Multichem commited on
Commit
b81232a
·
1 Parent(s): 95656d8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +29 -28
app.py CHANGED
@@ -92,17 +92,16 @@ def run_seed_frame(seed_depth1, Strength_var, strength_grow, Teams_used, Total_R
92
  while RunsVar <= seed_depth_def:
93
  if RunsVar <= 3:
94
  FieldStrength = Strength_var_def
95
- RandomPortfolio, maps_dict = get_correlated_portfolio_for_sim(Total_Runs_def * .1)
96
- FinalPortfolio = RandomPortfolio
97
- FinalPortfolio2, maps_dict2 = get_uncorrelated_portfolio_for_sim(Total_Runs_def * .1)
98
  FinalPortfolio = pd.concat([FinalPortfolio, FinalPortfolio2], axis=0)
99
  maps_dict.update(maps_dict2)
100
  del FinalPortfolio2
101
  del maps_dict2
102
  elif RunsVar > 3 and RunsVar <= 4:
103
  FieldStrength += (strength_grow_def + ((30 - len(Teams_used_def)) * .001))
104
- FinalPortfolio3, maps_dict3 = get_correlated_portfolio_for_sim(Total_Runs_def * .1)
105
- FinalPortfolio4, maps_dict4 = get_uncorrelated_portfolio_for_sim(Total_Runs_def * .1)
106
  FinalPortfolio = pd.concat([FinalPortfolio, FinalPortfolio3], axis=0)
107
  FinalPortfolio = pd.concat([FinalPortfolio, FinalPortfolio4], axis=0)
108
  FinalPortfolio = FinalPortfolio.drop_duplicates(subset = ['Projection', 'Own'],keep = 'last').reset_index(drop = True)
@@ -114,8 +113,8 @@ def run_seed_frame(seed_depth1, Strength_var, strength_grow, Teams_used, Total_R
114
  del maps_dict4
115
  elif RunsVar > 4:
116
  FieldStrength = 1
117
- FinalPortfolio3, maps_dict3 = get_correlated_portfolio_for_sim(Total_Runs_def * .1)
118
- FinalPortfolio4, maps_dict4 = get_uncorrelated_portfolio_for_sim(Total_Runs_def * .1)
119
  FinalPortfolio = pd.concat([FinalPortfolio, FinalPortfolio3], axis=0)
120
  FinalPortfolio = pd.concat([FinalPortfolio, FinalPortfolio4], axis=0)
121
  FinalPortfolio = FinalPortfolio.drop_duplicates(subset = ['Projection', 'Own'],keep = 'last').reset_index(drop = True)
@@ -225,13 +224,14 @@ def create_random_portfolio(Total_Sample_Size, raw_baselines):
225
  RandomPortfolio = pd.DataFrame(np.hstack(all_choices), columns=['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST'])
226
  RandomPortfolio['User/Field'] = 0
227
 
 
228
  del total_elements
229
  del all_choices
230
  del O_merge
231
 
232
  return RandomPortfolio, maps_dict, ranges_dict, full_pos_player_dict
233
 
234
- def get_correlated_portfolio_for_sim(Total_Sample_Size):
235
 
236
  sizesplit = round(Total_Sample_Size * sharp_split)
237
 
@@ -345,11 +345,13 @@ def get_correlated_portfolio_for_sim(Total_Sample_Size):
345
 
346
  RandomPortfolio = RandomPortfolioDF.sort_values(by=Sim_function, ascending=False)
347
 
 
 
348
  RandomPortfolio = RandomPortfolio[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'User/Field', 'Salary', 'Projection', 'Own']]
349
 
350
  return RandomPortfolio, maps_dict
351
 
352
- def get_uncorrelated_portfolio_for_sim(Total_Sample_Size):
353
 
354
  sizesplit = round(Total_Sample_Size * (1-sharp_split))
355
 
@@ -462,6 +464,8 @@ def get_uncorrelated_portfolio_for_sim(Total_Sample_Size):
462
 
463
  RandomPortfolio = RandomPortfolio[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'User/Field', 'Salary', 'Projection', 'Own']]
464
 
 
 
465
  return RandomPortfolio, maps_dict
466
 
467
 
@@ -847,18 +851,6 @@ with tab2:
847
  with col2:
848
  with st.container():
849
  if st.button("Simulate Contest"):
850
- try:
851
- del dst_freq
852
- del flex_freq
853
- del te_freq
854
- del wr_freq
855
- del rb_freq
856
- del qb_freq
857
- del player_freq
858
- del Sim_Winner_Export
859
- del Sim_Winner_Frame
860
- except:
861
- pass
862
  with st.container():
863
  st.write('Contest Simulation Starting')
864
  for key in st.session_state.keys():
@@ -885,7 +877,7 @@ with tab2:
885
  Sim_function = 'Own'
886
 
887
  if slate_var1 == 'User':
888
- OwnFrame = proj_dataframe
889
  if contest_var1 == 'Small':
890
  OwnFrame['Own%'] = np.where((OwnFrame['Position'] == 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (10 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean(), OwnFrame['Own'])
891
  OwnFrame['Own%'] = np.where((OwnFrame['Position'] != 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (5 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean(), OwnFrame['Own%'])
@@ -953,7 +945,7 @@ with tab2:
953
  Teams_used['team_item'] = Teams_used['index'] + 1
954
  Teams_used = Teams_used.drop(columns=['index'])
955
  Teams_used_dictraw = Teams_used.drop(columns=['team_item'])
956
- Teams_used_dict = Teams_used_dictraw.to_dict()
957
 
958
  del Teams_used_dictraw
959
 
@@ -1033,6 +1025,8 @@ with tab2:
1033
  CleanPortfolio['User/Field'] = CleanPortfolio['index'] + 1
1034
  CleanPortfolio.drop(columns=['index'], inplace=True)
1035
 
 
 
1036
  CleanPortfolio.replace('', np.nan, inplace=True)
1037
  CleanPortfolio.dropna(subset=['QB'], inplace=True)
1038
 
@@ -1161,8 +1155,12 @@ with tab2:
1161
  best_lineup = final_array[final_array[:, -1].argsort(kind='stable')[::-1][:1]]
1162
  Sim_Winners.append(best_lineup)
1163
  SimVar += 1
1164
-
1165
-
 
 
 
 
1166
  del vec_projection_map
1167
  del vec_stdev_map
1168
  del sample_arrays
@@ -1201,8 +1199,7 @@ with tab2:
1201
 
1202
  for col in columns_to_replace:
1203
  st.session_state.Sim_Winner_Export[col].replace(replace_dict, inplace=True)
1204
-
1205
-
1206
  player_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Frame.iloc[:,0:9].values, return_counts=True)),
1207
  columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
1208
  player_freq['Freq'] = player_freq['Freq'].astype(int)
@@ -1307,8 +1304,12 @@ with tab2:
1307
 
1308
  st.session_state.dst_freq = dst_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
1309
  del dst_freq
 
 
1310
  del maps_dict
1311
-
 
 
1312
  with st.container():
1313
  simulate_container = st.empty()
1314
  if 'player_freq' in st.session_state:
 
92
  while RunsVar <= seed_depth_def:
93
  if RunsVar <= 3:
94
  FieldStrength = Strength_var_def
95
+ FinalPortfolio, maps_dict = get_correlated_portfolio_for_sim(Total_Runs_def * .1, sharp_split)
96
+ FinalPortfolio2, maps_dict2 = get_uncorrelated_portfolio_for_sim(Total_Runs_def * .1, sharp_split)
 
97
  FinalPortfolio = pd.concat([FinalPortfolio, FinalPortfolio2], axis=0)
98
  maps_dict.update(maps_dict2)
99
  del FinalPortfolio2
100
  del maps_dict2
101
  elif RunsVar > 3 and RunsVar <= 4:
102
  FieldStrength += (strength_grow_def + ((30 - len(Teams_used_def)) * .001))
103
+ FinalPortfolio3, maps_dict3 = get_correlated_portfolio_for_sim(Total_Runs_def * .1, sharp_split)
104
+ FinalPortfolio4, maps_dict4 = get_uncorrelated_portfolio_for_sim(Total_Runs_def * .1, sharp_split)
105
  FinalPortfolio = pd.concat([FinalPortfolio, FinalPortfolio3], axis=0)
106
  FinalPortfolio = pd.concat([FinalPortfolio, FinalPortfolio4], axis=0)
107
  FinalPortfolio = FinalPortfolio.drop_duplicates(subset = ['Projection', 'Own'],keep = 'last').reset_index(drop = True)
 
113
  del maps_dict4
114
  elif RunsVar > 4:
115
  FieldStrength = 1
116
+ FinalPortfolio3, maps_dict3 = get_correlated_portfolio_for_sim(Total_Runs_def * .1, sharp_split)
117
+ FinalPortfolio4, maps_dict4 = get_uncorrelated_portfolio_for_sim(Total_Runs_def * .1, sharp_split)
118
  FinalPortfolio = pd.concat([FinalPortfolio, FinalPortfolio3], axis=0)
119
  FinalPortfolio = pd.concat([FinalPortfolio, FinalPortfolio4], axis=0)
120
  FinalPortfolio = FinalPortfolio.drop_duplicates(subset = ['Projection', 'Own'],keep = 'last').reset_index(drop = True)
 
224
  RandomPortfolio = pd.DataFrame(np.hstack(all_choices), columns=['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST'])
225
  RandomPortfolio['User/Field'] = 0
226
 
227
+ del rng
228
  del total_elements
229
  del all_choices
230
  del O_merge
231
 
232
  return RandomPortfolio, maps_dict, ranges_dict, full_pos_player_dict
233
 
234
+ def get_correlated_portfolio_for_sim(Total_Sample_Size, sharp_split):
235
 
236
  sizesplit = round(Total_Sample_Size * sharp_split)
237
 
 
345
 
346
  RandomPortfolio = RandomPortfolioDF.sort_values(by=Sim_function, ascending=False)
347
 
348
+ del RandomPortfolioDF
349
+
350
  RandomPortfolio = RandomPortfolio[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'User/Field', 'Salary', 'Projection', 'Own']]
351
 
352
  return RandomPortfolio, maps_dict
353
 
354
+ def get_uncorrelated_portfolio_for_sim(Total_Sample_Size, sharp_split):
355
 
356
  sizesplit = round(Total_Sample_Size * (1-sharp_split))
357
 
 
464
 
465
  RandomPortfolio = RandomPortfolio[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'User/Field', 'Salary', 'Projection', 'Own']]
466
 
467
+ del RandomPortfolioDF
468
+
469
  return RandomPortfolio, maps_dict
470
 
471
 
 
851
  with col2:
852
  with st.container():
853
  if st.button("Simulate Contest"):
 
 
 
 
 
 
 
 
 
 
 
 
854
  with st.container():
855
  st.write('Contest Simulation Starting')
856
  for key in st.session_state.keys():
 
877
  Sim_function = 'Own'
878
 
879
  if slate_var1 == 'User':
880
+ OwnFrame = proj_dataframe.copy()
881
  if contest_var1 == 'Small':
882
  OwnFrame['Own%'] = np.where((OwnFrame['Position'] == 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (10 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean(), OwnFrame['Own'])
883
  OwnFrame['Own%'] = np.where((OwnFrame['Position'] != 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (5 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean(), OwnFrame['Own%'])
 
945
  Teams_used['team_item'] = Teams_used['index'] + 1
946
  Teams_used = Teams_used.drop(columns=['index'])
947
  Teams_used_dictraw = Teams_used.drop(columns=['team_item'])
948
+ # Teams_used_dict = Teams_used_dictraw.to_dict()
949
 
950
  del Teams_used_dictraw
951
 
 
1025
  CleanPortfolio['User/Field'] = CleanPortfolio['index'] + 1
1026
  CleanPortfolio.drop(columns=['index'], inplace=True)
1027
 
1028
+ del positions
1029
+
1030
  CleanPortfolio.replace('', np.nan, inplace=True)
1031
  CleanPortfolio.dropna(subset=['QB'], inplace=True)
1032
 
 
1155
  best_lineup = final_array[final_array[:, -1].argsort(kind='stable')[::-1][:1]]
1156
  Sim_Winners.append(best_lineup)
1157
  SimVar += 1
1158
+
1159
+ del SimVar
1160
+ del ref_dict, up_dict
1161
+ del linenum_var1, UserPortfolio
1162
+ del up_array
1163
+ del CleanPortfolio
1164
  del vec_projection_map
1165
  del vec_stdev_map
1166
  del sample_arrays
 
1199
 
1200
  for col in columns_to_replace:
1201
  st.session_state.Sim_Winner_Export[col].replace(replace_dict, inplace=True)
1202
+
 
1203
  player_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Frame.iloc[:,0:9].values, return_counts=True)),
1204
  columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
1205
  player_freq['Freq'] = player_freq['Freq'].astype(int)
 
1304
 
1305
  st.session_state.dst_freq = dst_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
1306
  del dst_freq
1307
+
1308
+ del Sim_size
1309
  del maps_dict
1310
+ del team_list
1311
+ del item_list
1312
+
1313
  with st.container():
1314
  simulate_container = st.empty()
1315
  if 'player_freq' in st.session_state: