Spaces:
Running
Running
James McCool
commited on
Commit
·
c2f15fd
1
Parent(s):
0d57fec
Enhance app.py by adding name mapping functionality in DK seed frame initialization. This update retrieves player names from the database and maps them to the corresponding columns in the output DataFrame, improving data visibility and accuracy during contest simulations.
Browse files
app.py
CHANGED
@@ -22,25 +22,43 @@ dk_columns = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'sal
|
|
22 |
fd_columns = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
|
23 |
|
24 |
@st.cache_data(ttl = 600)
|
25 |
-
def init_DK_seed_frames(sharp_split):
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
collection = db["DK_NFL_seed_frame"]
|
28 |
cursor = collection.find().limit(sharp_split)
|
29 |
|
30 |
raw_display = pd.DataFrame(list(cursor))
|
31 |
raw_display = raw_display[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
|
|
|
|
|
|
|
|
32 |
DK_seed = raw_display.to_numpy()
|
33 |
|
34 |
return DK_seed
|
35 |
|
36 |
@st.cache_data(ttl = 600)
|
37 |
def init_DK_Secondary_seed_frames(sharp_split):
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
collection = db["DK_NFL_Secondary_seed_frame"]
|
40 |
cursor = collection.find().limit(sharp_split)
|
41 |
|
42 |
raw_display = pd.DataFrame(list(cursor))
|
43 |
raw_display = raw_display[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
|
|
|
|
|
|
|
|
44 |
DK_seed = raw_display.to_numpy()
|
45 |
|
46 |
return DK_seed
|
|
|
22 |
fd_columns = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
|
23 |
|
24 |
@st.cache_data(ttl = 600)
|
25 |
+
def init_DK_seed_frames(sharp_split):
|
26 |
+
|
27 |
+
collection = db['DK_NFL_name_map']
|
28 |
+
cursor = collection.find()
|
29 |
+
raw_data = pd.DataFrame(list(cursor))
|
30 |
+
names_dict = dict(zip(raw_data['key'], raw_data['value']))
|
31 |
|
32 |
collection = db["DK_NFL_seed_frame"]
|
33 |
cursor = collection.find().limit(sharp_split)
|
34 |
|
35 |
raw_display = pd.DataFrame(list(cursor))
|
36 |
raw_display = raw_display[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
37 |
+
dict_columns = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST']
|
38 |
+
st.write("converting names")
|
39 |
+
for col in dict_columns:
|
40 |
+
raw_display[col] = raw_display[col].map(names_dict)
|
41 |
DK_seed = raw_display.to_numpy()
|
42 |
|
43 |
return DK_seed
|
44 |
|
45 |
@st.cache_data(ttl = 600)
|
46 |
def init_DK_Secondary_seed_frames(sharp_split):
|
47 |
+
|
48 |
+
collection = db['DK_Secondary_NFL_name_map']
|
49 |
+
cursor = collection.find()
|
50 |
+
raw_data = pd.DataFrame(list(cursor))
|
51 |
+
names_dict = dict(zip(raw_data['key'], raw_data['value']))
|
52 |
|
53 |
collection = db["DK_NFL_Secondary_seed_frame"]
|
54 |
cursor = collection.find().limit(sharp_split)
|
55 |
|
56 |
raw_display = pd.DataFrame(list(cursor))
|
57 |
raw_display = raw_display[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
58 |
+
dict_columns = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST']
|
59 |
+
st.write("converting names")
|
60 |
+
for col in dict_columns:
|
61 |
+
raw_display[col] = raw_display[col].map(names_dict)
|
62 |
DK_seed = raw_display.to_numpy()
|
63 |
|
64 |
return DK_seed
|