Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -889,517 +889,518 @@ with tab2:
|
|
889 |
scaling_var = 15
|
890 |
|
891 |
with col2:
|
892 |
-
|
893 |
-
|
894 |
-
|
895 |
-
|
896 |
-
|
897 |
-
|
898 |
-
|
899 |
-
|
900 |
-
|
901 |
-
|
902 |
-
|
903 |
-
|
904 |
-
|
905 |
-
|
906 |
-
st.
|
907 |
-
|
908 |
-
|
909 |
-
|
910 |
-
|
911 |
-
|
912 |
-
|
913 |
-
|
914 |
-
|
915 |
-
|
916 |
-
|
917 |
-
|
918 |
-
|
919 |
-
|
920 |
-
field_growth = 100 * strength_grow
|
921 |
-
|
922 |
-
Sort_function = 'Median'
|
923 |
-
if Sort_function == 'Median':
|
924 |
-
Sim_function = 'Projection'
|
925 |
-
elif Sort_function == 'Own':
|
926 |
-
Sim_function = 'Own'
|
927 |
-
|
928 |
-
if slate_var1 == 'User':
|
929 |
-
OwnFrame = proj_dataframe
|
930 |
-
if contest_var1 == 'Small':
|
931 |
-
OwnFrame['Own%'] = np.where((OwnFrame['Position'] == 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (10 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean(), OwnFrame['Own'])
|
932 |
-
OwnFrame['Own%'] = np.where((OwnFrame['Position'] != 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (5 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean(), OwnFrame['Own%'])
|
933 |
-
OwnFrame['Own%'] = np.where(OwnFrame['Own%'] > 75, 75, OwnFrame['Own%'])
|
934 |
-
OwnFrame['Own'] = OwnFrame['Own%'] * (900 / OwnFrame['Own%'].sum())
|
935 |
-
if contest_var1 == 'Medium':
|
936 |
-
OwnFrame['Own%'] = np.where((OwnFrame['Position'] == 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (6 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean(), OwnFrame['Own'])
|
937 |
-
OwnFrame['Own%'] = np.where((OwnFrame['Position'] != 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (3 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean(), OwnFrame['Own%'])
|
938 |
-
OwnFrame['Own%'] = np.where(OwnFrame['Own%'] > 75, 75, OwnFrame['Own%'])
|
939 |
-
OwnFrame['Own'] = OwnFrame['Own%'] * (900 / OwnFrame['Own%'].sum())
|
940 |
-
if contest_var1 == 'Large':
|
941 |
-
OwnFrame['Own%'] = np.where((OwnFrame['Position'] == 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (3 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean(), OwnFrame['Own'])
|
942 |
-
OwnFrame['Own%'] = np.where((OwnFrame['Position'] != 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (1.5 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean(), OwnFrame['Own%'])
|
943 |
-
OwnFrame['Own%'] = np.where(OwnFrame['Own%'] > 75, 75, OwnFrame['Own%'])
|
944 |
-
OwnFrame['Own'] = OwnFrame['Own%'] * (900 / OwnFrame['Own%'].sum())
|
945 |
-
Overall_Proj = OwnFrame[['Player', 'Team', 'Position', 'Median', 'Own', 'Salary']]
|
946 |
-
|
947 |
-
del OwnFrame
|
948 |
-
|
949 |
-
elif slate_var1 != 'User':
|
950 |
-
initial_proj = raw_baselines
|
951 |
-
drop_frame = initial_proj.drop_duplicates(subset = 'Player',keep = 'first')
|
952 |
-
OwnFrame = drop_frame[['Player', 'Team', 'Position', 'Median', 'Own', 'Floor', 'Ceiling', 'Salary']]
|
953 |
-
if contest_var1 == 'Small':
|
954 |
-
OwnFrame['Own%'] = np.where((OwnFrame['Position'] == 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (10 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean(), OwnFrame['Own'])
|
955 |
-
OwnFrame['Own%'] = np.where((OwnFrame['Position'] != 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (5 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean(), OwnFrame['Own%'])
|
956 |
-
OwnFrame['Own%'] = np.where(OwnFrame['Own%'] > 75, 75, OwnFrame['Own%'])
|
957 |
-
OwnFrame['Own'] = OwnFrame['Own%'] * (900 / OwnFrame['Own%'].sum())
|
958 |
-
if contest_var1 == 'Medium':
|
959 |
-
OwnFrame['Own%'] = np.where((OwnFrame['Position'] == 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (6 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean(), OwnFrame['Own'])
|
960 |
-
OwnFrame['Own%'] = np.where((OwnFrame['Position'] != 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (3 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean(), OwnFrame['Own%'])
|
961 |
-
OwnFrame['Own%'] = np.where(OwnFrame['Own%'] > 75, 75, OwnFrame['Own%'])
|
962 |
-
OwnFrame['Own'] = OwnFrame['Own%'] * (900 / OwnFrame['Own%'].sum())
|
963 |
-
if contest_var1 == 'Large':
|
964 |
-
OwnFrame['Own%'] = np.where((OwnFrame['Position'] == 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (3 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean(), OwnFrame['Own'])
|
965 |
-
OwnFrame['Own%'] = np.where((OwnFrame['Position'] != 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (1.5 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean(), OwnFrame['Own%'])
|
966 |
-
OwnFrame['Own%'] = np.where(OwnFrame['Own%'] > 75, 75, OwnFrame['Own%'])
|
967 |
-
OwnFrame['Own'] = OwnFrame['Own%'] * (900 / OwnFrame['Own%'].sum())
|
968 |
-
Overall_Proj = OwnFrame[['Player', 'Team', 'Position', 'Median', 'Own', 'Salary']]
|
969 |
-
|
970 |
-
del initial_proj
|
971 |
-
del drop_frame
|
972 |
-
del OwnFrame
|
973 |
-
|
974 |
-
if insert_port == 1:
|
975 |
-
UserPortfolio = portfolio_dataframe[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST']]
|
976 |
-
elif insert_port == 0:
|
977 |
-
UserPortfolio = pd.DataFrame(columns = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST'])
|
978 |
-
|
979 |
-
Overall_Proj.replace('', np.nan, inplace=True)
|
980 |
-
Overall_Proj = Overall_Proj.dropna(subset=['Median'])
|
981 |
-
Overall_Proj = Overall_Proj.assign(Value=lambda x: (x.Median / (x.Salary / 1000)))
|
982 |
-
Overall_Proj['Sort_var'] = (Overall_Proj['Median'].rank(ascending=False) + Overall_Proj['Value'].rank(ascending=False)) / 2
|
983 |
-
Overall_Proj = Overall_Proj.sort_values(by='Sort_var', ascending=False)
|
984 |
-
Overall_Proj['Own'] = np.where((Overall_Proj['Median'] > 0) & (Overall_Proj['Own'] == 0), 1, Overall_Proj['Own'])
|
985 |
-
Overall_Proj = Overall_Proj.loc[Overall_Proj['Own'] > 0]
|
986 |
-
|
987 |
-
Overall_Proj['Floor'] = np.where(Overall_Proj['Position'] == 'QB', Overall_Proj['Median'] * .5, Overall_Proj['Median'] * .25)
|
988 |
-
Overall_Proj['Ceiling'] = np.where(Overall_Proj['Position'] == 'WR', Overall_Proj['Median'] + Overall_Proj['Median'], Overall_Proj['Median'] + Overall_Proj['Floor'])
|
989 |
-
Overall_Proj['STDev'] = Overall_Proj['Median'] / 4
|
990 |
-
|
991 |
-
Teams_used = Overall_Proj['Team'].drop_duplicates().reset_index(drop=True)
|
992 |
-
Teams_used = Teams_used.reset_index()
|
993 |
-
Teams_used['team_item'] = Teams_used['index'] + 1
|
994 |
-
Teams_used = Teams_used.drop(columns=['index'])
|
995 |
-
Teams_used_dictraw = Teams_used.drop(columns=['team_item'])
|
996 |
-
Teams_used_dict = Teams_used_dictraw.to_dict()
|
997 |
-
|
998 |
-
del Teams_used_dictraw
|
999 |
-
|
1000 |
-
team_list = Teams_used['Team'].to_list()
|
1001 |
-
item_list = Teams_used['team_item'].to_list()
|
1002 |
-
|
1003 |
-
FieldStrength_raw = Strength_var + ((30 - len(Teams_used)) * .01)
|
1004 |
-
FieldStrength = FieldStrength_raw - (FieldStrength_raw * (20000 / Contest_Size))
|
1005 |
-
|
1006 |
-
del FieldStrength_raw
|
1007 |
-
|
1008 |
-
if FieldStrength < 0:
|
1009 |
-
FieldStrength = Strength_var
|
1010 |
-
field_split = Strength_var
|
1011 |
-
|
1012 |
-
for checkVar in range(len(team_list)):
|
1013 |
-
Overall_Proj['Team'] = Overall_Proj['Team'].replace(team_list, item_list)
|
1014 |
-
|
1015 |
-
qbs_raw = Overall_Proj[Overall_Proj.Position == 'QB']
|
1016 |
-
qbs_raw.dropna(subset=['Median']).reset_index(drop=True)
|
1017 |
-
qbs_raw = qbs_raw.reset_index(drop=True)
|
1018 |
-
qbs_raw = qbs_raw.sort_values(by=['Median'], ascending=False)
|
1019 |
-
|
1020 |
-
qbs = qbs_raw.head(round(len(qbs_raw)))
|
1021 |
-
qbs = qbs.assign(Var = range(0,len(qbs)))
|
1022 |
-
qb_dict = pd.Series(qbs.Player.values, index=qbs.Var).to_dict()
|
1023 |
-
|
1024 |
-
defs_raw = Overall_Proj[Overall_Proj.Position.str.contains("D")]
|
1025 |
-
defs_raw.dropna(subset=['Median']).reset_index(drop=True)
|
1026 |
-
defs_raw = defs_raw.reset_index(drop=True)
|
1027 |
-
defs_raw = defs_raw.sort_values(by=['Own', 'Value'], ascending=False)
|
1028 |
-
|
1029 |
-
defs = defs_raw.head(round(len(defs_raw)))
|
1030 |
-
defs = defs.assign(Var = range(0,len(defs)))
|
1031 |
-
def_dict = pd.Series(defs.Player.values, index=defs.Var).to_dict()
|
1032 |
-
|
1033 |
-
rbs_raw = Overall_Proj[Overall_Proj.Position == 'RB']
|
1034 |
-
rbs_raw.dropna(subset=['Median']).reset_index(drop=True)
|
1035 |
-
rbs_raw = rbs_raw.reset_index(drop=True)
|
1036 |
-
rbs_raw = rbs_raw.sort_values(by=['Own', 'Value'], ascending=False)
|
1037 |
-
|
1038 |
-
wrs_raw = Overall_Proj[Overall_Proj.Position == 'WR']
|
1039 |
-
wrs_raw.dropna(subset=['Median']).reset_index(drop=True)
|
1040 |
-
wrs_raw = wrs_raw.reset_index(drop=True)
|
1041 |
-
wrs_raw = wrs_raw.sort_values(by=['Own', 'Median'], ascending=False)
|
1042 |
-
|
1043 |
-
tes_raw = Overall_Proj[Overall_Proj.Position == 'TE']
|
1044 |
-
tes_raw.dropna(subset=['Median']).reset_index(drop=True)
|
1045 |
-
tes_raw = tes_raw.reset_index(drop=True)
|
1046 |
-
tes_raw = tes_raw.sort_values(by=['Own', 'Value'], ascending=False)
|
1047 |
-
|
1048 |
-
pos_players = pd.concat([rbs_raw, wrs_raw, tes_raw])
|
1049 |
-
pos_players.dropna(subset=['Median']).reset_index(drop=True)
|
1050 |
-
pos_players = pos_players.reset_index(drop=True)
|
1051 |
-
|
1052 |
-
del qbs_raw
|
1053 |
-
del defs_raw
|
1054 |
-
del rbs_raw
|
1055 |
-
del wrs_raw
|
1056 |
-
del tes_raw
|
1057 |
-
|
1058 |
-
if insert_port == 1:
|
1059 |
-
try:
|
1060 |
-
# Initialize an empty DataFrame for Raw Portfolio
|
1061 |
-
Raw_Portfolio = pd.DataFrame()
|
1062 |
-
|
1063 |
-
# Loop through each position and split the data accordingly
|
1064 |
-
positions = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST']
|
1065 |
-
for pos in positions:
|
1066 |
-
temp_df = UserPortfolio[pos].str.split("(", n=1, expand=True)
|
1067 |
-
temp_df.columns = [pos, 'Drop']
|
1068 |
-
Raw_Portfolio = pd.concat([Raw_Portfolio, temp_df], axis=1)
|
1069 |
|
1070 |
-
|
1071 |
-
|
1072 |
-
|
1073 |
-
|
1074 |
-
|
1075 |
-
|
1076 |
-
|
1077 |
-
|
1078 |
-
|
1079 |
-
|
1080 |
-
|
1081 |
-
np.
|
1082 |
-
|
1083 |
-
|
1084 |
-
|
1085 |
-
|
1086 |
-
|
1087 |
-
|
1088 |
-
|
1089 |
-
|
1090 |
-
|
1091 |
-
|
1092 |
-
|
1093 |
-
|
1094 |
-
|
|
|
1095 |
|
1096 |
-
|
1097 |
-
CleanPortfolio.replace('', np.nan, inplace=True)
|
1098 |
-
CleanPortfolio.dropna(subset=['QB'], inplace=True)
|
1099 |
|
1100 |
-
|
1101 |
-
|
1102 |
-
|
1103 |
-
|
1104 |
-
|
1105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1106 |
|
1107 |
-
|
1108 |
-
|
1109 |
-
|
1110 |
-
nerf_frame[col] *= 0.90
|
1111 |
-
|
1112 |
-
elif insert_port == 0:
|
1113 |
-
CleanPortfolio = UserPortfolio
|
1114 |
-
cleaport_players = pd.DataFrame(np.column_stack(np.unique(CleanPortfolio.iloc[:,0:9].values, return_counts=True)),
|
1115 |
-
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1116 |
-
cleaport_players['Freq'] = cleaport_players['Freq'].astype(int)
|
1117 |
-
nerf_frame = Overall_Proj
|
1118 |
|
1119 |
-
ref_dict = {
|
1120 |
-
'pos':['RB', 'WR', 'TE', 'FLEX'],
|
1121 |
-
'pos_dfs':['RB_Table', 'WR_Table', 'TE_Table', 'FLEX_Table'],
|
1122 |
-
'pos_dicts':['rb_dict', 'wr_dict', 'te_dict', 'flex_dict']
|
1123 |
-
}
|
1124 |
-
|
1125 |
-
maps_dict = {
|
1126 |
-
'Floor_map':dict(zip(Overall_Proj.Player,Overall_Proj.Floor)),
|
1127 |
-
'Projection_map':dict(zip(Overall_Proj.Player,Overall_Proj.Median)),
|
1128 |
-
'Ceiling_map':dict(zip(Overall_Proj.Player,Overall_Proj.Ceiling)),
|
1129 |
-
'Salary_map':dict(zip(Overall_Proj.Player,Overall_Proj.Salary)),
|
1130 |
-
'Pos_map':dict(zip(Overall_Proj.Player,Overall_Proj.Position)),
|
1131 |
-
'Own_map':dict(zip(Overall_Proj.Player,Overall_Proj.Own)),
|
1132 |
-
'Team_map':dict(zip(Overall_Proj.Player,Overall_Proj.Team)),
|
1133 |
-
'STDev_map':dict(zip(Overall_Proj.Player,Overall_Proj.STDev)),
|
1134 |
-
'team_check_map':dict(zip(Overall_Proj.Player,Overall_Proj.Team))
|
1135 |
-
}
|
1136 |
-
|
1137 |
-
up_dict = {
|
1138 |
-
'Floor_map':dict(zip(cleaport_players.Player,nerf_frame.Floor)),
|
1139 |
-
'Projection_map':dict(zip(cleaport_players.Player,nerf_frame.Median)),
|
1140 |
-
'Ceiling_map':dict(zip(cleaport_players.Player,nerf_frame.Ceiling)),
|
1141 |
-
'Salary_map':dict(zip(cleaport_players.Player,nerf_frame.Salary)),
|
1142 |
-
'Pos_map':dict(zip(cleaport_players.Player,nerf_frame.Position)),
|
1143 |
-
'Own_map':dict(zip(cleaport_players.Player,nerf_frame.Own)),
|
1144 |
-
'Team_map':dict(zip(cleaport_players.Player,nerf_frame.Team)),
|
1145 |
-
'STDev_map':dict(zip(cleaport_players.Player,nerf_frame.STDev)),
|
1146 |
-
'team_check_map':dict(zip(cleaport_players.Player,nerf_frame.Team))
|
1147 |
-
}
|
1148 |
-
|
1149 |
-
del cleaport_players
|
1150 |
-
del Overall_Proj
|
1151 |
-
del nerf_frame
|
1152 |
-
|
1153 |
-
st.write('Seed frame creation')
|
1154 |
-
FinalPortfolio, maps_dict = run_seed_frame(seed_depth1, Strength_var, strength_grow, Teams_used, Total_Runs)
|
1155 |
-
|
1156 |
-
Sim_size = linenum_var1
|
1157 |
-
SimVar = 1
|
1158 |
-
Sim_Winners = []
|
1159 |
-
fp_array = FinalPortfolio.values
|
1160 |
-
|
1161 |
-
if insert_port == 1:
|
1162 |
-
up_array = CleanPortfolio.values
|
1163 |
-
|
1164 |
-
# Pre-vectorize functions
|
1165 |
-
vec_projection_map = np.vectorize(maps_dict['Projection_map'].__getitem__)
|
1166 |
-
vec_stdev_map = np.vectorize(maps_dict['STDev_map'].__getitem__)
|
1167 |
-
|
1168 |
-
if insert_port == 1:
|
1169 |
-
vec_up_projection_map = np.vectorize(up_dict['Projection_map'].__getitem__)
|
1170 |
-
vec_up_stdev_map = np.vectorize(up_dict['STDev_map'].__getitem__)
|
1171 |
-
|
1172 |
-
st.write('Simulating contest on frames')
|
1173 |
-
|
1174 |
-
while SimVar <= Sim_size:
|
1175 |
if insert_port == 1:
|
1176 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1177 |
elif insert_port == 0:
|
1178 |
-
|
|
|
|
|
|
|
|
|
1179 |
|
1180 |
-
|
1181 |
-
|
1182 |
-
|
1183 |
-
|
1184 |
-
|
1185 |
-
axis=1)
|
1186 |
-
]
|
1187 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1188 |
if insert_port == 1:
|
1189 |
-
|
1190 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1191 |
np.sum(np.random.normal(
|
1192 |
-
loc=
|
1193 |
-
scale=
|
1194 |
axis=1)
|
1195 |
]
|
1196 |
-
sample_arrays = np.vstack((sample_arrays1, sample_arrays2))
|
1197 |
-
else:
|
1198 |
-
sample_arrays = sample_arrays1
|
1199 |
-
|
1200 |
-
final_array = sample_arrays[sample_arrays[:, 10].argsort()[::-1]]
|
1201 |
-
best_lineup = final_array[final_array[:, -1].argsort(kind='stable')[::-1][:1]]
|
1202 |
-
Sim_Winners.append(best_lineup)
|
1203 |
-
SimVar += 1
|
1204 |
-
|
1205 |
-
|
1206 |
-
# del smple_arrays
|
1207 |
-
# del smple_arrays1
|
1208 |
-
# del smple_arrays2
|
1209 |
-
# del final_array
|
1210 |
-
# del best_lineup
|
1211 |
-
st.write('Contest simulation complete')
|
1212 |
-
# Initial setup
|
1213 |
-
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=FinalPortfolio.columns.tolist() + ['Fantasy'])
|
1214 |
-
Sim_Winner_Frame['GPP_Proj'] = (Sim_Winner_Frame['Projection'] + Sim_Winner_Frame['Fantasy']) / 2
|
1215 |
-
|
1216 |
-
# Type Casting
|
1217 |
-
type_cast_dict = {'Salary': int, 'Projection': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float16}
|
1218 |
-
Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict)
|
1219 |
-
|
1220 |
-
# Sorting
|
1221 |
-
Sim_Winner_Frame = Sim_Winner_Frame.sort_values(by='GPP_Proj', ascending=False)
|
1222 |
-
|
1223 |
-
# Data Copying
|
1224 |
-
Sim_Winner_Export = Sim_Winner_Frame.copy()
|
1225 |
-
|
1226 |
-
# Conditional Replacement
|
1227 |
-
columns_to_replace = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST']
|
1228 |
-
|
1229 |
-
if site_var1 == 'Draftkings':
|
1230 |
-
replace_dict = dkid_dict
|
1231 |
-
elif site_var1 == 'Fanduel':
|
1232 |
-
replace_dict = fdid_dict
|
1233 |
-
|
1234 |
-
for col in columns_to_replace:
|
1235 |
-
Sim_Winner_Export[col].replace(replace_dict, inplace=True)
|
1236 |
-
|
1237 |
|
1238 |
-
|
1239 |
-
|
1240 |
-
|
1241 |
-
|
1242 |
-
|
1243 |
-
|
1244 |
-
|
1245 |
-
|
1246 |
-
|
1247 |
-
|
1248 |
-
|
1249 |
-
|
1250 |
-
player_freq = player_freq[['Player', 'Position', 'Team', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
1251 |
-
|
1252 |
-
qb_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,0:1].values, return_counts=True)),
|
1253 |
-
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1254 |
-
qb_freq['Freq'] = qb_freq['Freq'].astype(int)
|
1255 |
-
qb_freq['Position'] = qb_freq['Player'].map(maps_dict['Pos_map'])
|
1256 |
-
qb_freq['Salary'] = qb_freq['Player'].map(maps_dict['Salary_map'])
|
1257 |
-
qb_freq['Proj Own'] = qb_freq['Player'].map(maps_dict['Own_map']) / 100
|
1258 |
-
qb_freq['Exposure'] = qb_freq['Freq']/(Sim_size)
|
1259 |
-
qb_freq['Edge'] = qb_freq['Exposure'] - qb_freq['Proj Own']
|
1260 |
-
qb_freq['Team'] = qb_freq['Player'].map(maps_dict['Team_map'])
|
1261 |
-
for checkVar in range(len(team_list)):
|
1262 |
-
qb_freq['Team'] = qb_freq['Team'].replace(item_list, team_list)
|
1263 |
-
|
1264 |
-
qb_freq = qb_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
1265 |
-
|
1266 |
-
rb_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,[1, 2]].values, return_counts=True)),
|
1267 |
-
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1268 |
-
rb_freq['Freq'] = rb_freq['Freq'].astype(int)
|
1269 |
-
rb_freq['Position'] = rb_freq['Player'].map(maps_dict['Pos_map'])
|
1270 |
-
rb_freq['Salary'] = rb_freq['Player'].map(maps_dict['Salary_map'])
|
1271 |
-
rb_freq['Proj Own'] = rb_freq['Player'].map(maps_dict['Own_map']) / 100
|
1272 |
-
rb_freq['Exposure'] = rb_freq['Freq']/Sim_size
|
1273 |
-
rb_freq['Edge'] = rb_freq['Exposure'] - rb_freq['Proj Own']
|
1274 |
-
rb_freq['Team'] = rb_freq['Player'].map(maps_dict['Team_map'])
|
1275 |
-
for checkVar in range(len(team_list)):
|
1276 |
-
rb_freq['Team'] = rb_freq['Team'].replace(item_list, team_list)
|
1277 |
-
|
1278 |
-
rb_freq = rb_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
1279 |
-
|
1280 |
-
wr_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,[3, 4, 5]].values, return_counts=True)),
|
1281 |
-
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1282 |
-
wr_freq['Freq'] = wr_freq['Freq'].astype(int)
|
1283 |
-
wr_freq['Position'] = wr_freq['Player'].map(maps_dict['Pos_map'])
|
1284 |
-
wr_freq['Salary'] = wr_freq['Player'].map(maps_dict['Salary_map'])
|
1285 |
-
wr_freq['Proj Own'] = wr_freq['Player'].map(maps_dict['Own_map']) / 100
|
1286 |
-
wr_freq['Exposure'] = wr_freq['Freq']/Sim_size
|
1287 |
-
wr_freq['Edge'] = wr_freq['Exposure'] - wr_freq['Proj Own']
|
1288 |
-
wr_freq['Team'] = wr_freq['Player'].map(maps_dict['Team_map'])
|
1289 |
-
for checkVar in range(len(team_list)):
|
1290 |
-
wr_freq['Team'] = wr_freq['Team'].replace(item_list, team_list)
|
1291 |
-
|
1292 |
-
wr_freq = wr_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
1293 |
-
|
1294 |
-
te_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,[6]].values, return_counts=True)),
|
1295 |
-
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1296 |
-
te_freq['Freq'] = te_freq['Freq'].astype(int)
|
1297 |
-
te_freq['Position'] = te_freq['Player'].map(maps_dict['Pos_map'])
|
1298 |
-
te_freq['Salary'] = te_freq['Player'].map(maps_dict['Salary_map'])
|
1299 |
-
te_freq['Proj Own'] = te_freq['Player'].map(maps_dict['Own_map']) / 100
|
1300 |
-
te_freq['Exposure'] = te_freq['Freq']/Sim_size
|
1301 |
-
te_freq['Edge'] = te_freq['Exposure'] - te_freq['Proj Own']
|
1302 |
-
te_freq['Team'] = te_freq['Player'].map(maps_dict['Team_map'])
|
1303 |
-
for checkVar in range(len(team_list)):
|
1304 |
-
te_freq['Team'] = te_freq['Team'].replace(item_list, team_list)
|
1305 |
-
|
1306 |
-
te_freq = te_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
1307 |
|
1308 |
-
|
1309 |
-
|
1310 |
-
|
1311 |
-
|
1312 |
-
|
1313 |
-
|
1314 |
-
|
1315 |
-
|
1316 |
-
|
1317 |
-
|
1318 |
-
|
1319 |
-
|
1320 |
-
|
1321 |
-
|
1322 |
-
|
1323 |
-
|
1324 |
-
|
1325 |
-
|
1326 |
-
|
1327 |
-
|
1328 |
-
|
1329 |
-
|
1330 |
-
|
1331 |
-
|
1332 |
-
|
1333 |
-
|
1334 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1335 |
|
1336 |
-
|
1337 |
-
|
1338 |
-
|
1339 |
-
|
1340 |
st.download_button(
|
1341 |
label="Export Tables",
|
1342 |
data=convert_df_to_csv(Sim_Winner_Export),
|
1343 |
file_name='NFL_consim_export.csv',
|
1344 |
mime='text/csv',
|
1345 |
)
|
1346 |
-
|
1347 |
-
|
1348 |
-
|
1349 |
-
|
1350 |
-
|
1351 |
-
|
1352 |
-
|
1353 |
-
|
1354 |
-
|
1355 |
-
|
1356 |
-
|
1357 |
-
|
1358 |
-
|
1359 |
-
|
1360 |
-
|
1361 |
-
|
1362 |
-
|
1363 |
-
|
1364 |
-
|
1365 |
-
|
1366 |
-
|
1367 |
-
|
1368 |
-
|
1369 |
-
|
1370 |
-
|
1371 |
-
|
1372 |
-
|
1373 |
-
|
1374 |
-
|
1375 |
-
|
1376 |
-
|
1377 |
-
|
1378 |
-
|
1379 |
-
|
1380 |
-
|
1381 |
-
|
1382 |
-
|
1383 |
-
|
1384 |
-
|
1385 |
-
|
1386 |
-
|
1387 |
-
|
1388 |
-
|
1389 |
-
|
1390 |
-
|
1391 |
-
|
1392 |
-
|
1393 |
-
|
1394 |
-
|
1395 |
-
|
1396 |
-
|
1397 |
-
|
1398 |
-
|
1399 |
-
|
1400 |
-
|
1401 |
-
|
1402 |
-
|
1403 |
-
|
1404 |
-
|
1405 |
-
|
|
|
889 |
scaling_var = 15
|
890 |
|
891 |
with col2:
|
892 |
+
with st.conatainer():
|
893 |
+
if st.button("Simulate Contest"):
|
894 |
+
try:
|
895 |
+
del dst_freq
|
896 |
+
del flex_freq
|
897 |
+
del te_freq
|
898 |
+
del wr_freq
|
899 |
+
del rb_freq
|
900 |
+
del qb_freq
|
901 |
+
del player_freq
|
902 |
+
del Sim_Winner_Export
|
903 |
+
del Sim_Winner_Frame
|
904 |
+
except:
|
905 |
+
pass
|
906 |
+
with st.container():
|
907 |
+
st.write('Contest Simulation Starting')
|
908 |
+
seed_depth1 = 10
|
909 |
+
Total_Runs = 1000000
|
910 |
+
if Contest_Size <= 1000:
|
911 |
+
strength_grow = .01
|
912 |
+
elif Contest_Size > 1000 and Contest_Size <= 2500:
|
913 |
+
strength_grow = .025
|
914 |
+
elif Contest_Size > 2500 and Contest_Size <= 5000:
|
915 |
+
strength_grow = .05
|
916 |
+
elif Contest_Size > 5000 and Contest_Size <= 20000:
|
917 |
+
strength_grow = .075
|
918 |
+
elif Contest_Size > 20000:
|
919 |
+
strength_grow = .1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
920 |
|
921 |
+
field_growth = 100 * strength_grow
|
922 |
+
|
923 |
+
Sort_function = 'Median'
|
924 |
+
if Sort_function == 'Median':
|
925 |
+
Sim_function = 'Projection'
|
926 |
+
elif Sort_function == 'Own':
|
927 |
+
Sim_function = 'Own'
|
928 |
+
|
929 |
+
if slate_var1 == 'User':
|
930 |
+
OwnFrame = proj_dataframe
|
931 |
+
if contest_var1 == 'Small':
|
932 |
+
OwnFrame['Own%'] = np.where((OwnFrame['Position'] == 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (10 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean(), OwnFrame['Own'])
|
933 |
+
OwnFrame['Own%'] = np.where((OwnFrame['Position'] != 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (5 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean(), OwnFrame['Own%'])
|
934 |
+
OwnFrame['Own%'] = np.where(OwnFrame['Own%'] > 75, 75, OwnFrame['Own%'])
|
935 |
+
OwnFrame['Own'] = OwnFrame['Own%'] * (900 / OwnFrame['Own%'].sum())
|
936 |
+
if contest_var1 == 'Medium':
|
937 |
+
OwnFrame['Own%'] = np.where((OwnFrame['Position'] == 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (6 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean(), OwnFrame['Own'])
|
938 |
+
OwnFrame['Own%'] = np.where((OwnFrame['Position'] != 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (3 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean(), OwnFrame['Own%'])
|
939 |
+
OwnFrame['Own%'] = np.where(OwnFrame['Own%'] > 75, 75, OwnFrame['Own%'])
|
940 |
+
OwnFrame['Own'] = OwnFrame['Own%'] * (900 / OwnFrame['Own%'].sum())
|
941 |
+
if contest_var1 == 'Large':
|
942 |
+
OwnFrame['Own%'] = np.where((OwnFrame['Position'] == 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (3 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean(), OwnFrame['Own'])
|
943 |
+
OwnFrame['Own%'] = np.where((OwnFrame['Position'] != 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (1.5 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean(), OwnFrame['Own%'])
|
944 |
+
OwnFrame['Own%'] = np.where(OwnFrame['Own%'] > 75, 75, OwnFrame['Own%'])
|
945 |
+
OwnFrame['Own'] = OwnFrame['Own%'] * (900 / OwnFrame['Own%'].sum())
|
946 |
+
Overall_Proj = OwnFrame[['Player', 'Team', 'Position', 'Median', 'Own', 'Salary']]
|
947 |
|
948 |
+
del OwnFrame
|
|
|
|
|
949 |
|
950 |
+
elif slate_var1 != 'User':
|
951 |
+
initial_proj = raw_baselines
|
952 |
+
drop_frame = initial_proj.drop_duplicates(subset = 'Player',keep = 'first')
|
953 |
+
OwnFrame = drop_frame[['Player', 'Team', 'Position', 'Median', 'Own', 'Floor', 'Ceiling', 'Salary']]
|
954 |
+
if contest_var1 == 'Small':
|
955 |
+
OwnFrame['Own%'] = np.where((OwnFrame['Position'] == 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (10 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean(), OwnFrame['Own'])
|
956 |
+
OwnFrame['Own%'] = np.where((OwnFrame['Position'] != 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (5 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean(), OwnFrame['Own%'])
|
957 |
+
OwnFrame['Own%'] = np.where(OwnFrame['Own%'] > 75, 75, OwnFrame['Own%'])
|
958 |
+
OwnFrame['Own'] = OwnFrame['Own%'] * (900 / OwnFrame['Own%'].sum())
|
959 |
+
if contest_var1 == 'Medium':
|
960 |
+
OwnFrame['Own%'] = np.where((OwnFrame['Position'] == 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (6 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean(), OwnFrame['Own'])
|
961 |
+
OwnFrame['Own%'] = np.where((OwnFrame['Position'] != 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (3 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean(), OwnFrame['Own%'])
|
962 |
+
OwnFrame['Own%'] = np.where(OwnFrame['Own%'] > 75, 75, OwnFrame['Own%'])
|
963 |
+
OwnFrame['Own'] = OwnFrame['Own%'] * (900 / OwnFrame['Own%'].sum())
|
964 |
+
if contest_var1 == 'Large':
|
965 |
+
OwnFrame['Own%'] = np.where((OwnFrame['Position'] == 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (3 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] == 'QB', 'Own'].mean(), OwnFrame['Own'])
|
966 |
+
OwnFrame['Own%'] = np.where((OwnFrame['Position'] != 'QB') & (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean() >= 0), OwnFrame['Own'] * (1.5 * (OwnFrame['Own'] - OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean())/100) + OwnFrame.loc[OwnFrame['Position'] != 'QB', 'Own'].mean(), OwnFrame['Own%'])
|
967 |
+
OwnFrame['Own%'] = np.where(OwnFrame['Own%'] > 75, 75, OwnFrame['Own%'])
|
968 |
+
OwnFrame['Own'] = OwnFrame['Own%'] * (900 / OwnFrame['Own%'].sum())
|
969 |
+
Overall_Proj = OwnFrame[['Player', 'Team', 'Position', 'Median', 'Own', 'Salary']]
|
970 |
|
971 |
+
del initial_proj
|
972 |
+
del drop_frame
|
973 |
+
del OwnFrame
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
974 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
975 |
if insert_port == 1:
|
976 |
+
UserPortfolio = portfolio_dataframe[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST']]
|
977 |
+
elif insert_port == 0:
|
978 |
+
UserPortfolio = pd.DataFrame(columns = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST'])
|
979 |
+
|
980 |
+
Overall_Proj.replace('', np.nan, inplace=True)
|
981 |
+
Overall_Proj = Overall_Proj.dropna(subset=['Median'])
|
982 |
+
Overall_Proj = Overall_Proj.assign(Value=lambda x: (x.Median / (x.Salary / 1000)))
|
983 |
+
Overall_Proj['Sort_var'] = (Overall_Proj['Median'].rank(ascending=False) + Overall_Proj['Value'].rank(ascending=False)) / 2
|
984 |
+
Overall_Proj = Overall_Proj.sort_values(by='Sort_var', ascending=False)
|
985 |
+
Overall_Proj['Own'] = np.where((Overall_Proj['Median'] > 0) & (Overall_Proj['Own'] == 0), 1, Overall_Proj['Own'])
|
986 |
+
Overall_Proj = Overall_Proj.loc[Overall_Proj['Own'] > 0]
|
987 |
+
|
988 |
+
Overall_Proj['Floor'] = np.where(Overall_Proj['Position'] == 'QB', Overall_Proj['Median'] * .5, Overall_Proj['Median'] * .25)
|
989 |
+
Overall_Proj['Ceiling'] = np.where(Overall_Proj['Position'] == 'WR', Overall_Proj['Median'] + Overall_Proj['Median'], Overall_Proj['Median'] + Overall_Proj['Floor'])
|
990 |
+
Overall_Proj['STDev'] = Overall_Proj['Median'] / 4
|
991 |
+
|
992 |
+
Teams_used = Overall_Proj['Team'].drop_duplicates().reset_index(drop=True)
|
993 |
+
Teams_used = Teams_used.reset_index()
|
994 |
+
Teams_used['team_item'] = Teams_used['index'] + 1
|
995 |
+
Teams_used = Teams_used.drop(columns=['index'])
|
996 |
+
Teams_used_dictraw = Teams_used.drop(columns=['team_item'])
|
997 |
+
Teams_used_dict = Teams_used_dictraw.to_dict()
|
998 |
+
|
999 |
+
del Teams_used_dictraw
|
1000 |
+
|
1001 |
+
team_list = Teams_used['Team'].to_list()
|
1002 |
+
item_list = Teams_used['team_item'].to_list()
|
1003 |
+
|
1004 |
+
FieldStrength_raw = Strength_var + ((30 - len(Teams_used)) * .01)
|
1005 |
+
FieldStrength = FieldStrength_raw - (FieldStrength_raw * (20000 / Contest_Size))
|
1006 |
+
|
1007 |
+
del FieldStrength_raw
|
1008 |
+
|
1009 |
+
if FieldStrength < 0:
|
1010 |
+
FieldStrength = Strength_var
|
1011 |
+
field_split = Strength_var
|
1012 |
+
|
1013 |
+
for checkVar in range(len(team_list)):
|
1014 |
+
Overall_Proj['Team'] = Overall_Proj['Team'].replace(team_list, item_list)
|
1015 |
+
|
1016 |
+
qbs_raw = Overall_Proj[Overall_Proj.Position == 'QB']
|
1017 |
+
qbs_raw.dropna(subset=['Median']).reset_index(drop=True)
|
1018 |
+
qbs_raw = qbs_raw.reset_index(drop=True)
|
1019 |
+
qbs_raw = qbs_raw.sort_values(by=['Median'], ascending=False)
|
1020 |
+
|
1021 |
+
qbs = qbs_raw.head(round(len(qbs_raw)))
|
1022 |
+
qbs = qbs.assign(Var = range(0,len(qbs)))
|
1023 |
+
qb_dict = pd.Series(qbs.Player.values, index=qbs.Var).to_dict()
|
1024 |
+
|
1025 |
+
defs_raw = Overall_Proj[Overall_Proj.Position.str.contains("D")]
|
1026 |
+
defs_raw.dropna(subset=['Median']).reset_index(drop=True)
|
1027 |
+
defs_raw = defs_raw.reset_index(drop=True)
|
1028 |
+
defs_raw = defs_raw.sort_values(by=['Own', 'Value'], ascending=False)
|
1029 |
+
|
1030 |
+
defs = defs_raw.head(round(len(defs_raw)))
|
1031 |
+
defs = defs.assign(Var = range(0,len(defs)))
|
1032 |
+
def_dict = pd.Series(defs.Player.values, index=defs.Var).to_dict()
|
1033 |
+
|
1034 |
+
rbs_raw = Overall_Proj[Overall_Proj.Position == 'RB']
|
1035 |
+
rbs_raw.dropna(subset=['Median']).reset_index(drop=True)
|
1036 |
+
rbs_raw = rbs_raw.reset_index(drop=True)
|
1037 |
+
rbs_raw = rbs_raw.sort_values(by=['Own', 'Value'], ascending=False)
|
1038 |
+
|
1039 |
+
wrs_raw = Overall_Proj[Overall_Proj.Position == 'WR']
|
1040 |
+
wrs_raw.dropna(subset=['Median']).reset_index(drop=True)
|
1041 |
+
wrs_raw = wrs_raw.reset_index(drop=True)
|
1042 |
+
wrs_raw = wrs_raw.sort_values(by=['Own', 'Median'], ascending=False)
|
1043 |
+
|
1044 |
+
tes_raw = Overall_Proj[Overall_Proj.Position == 'TE']
|
1045 |
+
tes_raw.dropna(subset=['Median']).reset_index(drop=True)
|
1046 |
+
tes_raw = tes_raw.reset_index(drop=True)
|
1047 |
+
tes_raw = tes_raw.sort_values(by=['Own', 'Value'], ascending=False)
|
1048 |
+
|
1049 |
+
pos_players = pd.concat([rbs_raw, wrs_raw, tes_raw])
|
1050 |
+
pos_players.dropna(subset=['Median']).reset_index(drop=True)
|
1051 |
+
pos_players = pos_players.reset_index(drop=True)
|
1052 |
+
|
1053 |
+
del qbs_raw
|
1054 |
+
del defs_raw
|
1055 |
+
del rbs_raw
|
1056 |
+
del wrs_raw
|
1057 |
+
del tes_raw
|
1058 |
+
|
1059 |
+
if insert_port == 1:
|
1060 |
+
try:
|
1061 |
+
# Initialize an empty DataFrame for Raw Portfolio
|
1062 |
+
Raw_Portfolio = pd.DataFrame()
|
1063 |
+
|
1064 |
+
# Loop through each position and split the data accordingly
|
1065 |
+
positions = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST']
|
1066 |
+
for pos in positions:
|
1067 |
+
temp_df = UserPortfolio[pos].str.split("(", n=1, expand=True)
|
1068 |
+
temp_df.columns = [pos, 'Drop']
|
1069 |
+
Raw_Portfolio = pd.concat([Raw_Portfolio, temp_df], axis=1)
|
1070 |
+
|
1071 |
+
# Select only necessary columns and strip white spaces
|
1072 |
+
CleanPortfolio = Raw_Portfolio[positions].apply(lambda x: x.str.strip())
|
1073 |
+
CleanPortfolio.reset_index(inplace=True)
|
1074 |
+
CleanPortfolio['User/Field'] = CleanPortfolio['index'] + 1
|
1075 |
+
CleanPortfolio.drop(columns=['index'], inplace=True)
|
1076 |
+
|
1077 |
+
CleanPortfolio.replace('', np.nan, inplace=True)
|
1078 |
+
CleanPortfolio.dropna(subset=['QB'], inplace=True)
|
1079 |
+
|
1080 |
+
# Create frequency table for players
|
1081 |
+
cleaport_players = pd.DataFrame(
|
1082 |
+
np.column_stack(np.unique(CleanPortfolio.iloc[:, 0:9].values, return_counts=True)),
|
1083 |
+
columns=['Player', 'Freq']
|
1084 |
+
).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1085 |
+
cleaport_players['Freq'] = cleaport_players['Freq'].astype(int)
|
1086 |
+
|
1087 |
+
# Merge and update nerf_frame
|
1088 |
+
nerf_frame = pd.merge(cleaport_players, Overall_Proj, on='Player', how='left')
|
1089 |
+
for col in ['Median', 'Floor', 'Ceiling', 'STDev']:
|
1090 |
+
nerf_frame[col] *= 0.90
|
1091 |
+
del Raw_Portfolio
|
1092 |
+
except:
|
1093 |
+
CleanPortfolio = UserPortfolio.reset_index()
|
1094 |
+
CleanPortfolio['User/Field'] = CleanPortfolio['index'] + 1
|
1095 |
+
CleanPortfolio.drop(columns=['index'], inplace=True)
|
1096 |
+
|
1097 |
+
# Replace empty strings and drop rows with NaN in 'QB' column
|
1098 |
+
CleanPortfolio.replace('', np.nan, inplace=True)
|
1099 |
+
CleanPortfolio.dropna(subset=['QB'], inplace=True)
|
1100 |
+
|
1101 |
+
# Create frequency table for players
|
1102 |
+
cleaport_players = pd.DataFrame(
|
1103 |
+
np.column_stack(np.unique(CleanPortfolio.iloc[:, 0:9].values, return_counts=True)),
|
1104 |
+
columns=['Player', 'Freq']
|
1105 |
+
).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1106 |
+
cleaport_players['Freq'] = cleaport_players['Freq'].astype(int)
|
1107 |
+
|
1108 |
+
# Merge and update nerf_frame
|
1109 |
+
nerf_frame = pd.merge(cleaport_players, Overall_Proj, on='Player', how='left')
|
1110 |
+
for col in ['Median', 'Floor', 'Ceiling', 'STDev']:
|
1111 |
+
nerf_frame[col] *= 0.90
|
1112 |
+
|
1113 |
elif insert_port == 0:
|
1114 |
+
CleanPortfolio = UserPortfolio
|
1115 |
+
cleaport_players = pd.DataFrame(np.column_stack(np.unique(CleanPortfolio.iloc[:,0:9].values, return_counts=True)),
|
1116 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1117 |
+
cleaport_players['Freq'] = cleaport_players['Freq'].astype(int)
|
1118 |
+
nerf_frame = Overall_Proj
|
1119 |
|
1120 |
+
ref_dict = {
|
1121 |
+
'pos':['RB', 'WR', 'TE', 'FLEX'],
|
1122 |
+
'pos_dfs':['RB_Table', 'WR_Table', 'TE_Table', 'FLEX_Table'],
|
1123 |
+
'pos_dicts':['rb_dict', 'wr_dict', 'te_dict', 'flex_dict']
|
1124 |
+
}
|
|
|
|
|
1125 |
|
1126 |
+
maps_dict = {
|
1127 |
+
'Floor_map':dict(zip(Overall_Proj.Player,Overall_Proj.Floor)),
|
1128 |
+
'Projection_map':dict(zip(Overall_Proj.Player,Overall_Proj.Median)),
|
1129 |
+
'Ceiling_map':dict(zip(Overall_Proj.Player,Overall_Proj.Ceiling)),
|
1130 |
+
'Salary_map':dict(zip(Overall_Proj.Player,Overall_Proj.Salary)),
|
1131 |
+
'Pos_map':dict(zip(Overall_Proj.Player,Overall_Proj.Position)),
|
1132 |
+
'Own_map':dict(zip(Overall_Proj.Player,Overall_Proj.Own)),
|
1133 |
+
'Team_map':dict(zip(Overall_Proj.Player,Overall_Proj.Team)),
|
1134 |
+
'STDev_map':dict(zip(Overall_Proj.Player,Overall_Proj.STDev)),
|
1135 |
+
'team_check_map':dict(zip(Overall_Proj.Player,Overall_Proj.Team))
|
1136 |
+
}
|
1137 |
+
|
1138 |
+
up_dict = {
|
1139 |
+
'Floor_map':dict(zip(cleaport_players.Player,nerf_frame.Floor)),
|
1140 |
+
'Projection_map':dict(zip(cleaport_players.Player,nerf_frame.Median)),
|
1141 |
+
'Ceiling_map':dict(zip(cleaport_players.Player,nerf_frame.Ceiling)),
|
1142 |
+
'Salary_map':dict(zip(cleaport_players.Player,nerf_frame.Salary)),
|
1143 |
+
'Pos_map':dict(zip(cleaport_players.Player,nerf_frame.Position)),
|
1144 |
+
'Own_map':dict(zip(cleaport_players.Player,nerf_frame.Own)),
|
1145 |
+
'Team_map':dict(zip(cleaport_players.Player,nerf_frame.Team)),
|
1146 |
+
'STDev_map':dict(zip(cleaport_players.Player,nerf_frame.STDev)),
|
1147 |
+
'team_check_map':dict(zip(cleaport_players.Player,nerf_frame.Team))
|
1148 |
+
}
|
1149 |
+
|
1150 |
+
del cleaport_players
|
1151 |
+
del Overall_Proj
|
1152 |
+
del nerf_frame
|
1153 |
+
|
1154 |
+
st.write('Seed frame creation')
|
1155 |
+
FinalPortfolio, maps_dict = run_seed_frame(seed_depth1, Strength_var, strength_grow, Teams_used, Total_Runs)
|
1156 |
+
|
1157 |
+
Sim_size = linenum_var1
|
1158 |
+
SimVar = 1
|
1159 |
+
Sim_Winners = []
|
1160 |
+
fp_array = FinalPortfolio.values
|
1161 |
+
|
1162 |
+
if insert_port == 1:
|
1163 |
+
up_array = CleanPortfolio.values
|
1164 |
+
|
1165 |
+
# Pre-vectorize functions
|
1166 |
+
vec_projection_map = np.vectorize(maps_dict['Projection_map'].__getitem__)
|
1167 |
+
vec_stdev_map = np.vectorize(maps_dict['STDev_map'].__getitem__)
|
1168 |
+
|
1169 |
if insert_port == 1:
|
1170 |
+
vec_up_projection_map = np.vectorize(up_dict['Projection_map'].__getitem__)
|
1171 |
+
vec_up_stdev_map = np.vectorize(up_dict['STDev_map'].__getitem__)
|
1172 |
+
|
1173 |
+
st.write('Simulating contest on frames')
|
1174 |
+
|
1175 |
+
while SimVar <= Sim_size:
|
1176 |
+
if insert_port == 1:
|
1177 |
+
fp_random = fp_array[np.random.choice(fp_array.shape[0], Contest_Size-len(CleanPortfolio))]
|
1178 |
+
elif insert_port == 0:
|
1179 |
+
fp_random = fp_array[np.random.choice(fp_array.shape[0], Contest_Size)]
|
1180 |
+
|
1181 |
+
sample_arrays1 = np.c_[
|
1182 |
+
fp_random,
|
1183 |
np.sum(np.random.normal(
|
1184 |
+
loc=vec_projection_map(fp_random[:, :-5]),
|
1185 |
+
scale=vec_stdev_map(fp_random[:, :-5])),
|
1186 |
axis=1)
|
1187 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1188 |
|
1189 |
+
if insert_port == 1:
|
1190 |
+
sample_arrays2 = np.c_[
|
1191 |
+
up_array,
|
1192 |
+
np.sum(np.random.normal(
|
1193 |
+
loc=vec_up_projection_map(up_array[:, :-5]),
|
1194 |
+
scale=vec_up_stdev_map(up_array[:, :-5])),
|
1195 |
+
axis=1)
|
1196 |
+
]
|
1197 |
+
sample_arrays = np.vstack((sample_arrays1, sample_arrays2))
|
1198 |
+
else:
|
1199 |
+
sample_arrays = sample_arrays1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1200 |
|
1201 |
+
final_array = sample_arrays[sample_arrays[:, 10].argsort()[::-1]]
|
1202 |
+
best_lineup = final_array[final_array[:, -1].argsort(kind='stable')[::-1][:1]]
|
1203 |
+
Sim_Winners.append(best_lineup)
|
1204 |
+
SimVar += 1
|
1205 |
+
|
1206 |
+
|
1207 |
+
# del smple_arrays
|
1208 |
+
# del smple_arrays1
|
1209 |
+
# del smple_arrays2
|
1210 |
+
# del final_array
|
1211 |
+
# del best_lineup
|
1212 |
+
st.write('Contest simulation complete')
|
1213 |
+
# Initial setup
|
1214 |
+
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=FinalPortfolio.columns.tolist() + ['Fantasy'])
|
1215 |
+
Sim_Winner_Frame['GPP_Proj'] = (Sim_Winner_Frame['Projection'] + Sim_Winner_Frame['Fantasy']) / 2
|
1216 |
+
|
1217 |
+
# Type Casting
|
1218 |
+
type_cast_dict = {'Salary': int, 'Projection': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float16}
|
1219 |
+
Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict)
|
1220 |
+
|
1221 |
+
# Sorting
|
1222 |
+
Sim_Winner_Frame = Sim_Winner_Frame.sort_values(by='GPP_Proj', ascending=False)
|
1223 |
+
|
1224 |
+
# Data Copying
|
1225 |
+
Sim_Winner_Export = Sim_Winner_Frame.copy()
|
1226 |
+
|
1227 |
+
# Conditional Replacement
|
1228 |
+
columns_to_replace = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST']
|
1229 |
+
|
1230 |
+
if site_var1 == 'Draftkings':
|
1231 |
+
replace_dict = dkid_dict
|
1232 |
+
elif site_var1 == 'Fanduel':
|
1233 |
+
replace_dict = fdid_dict
|
1234 |
+
|
1235 |
+
for col in columns_to_replace:
|
1236 |
+
Sim_Winner_Export[col].replace(replace_dict, inplace=True)
|
1237 |
+
|
1238 |
+
|
1239 |
+
player_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,0:9].values, return_counts=True)),
|
1240 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1241 |
+
player_freq['Freq'] = player_freq['Freq'].astype(int)
|
1242 |
+
player_freq['Position'] = player_freq['Player'].map(maps_dict['Pos_map'])
|
1243 |
+
player_freq['Salary'] = player_freq['Player'].map(maps_dict['Salary_map'])
|
1244 |
+
player_freq['Proj Own'] = player_freq['Player'].map(maps_dict['Own_map']) / 100
|
1245 |
+
player_freq['Exposure'] = player_freq['Freq']/(Sim_size)
|
1246 |
+
player_freq['Edge'] = player_freq['Exposure'] - player_freq['Proj Own']
|
1247 |
+
player_freq['Team'] = player_freq['Player'].map(maps_dict['Team_map'])
|
1248 |
+
for checkVar in range(len(team_list)):
|
1249 |
+
player_freq['Team'] = player_freq['Team'].replace(item_list, team_list)
|
1250 |
+
|
1251 |
+
player_freq = player_freq[['Player', 'Position', 'Team', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
1252 |
+
|
1253 |
+
qb_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,0:1].values, return_counts=True)),
|
1254 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1255 |
+
qb_freq['Freq'] = qb_freq['Freq'].astype(int)
|
1256 |
+
qb_freq['Position'] = qb_freq['Player'].map(maps_dict['Pos_map'])
|
1257 |
+
qb_freq['Salary'] = qb_freq['Player'].map(maps_dict['Salary_map'])
|
1258 |
+
qb_freq['Proj Own'] = qb_freq['Player'].map(maps_dict['Own_map']) / 100
|
1259 |
+
qb_freq['Exposure'] = qb_freq['Freq']/(Sim_size)
|
1260 |
+
qb_freq['Edge'] = qb_freq['Exposure'] - qb_freq['Proj Own']
|
1261 |
+
qb_freq['Team'] = qb_freq['Player'].map(maps_dict['Team_map'])
|
1262 |
+
for checkVar in range(len(team_list)):
|
1263 |
+
qb_freq['Team'] = qb_freq['Team'].replace(item_list, team_list)
|
1264 |
+
|
1265 |
+
qb_freq = qb_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
1266 |
+
|
1267 |
+
rb_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,[1, 2]].values, return_counts=True)),
|
1268 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1269 |
+
rb_freq['Freq'] = rb_freq['Freq'].astype(int)
|
1270 |
+
rb_freq['Position'] = rb_freq['Player'].map(maps_dict['Pos_map'])
|
1271 |
+
rb_freq['Salary'] = rb_freq['Player'].map(maps_dict['Salary_map'])
|
1272 |
+
rb_freq['Proj Own'] = rb_freq['Player'].map(maps_dict['Own_map']) / 100
|
1273 |
+
rb_freq['Exposure'] = rb_freq['Freq']/Sim_size
|
1274 |
+
rb_freq['Edge'] = rb_freq['Exposure'] - rb_freq['Proj Own']
|
1275 |
+
rb_freq['Team'] = rb_freq['Player'].map(maps_dict['Team_map'])
|
1276 |
+
for checkVar in range(len(team_list)):
|
1277 |
+
rb_freq['Team'] = rb_freq['Team'].replace(item_list, team_list)
|
1278 |
+
|
1279 |
+
rb_freq = rb_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
1280 |
+
|
1281 |
+
wr_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,[3, 4, 5]].values, return_counts=True)),
|
1282 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1283 |
+
wr_freq['Freq'] = wr_freq['Freq'].astype(int)
|
1284 |
+
wr_freq['Position'] = wr_freq['Player'].map(maps_dict['Pos_map'])
|
1285 |
+
wr_freq['Salary'] = wr_freq['Player'].map(maps_dict['Salary_map'])
|
1286 |
+
wr_freq['Proj Own'] = wr_freq['Player'].map(maps_dict['Own_map']) / 100
|
1287 |
+
wr_freq['Exposure'] = wr_freq['Freq']/Sim_size
|
1288 |
+
wr_freq['Edge'] = wr_freq['Exposure'] - wr_freq['Proj Own']
|
1289 |
+
wr_freq['Team'] = wr_freq['Player'].map(maps_dict['Team_map'])
|
1290 |
+
for checkVar in range(len(team_list)):
|
1291 |
+
wr_freq['Team'] = wr_freq['Team'].replace(item_list, team_list)
|
1292 |
+
|
1293 |
+
wr_freq = wr_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
1294 |
+
|
1295 |
+
te_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,[6]].values, return_counts=True)),
|
1296 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1297 |
+
te_freq['Freq'] = te_freq['Freq'].astype(int)
|
1298 |
+
te_freq['Position'] = te_freq['Player'].map(maps_dict['Pos_map'])
|
1299 |
+
te_freq['Salary'] = te_freq['Player'].map(maps_dict['Salary_map'])
|
1300 |
+
te_freq['Proj Own'] = te_freq['Player'].map(maps_dict['Own_map']) / 100
|
1301 |
+
te_freq['Exposure'] = te_freq['Freq']/Sim_size
|
1302 |
+
te_freq['Edge'] = te_freq['Exposure'] - te_freq['Proj Own']
|
1303 |
+
te_freq['Team'] = te_freq['Player'].map(maps_dict['Team_map'])
|
1304 |
+
for checkVar in range(len(team_list)):
|
1305 |
+
te_freq['Team'] = te_freq['Team'].replace(item_list, team_list)
|
1306 |
+
|
1307 |
+
te_freq = te_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
1308 |
+
|
1309 |
+
flex_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,[7]].values, return_counts=True)),
|
1310 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1311 |
+
flex_freq['Freq'] = flex_freq['Freq'].astype(int)
|
1312 |
+
flex_freq['Position'] = flex_freq['Player'].map(maps_dict['Pos_map'])
|
1313 |
+
flex_freq['Salary'] = flex_freq['Player'].map(maps_dict['Salary_map'])
|
1314 |
+
flex_freq['Proj Own'] = flex_freq['Player'].map(maps_dict['Own_map']) / 100
|
1315 |
+
flex_freq['Exposure'] = flex_freq['Freq']/Sim_size
|
1316 |
+
flex_freq['Edge'] = flex_freq['Exposure'] - flex_freq['Proj Own']
|
1317 |
+
flex_freq['Team'] = flex_freq['Player'].map(maps_dict['Team_map'])
|
1318 |
+
for checkVar in range(len(team_list)):
|
1319 |
+
flex_freq['Team'] = flex_freq['Team'].replace(item_list, team_list)
|
1320 |
+
|
1321 |
+
flex_freq = flex_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
1322 |
+
|
1323 |
+
dst_freq = pd.DataFrame(np.column_stack(np.unique(Sim_Winner_Frame.iloc[:,8:9].values, return_counts=True)),
|
1324 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1325 |
+
dst_freq['Freq'] = dst_freq['Freq'].astype(int)
|
1326 |
+
dst_freq['Position'] = dst_freq['Player'].map(maps_dict['Pos_map'])
|
1327 |
+
dst_freq['Salary'] = dst_freq['Player'].map(maps_dict['Salary_map'])
|
1328 |
+
dst_freq['Proj Own'] = dst_freq['Player'].map(maps_dict['Own_map']) / 100
|
1329 |
+
dst_freq['Exposure'] = dst_freq['Freq']/Sim_size
|
1330 |
+
dst_freq['Edge'] = dst_freq['Exposure'] - dst_freq['Proj Own']
|
1331 |
+
dst_freq['Team'] = dst_freq['Player'].map(maps_dict['Team_map'])
|
1332 |
+
for checkVar in range(len(team_list)):
|
1333 |
+
dst_freq['Team'] = dst_freq['Team'].replace(item_list, team_list)
|
1334 |
+
|
1335 |
+
dst_freq = dst_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
1336 |
|
1337 |
+
with st.container():
|
1338 |
+
simulate_container = st.empty()
|
1339 |
+
st.dataframe(Sim_Winner_Frame.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').background_gradient(cmap='RdYlGn_r', subset=['Own']).format(precision=2), use_container_width = True)
|
1340 |
+
|
1341 |
st.download_button(
|
1342 |
label="Export Tables",
|
1343 |
data=convert_df_to_csv(Sim_Winner_Export),
|
1344 |
file_name='NFL_consim_export.csv',
|
1345 |
mime='text/csv',
|
1346 |
)
|
1347 |
+
|
1348 |
+
with st.container():
|
1349 |
+
freq_container = st.empty()
|
1350 |
+
tab1, tab2, tab3, tab4, tab5, tab6, tab7 = st.tabs(['Overall Exposures', 'QB Exposures', 'RB Exposures', 'WR Exposures', 'TE Exposures', 'FLEX Exposures', 'DST Exposures'])
|
1351 |
+
with tab1:
|
1352 |
+
st.dataframe(player_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
1353 |
+
st.download_button(
|
1354 |
+
label="Export Exposures",
|
1355 |
+
data=convert_df_to_csv(player_freq),
|
1356 |
+
file_name='player_freq_export.csv',
|
1357 |
+
mime='text/csv',
|
1358 |
+
)
|
1359 |
+
with tab2:
|
1360 |
+
st.dataframe(qb_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
1361 |
+
st.download_button(
|
1362 |
+
label="Export Exposures",
|
1363 |
+
data=convert_df_to_csv(qb_freq),
|
1364 |
+
file_name='qb_freq_export.csv',
|
1365 |
+
mime='text/csv',
|
1366 |
+
)
|
1367 |
+
with tab3:
|
1368 |
+
st.dataframe(rb_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
1369 |
+
st.download_button(
|
1370 |
+
label="Export Exposures",
|
1371 |
+
data=convert_df_to_csv(rb_freq),
|
1372 |
+
file_name='rb_freq_export.csv',
|
1373 |
+
mime='text/csv',
|
1374 |
+
)
|
1375 |
+
with tab4:
|
1376 |
+
st.dataframe(wr_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
1377 |
+
st.download_button(
|
1378 |
+
label="Export Exposures",
|
1379 |
+
data=convert_df_to_csv(wr_freq),
|
1380 |
+
file_name='wr_freq_export.csv',
|
1381 |
+
mime='text/csv',
|
1382 |
+
)
|
1383 |
+
with tab5:
|
1384 |
+
st.dataframe(te_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
1385 |
+
st.download_button(
|
1386 |
+
label="Export Exposures",
|
1387 |
+
data=convert_df_to_csv(te_freq),
|
1388 |
+
file_name='te_freq_export.csv',
|
1389 |
+
mime='text/csv',
|
1390 |
+
)
|
1391 |
+
with tab6:
|
1392 |
+
st.dataframe(flex_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
1393 |
+
st.download_button(
|
1394 |
+
label="Export Exposures",
|
1395 |
+
data=convert_df_to_csv(flex_freq),
|
1396 |
+
file_name='flex_freq_export.csv',
|
1397 |
+
mime='text/csv',
|
1398 |
+
)
|
1399 |
+
with tab7:
|
1400 |
+
st.dataframe(dst_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
1401 |
+
st.download_button(
|
1402 |
+
label="Export Exposures",
|
1403 |
+
data=convert_df_to_csv(dst_freq),
|
1404 |
+
file_name='dst_freq_export.csv',
|
1405 |
+
mime='text/csv',
|
1406 |
+
)
|