Multichem commited on
Commit
da5de84
·
verified ·
1 Parent(s): 8f021e9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +18 -18
app.py CHANGED
@@ -520,29 +520,29 @@ with tab1:
520
  summary_df = pd.DataFrame({
521
  'Metric': ['Min', 'Average', 'Max'],
522
  'Salary': [
523
- st.session_state.Sim_Winner_Display['salary'].min(),
524
- st.session_state.Sim_Winner_Display['salary'].mean(),
525
- st.session_state.Sim_Winner_Display['salary'].max()
526
  ],
527
  'Proj': [
528
- st.session_state.Sim_Winner_Display['proj'].min(),
529
- st.session_state.Sim_Winner_Display['proj'].mean(),
530
- st.session_state.Sim_Winner_Display['proj'].max()
531
  ],
532
  'Own': [
533
- st.session_state.Sim_Winner_Display['Own'].min(),
534
- st.session_state.Sim_Winner_Display['Own'].mean(),
535
- st.session_state.Sim_Winner_Display['Own'].max()
536
  ],
537
  'Fantasy': [
538
- st.session_state.Sim_Winner_Display['Fantasy'].min(),
539
- st.session_state.Sim_Winner_Display['Fantasy'].mean(),
540
- st.session_state.Sim_Winner_Display['Fantasy'].max()
541
  ],
542
  'GPP_Proj': [
543
- st.session_state.Sim_Winner_Display['GPP_Proj'].min(),
544
- st.session_state.Sim_Winner_Display['GPP_Proj'].mean(),
545
- st.session_state.Sim_Winner_Display['GPP_Proj'].max()
546
  ]
547
  })
548
 
@@ -557,17 +557,17 @@ with tab1:
557
  'Fantasy': '{:.2f}',
558
  'GPP_Proj': '{:.2f}'
559
  }).background_gradient(cmap='RdYlGn', axis=0, subset=['Salary', 'Proj', 'Own', 'Fantasy', 'GPP_Proj']), use_container_width=True)
560
-
561
  with tab2:
562
  if 'Sim_Winner_Display' in st.session_state:
563
  # Apply position mapping to FLEX column
564
- flex_positions = st.session_state.Sim_Winner_Display['FLEX'].map(maps_dict['Pos_map'])
565
 
566
  # Count occurrences of each position in FLEX
567
  flex_counts = flex_positions.value_counts()
568
 
569
  # Calculate average statistics for each FLEX position
570
- flex_stats = st.session_state.Sim_Winner_Display.groupby(flex_positions).agg({
571
  'proj': 'mean',
572
  'Own': 'mean',
573
  'Fantasy': 'mean',
 
520
  summary_df = pd.DataFrame({
521
  'Metric': ['Min', 'Average', 'Max'],
522
  'Salary': [
523
+ freq_copy['salary'].min(),
524
+ freq_copy['salary'].mean(),
525
+ freq_copy['salary'].max()
526
  ],
527
  'Proj': [
528
+ freq_copy['proj'].min(),
529
+ freq_copy['proj'].mean(),
530
+ freq_copy['proj'].max()
531
  ],
532
  'Own': [
533
+ freq_copy['Own'].min(),
534
+ freq_copy['Own'].mean(),
535
+ freq_copy['Own'].max()
536
  ],
537
  'Fantasy': [
538
+ freq_copy['Fantasy'].min(),
539
+ freq_copy['Fantasy'].mean(),
540
+ freq_copy['Fantasy'].max()
541
  ],
542
  'GPP_Proj': [
543
+ freq_copy['GPP_Proj'].min(),
544
+ freq_copy['GPP_Proj'].mean(),
545
+ freq_copy['GPP_Proj'].max()
546
  ]
547
  })
548
 
 
557
  'Fantasy': '{:.2f}',
558
  'GPP_Proj': '{:.2f}'
559
  }).background_gradient(cmap='RdYlGn', axis=0, subset=['Salary', 'Proj', 'Own', 'Fantasy', 'GPP_Proj']), use_container_width=True)
560
+
561
  with tab2:
562
  if 'Sim_Winner_Display' in st.session_state:
563
  # Apply position mapping to FLEX column
564
+ flex_positions = freq_copy['FLEX'].map(maps_dict['Pos_map'])
565
 
566
  # Count occurrences of each position in FLEX
567
  flex_counts = flex_positions.value_counts()
568
 
569
  # Calculate average statistics for each FLEX position
570
+ flex_stats = freq_copy.groupby(flex_positions).agg({
571
  'proj': 'mean',
572
  'Own': 'mean',
573
  'Fantasy': 'mean',