state.flex_freq = flex_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
|
|
1371 |
|
1372 |
-
dst_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,8:9].values, return_counts=True)),
|
1373 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1374 |
dst_freq['Freq'] = dst_freq['Freq'].astype(int)
|
1375 |
dst_freq['Position'] = dst_freq['Player'].map(maps_dict['Pos_map'])
|
@@ -1382,6 +1307,8 @@ with tab2:
|
|
1382 |
dst_freq['Team'] = dst_freq['Team'].replace(item_list, team_list)
|
1383 |
|
1384 |
st.session_state.dst_freq = dst_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
|
|
|
|
1385 |
|
1386 |
with st.container():
|
1387 |
simulate_container = st.empty()
|
|
|
5 |
if not name.startswith('_'):
|
6 |
del globals()[name]
|
7 |
|
|
|
8 |
import numpy as np
|
9 |
import pandas as pd
|
10 |
import streamlit as st
|
11 |
import gspread
|
|
|
12 |
import random
|
|
|
|
|
13 |
|
14 |
@st.cache_resource
|
15 |
def init_conn():
|
|
|
34 |
|
35 |
gc = init_conn()
|
36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
freq_format = {'Proj Own': '{:.2%}', 'Exposure': '{:.2%}', 'Edge': '{:.2%}'}
|
38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
@st.cache_resource(ttl = 300)
|
40 |
def load_dk_player_projections():
|
41 |
sh = gc.open_by_url('https://docs.google.com/spreadsheets/d/1I_1Ve3F4tftgfLQQoRKOJ351XfEG48s36OxXUKxmgS8/edit#gid=1391856348')
|
|
|
225 |
RandomPortfolio = pd.DataFrame(np.hstack(all_choices), columns=['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST'])
|
226 |
RandomPortfolio['User/Field'] = 0
|
227 |
|
228 |
+
del total_elements
|
229 |
+
del all_choices
|
230 |
del O_merge
|
231 |
|
232 |
return RandomPortfolio, maps_dict, ranges_dict, full_pos_player_dict
|
|
|
239 |
stack_num = random.randint(1, 3)
|
240 |
stacking_dict = create_stack_options(raw_baselines, stack_num)
|
241 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
242 |
RandomPortfolio['QB'] = pd.Series(list(RandomPortfolio['QB'].map(qb_dict)), dtype="string[pyarrow]")
|
243 |
RandomPortfolio['RB1'] = pd.Series(list(RandomPortfolio['RB1'].map(full_pos_player_dict['pos_dicts'][0])), dtype="string[pyarrow]")
|
244 |
RandomPortfolio['RB2'] = pd.Series(list(RandomPortfolio['RB2'].map(full_pos_player_dict['pos_dicts'][0])), dtype="string[pyarrow]")
|
|
|
259 |
del stack_num
|
260 |
del stacking_dict
|
261 |
|
|
|
|
|
262 |
RandomPortfolio['QBs'] = RandomPortfolio['QB'].map(maps_dict['Salary_map']).astype(np.int32)
|
263 |
RandomPortfolio['RB1s'] = RandomPortfolio['RB1'].map(maps_dict['Salary_map']).astype(np.int32)
|
264 |
RandomPortfolio['RB2s'] = RandomPortfolio['RB2'].map(maps_dict['Salary_map']).astype(np.int32)
|
|
|
790 |
with tab2:
|
791 |
col1, col2 = st.columns([1, 7])
|
792 |
with col1:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
793 |
st.info(t_stamp)
|
794 |
if st.button("Load/Reset Data", key='reset1'):
|
795 |
st.cache_data.clear()
|
|
|
846 |
|
847 |
with col2:
|
848 |
with st.container():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
849 |
if st.button("Simulate Contest"):
|
850 |
try:
|
851 |
del dst_freq
|
|
|
903 |
OwnFrame['Own'] = OwnFrame['Own%'] * (900 / OwnFrame['Own%'].sum())
|
904 |
Overall_Proj = OwnFrame[['Player', 'Team', 'Position', 'Median', 'Own', 'Salary']]
|
905 |
|
906 |
+
del proj_dataframe
|
907 |
del OwnFrame
|
908 |
|
909 |
elif slate_var1 != 'User':
|
910 |
+
initial_proj = raw_baselines.copy()
|
911 |
drop_frame = initial_proj.drop_duplicates(subset = 'Player',keep = 'first')
|
912 |
OwnFrame = drop_frame[['Player', 'Team', 'Position', 'Median', 'Own', 'Floor', 'Ceiling', 'Salary']]
|
913 |
if contest_var1 == 'Small':
|
|
|
927 |
OwnFrame['Own'] = OwnFrame['Own%'] * (900 / OwnFrame['Own%'].sum())
|
928 |
Overall_Proj = OwnFrame[['Player', 'Team', 'Position', 'Median', 'Own', 'Salary']]
|
929 |
|
930 |
+
del raw_baselines
|
931 |
del initial_proj
|
932 |
del drop_frame
|
933 |
del OwnFrame
|
|
|
1168 |
del vec_stdev_map
|
1169 |
del sample_arrays
|
1170 |
del final_array
|
1171 |
+
del fp_array
|
1172 |
+
del fp_random
|
1173 |
st.write('Contest simulation complete')
|
1174 |
# Initial setup
|
1175 |
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=FinalPortfolio.columns.tolist() + ['Fantasy'])
|
1176 |
Sim_Winner_Frame['GPP_Proj'] = (Sim_Winner_Frame['Projection'] + Sim_Winner_Frame['Fantasy']) / 2
|
1177 |
|
1178 |
+
del FinalPortfolio
|
1179 |
+
|
1180 |
# Type Casting
|
1181 |
type_cast_dict = {'Salary': int, 'Projection': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float16}
|
1182 |
Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict)
|
|
|
1187 |
# Data Copying
|
1188 |
st.session_state.Sim_Winner_Export = Sim_Winner_Frame.copy()
|
1189 |
|
1190 |
+
del Sim_Winner_Frame
|
1191 |
+
|
1192 |
# Conditional Replacement
|
1193 |
columns_to_replace = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST']
|
1194 |
|
|
|
1204 |
st.session_state.Sim_Winner_Export[col].replace(replace_dict, inplace=True)
|
1205 |
|
1206 |
|
1207 |
+
player_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Frame.iloc[:,0:9].values, return_counts=True)),
|
1208 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1209 |
player_freq['Freq'] = player_freq['Freq'].astype(int)
|
1210 |
player_freq['Position'] = player_freq['Player'].map(maps_dict['Pos_map'])
|
|
|
1217 |
player_freq['Team'] = player_freq['Team'].replace(item_list, team_list)
|
1218 |
|
1219 |
st.session_state.player_freq = player_freq[['Player', 'Position', 'Team', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
1220 |
+
del player_freq
|
1221 |
|
1222 |
+
qb_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Frame.iloc[:,0:1].values, return_counts=True)),
|
1223 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1224 |
qb_freq['Freq'] = qb_freq['Freq'].astype(int)
|
1225 |
qb_freq['Position'] = qb_freq['Player'].map(maps_dict['Pos_map'])
|
|
|
1232 |
qb_freq['Team'] = qb_freq['Team'].replace(item_list, team_list)
|
1233 |
|
1234 |
st.session_state.qb_freq = qb_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
1235 |
+
del qb_freq
|
1236 |
|
1237 |
+
rb_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Frame.iloc[:,[1, 2]].values, return_counts=True)),
|
1238 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1239 |
rb_freq['Freq'] = rb_freq['Freq'].astype(int)
|
1240 |
rb_freq['Position'] = rb_freq['Player'].map(maps_dict['Pos_map'])
|
|
|
1247 |
rb_freq['Team'] = rb_freq['Team'].replace(item_list, team_list)
|
1248 |
|
1249 |
st.session_state.rb_freq = rb_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
1250 |
+
del rb_freq
|
1251 |
|
1252 |
+
wr_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Frame.iloc[:,[3, 4, 5]].values, return_counts=True)),
|
1253 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1254 |
wr_freq['Freq'] = wr_freq['Freq'].astype(int)
|
1255 |
wr_freq['Position'] = wr_freq['Player'].map(maps_dict['Pos_map'])
|
|
|
1262 |
wr_freq['Team'] = wr_freq['Team'].replace(item_list, team_list)
|
1263 |
|
1264 |
st.session_state.wr_freq = wr_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
1265 |
+
del wr_freq
|
1266 |
|
1267 |
+
te_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Frame.iloc[:,[6]].values, return_counts=True)),
|
1268 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1269 |
te_freq['Freq'] = te_freq['Freq'].astype(int)
|
1270 |
te_freq['Position'] = te_freq['Player'].map(maps_dict['Pos_map'])
|
|
|
1277 |
te_freq['Team'] = te_freq['Team'].replace(item_list, team_list)
|
1278 |
|
1279 |
st.session_state.te_freq = te_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
1280 |
+
del te_freq
|
1281 |
|
1282 |
+
flex_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Frame.iloc[:,[7]].values, return_counts=True)),
|
1283 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1284 |
flex_freq['Freq'] = flex_freq['Freq'].astype(int)
|
1285 |
flex_freq['Position'] = flex_freq['Player'].map(maps_dict['Pos_map'])
|
|
|
1292 |
flex_freq['Team'] = flex_freq['Team'].replace(item_list, team_list)
|
1293 |
|
1294 |
st.session_state.flex_freq = flex_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
1295 |
+
del flex_freq
|
1296 |
|
1297 |
+
dst_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Frame.iloc[:,8:9].values, return_counts=True)),
|
1298 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1299 |
dst_freq['Freq'] = dst_freq['Freq'].astype(int)
|
1300 |
dst_freq['Position'] = dst_freq['Player'].map(maps_dict['Pos_map'])
|
|
|
1307 |
dst_freq['Team'] = dst_freq['Team'].replace(item_list, team_list)
|
1308 |
|
1309 |
st.session_state.dst_freq = dst_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
1310 |
+
del dst_freq
|
1311 |
+
del maps_dict
|
1312 |
|
1313 |
with st.container():
|
1314 |
simulate_container = st.empty()
|