Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -964,6 +964,9 @@ with tab2:
|
|
964 |
# Initial setup
|
965 |
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=FinalPortfolio.columns.tolist() + ['Fantasy'])
|
966 |
Sim_Winner_Frame['GPP_Proj'] = (Sim_Winner_Frame['Projection'] + Sim_Winner_Frame['Fantasy']) / 2
|
|
|
|
|
|
|
967 |
|
968 |
# Type Casting
|
969 |
type_cast_dict = {'Salary': int, 'Projection': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float16}
|
@@ -972,7 +975,7 @@ with tab2:
|
|
972 |
del FinalPortfolio, insert_port, type_cast_dict
|
973 |
|
974 |
# Sorting
|
975 |
-
st.session_state.Sim_Winner_Frame = Sim_Winner_Frame.sort_values(by='
|
976 |
|
977 |
# Data Copying
|
978 |
st.session_state.Sim_Winner_Export = Sim_Winner_Frame
|
@@ -990,7 +993,7 @@ with tab2:
|
|
990 |
|
991 |
del replace_dict, Sim_Winner_Frame, Sim_Winners
|
992 |
|
993 |
-
st.session_state.player_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.
|
994 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
995 |
st.session_state.player_freq['Freq'] = st.session_state.player_freq['Freq'].astype(int)
|
996 |
st.session_state.player_freq['Position'] = st.session_state.player_freq['Player'].map(maps_dict['Pos_map'])
|
@@ -1002,7 +1005,7 @@ with tab2:
|
|
1002 |
for checkVar in range(len(team_list)):
|
1003 |
st.session_state.player_freq['Team'] = st.session_state.player_freq['Team'].replace(item_list, team_list)
|
1004 |
|
1005 |
-
st.session_state.qb_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.
|
1006 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1007 |
st.session_state.qb_freq['Freq'] = st.session_state.qb_freq['Freq'].astype(int)
|
1008 |
st.session_state.qb_freq['Position'] = st.session_state.qb_freq['Player'].map(maps_dict['Pos_map'])
|
@@ -1014,7 +1017,7 @@ with tab2:
|
|
1014 |
for checkVar in range(len(team_list)):
|
1015 |
st.session_state.qb_freq['Team'] = st.session_state.qb_freq['Team'].replace(item_list, team_list)
|
1016 |
|
1017 |
-
st.session_state.rb_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.
|
1018 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1019 |
st.session_state.rb_freq['Freq'] = st.session_state.rb_freq['Freq'].astype(int)
|
1020 |
st.session_state.rb_freq['Position'] = st.session_state.rb_freq['Player'].map(maps_dict['Pos_map'])
|
@@ -1026,7 +1029,7 @@ with tab2:
|
|
1026 |
for checkVar in range(len(team_list)):
|
1027 |
st.session_state.rb_freq['Team'] = st.session_state.rb_freq['Team'].replace(item_list, team_list)
|
1028 |
|
1029 |
-
st.session_state.wr_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.
|
1030 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1031 |
st.session_state.wr_freq['Freq'] = st.session_state.wr_freq['Freq'].astype(int)
|
1032 |
st.session_state.wr_freq['Position'] = st.session_state.wr_freq['Player'].map(maps_dict['Pos_map'])
|
@@ -1038,7 +1041,7 @@ with tab2:
|
|
1038 |
for checkVar in range(len(team_list)):
|
1039 |
st.session_state.wr_freq['Team'] = st.session_state.wr_freq['Team'].replace(item_list, team_list)
|
1040 |
|
1041 |
-
st.session_state.te_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.
|
1042 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1043 |
st.session_state.te_freq['Freq'] = st.session_state.te_freq['Freq'].astype(int)
|
1044 |
st.session_state.te_freq['Position'] = st.session_state.te_freq['Player'].map(maps_dict['Pos_map'])
|
@@ -1050,7 +1053,7 @@ with tab2:
|
|
1050 |
for checkVar in range(len(team_list)):
|
1051 |
st.session_state.te_freq['Team'] = st.session_state.te_freq['Team'].replace(item_list, team_list)
|
1052 |
|
1053 |
-
st.session_state.flex_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.
|
1054 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1055 |
st.session_state.flex_freq['Freq'] = st.session_state.flex_freq['Freq'].astype(int)
|
1056 |
st.session_state.flex_freq['Position'] = st.session_state.flex_freq['Player'].map(maps_dict['Pos_map'])
|
@@ -1062,7 +1065,7 @@ with tab2:
|
|
1062 |
for checkVar in range(len(team_list)):
|
1063 |
st.session_state.flex_freq['Team'] = st.session_state.flex_freq['Team'].replace(item_list, team_list)
|
1064 |
|
1065 |
-
st.session_state.dst_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.
|
1066 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1067 |
st.session_state.dst_freq['Freq'] = st.session_state.dst_freq['Freq'].astype(int)
|
1068 |
st.session_state.dst_freq['Position'] = st.session_state.dst_freq['Player'].map(maps_dict['Pos_map'])
|
|
|
964 |
# Initial setup
|
965 |
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=FinalPortfolio.columns.tolist() + ['Fantasy'])
|
966 |
Sim_Winner_Frame['GPP_Proj'] = (Sim_Winner_Frame['Projection'] + Sim_Winner_Frame['Fantasy']) / 2
|
967 |
+
Sim_Winner_Frame['unique_id'] = str(Sim_Winner_Frame['Projection']) + str(Sim_Winner_Frame['Salary']) + str(Sim_Winner_Frame['Own'])
|
968 |
+
Sim_Winner_Frame = Sim_Winner_Frame.assign(win_count=Sim_Winner_Frame['unique_id'].map(Sim_Winner_Frame['unique_id'].value_counts()))
|
969 |
+
Sim_Winner_Frame = Sim_Winner_Frame.drop('unique_id', axis=1)
|
970 |
|
971 |
# Type Casting
|
972 |
type_cast_dict = {'Salary': int, 'Projection': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float16}
|
|
|
975 |
del FinalPortfolio, insert_port, type_cast_dict
|
976 |
|
977 |
# Sorting
|
978 |
+
st.session_state.Sim_Winner_Frame = Sim_Winner_Frame.sort_values(by='win_count', ascending=False).head(100)
|
979 |
|
980 |
# Data Copying
|
981 |
st.session_state.Sim_Winner_Export = Sim_Winner_Frame
|
|
|
993 |
|
994 |
del replace_dict, Sim_Winner_Frame, Sim_Winners
|
995 |
|
996 |
+
st.session_state.player_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Export.iloc[:,0:9].values, return_counts=True)),
|
997 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
998 |
st.session_state.player_freq['Freq'] = st.session_state.player_freq['Freq'].astype(int)
|
999 |
st.session_state.player_freq['Position'] = st.session_state.player_freq['Player'].map(maps_dict['Pos_map'])
|
|
|
1005 |
for checkVar in range(len(team_list)):
|
1006 |
st.session_state.player_freq['Team'] = st.session_state.player_freq['Team'].replace(item_list, team_list)
|
1007 |
|
1008 |
+
st.session_state.qb_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Export.iloc[:,0:1].values, return_counts=True)),
|
1009 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1010 |
st.session_state.qb_freq['Freq'] = st.session_state.qb_freq['Freq'].astype(int)
|
1011 |
st.session_state.qb_freq['Position'] = st.session_state.qb_freq['Player'].map(maps_dict['Pos_map'])
|
|
|
1017 |
for checkVar in range(len(team_list)):
|
1018 |
st.session_state.qb_freq['Team'] = st.session_state.qb_freq['Team'].replace(item_list, team_list)
|
1019 |
|
1020 |
+
st.session_state.rb_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Export.iloc[:,[1, 2]].values, return_counts=True)),
|
1021 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1022 |
st.session_state.rb_freq['Freq'] = st.session_state.rb_freq['Freq'].astype(int)
|
1023 |
st.session_state.rb_freq['Position'] = st.session_state.rb_freq['Player'].map(maps_dict['Pos_map'])
|
|
|
1029 |
for checkVar in range(len(team_list)):
|
1030 |
st.session_state.rb_freq['Team'] = st.session_state.rb_freq['Team'].replace(item_list, team_list)
|
1031 |
|
1032 |
+
st.session_state.wr_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Export.iloc[:,[3, 4, 5]].values, return_counts=True)),
|
1033 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1034 |
st.session_state.wr_freq['Freq'] = st.session_state.wr_freq['Freq'].astype(int)
|
1035 |
st.session_state.wr_freq['Position'] = st.session_state.wr_freq['Player'].map(maps_dict['Pos_map'])
|
|
|
1041 |
for checkVar in range(len(team_list)):
|
1042 |
st.session_state.wr_freq['Team'] = st.session_state.wr_freq['Team'].replace(item_list, team_list)
|
1043 |
|
1044 |
+
st.session_state.te_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Export.iloc[:,[6]].values, return_counts=True)),
|
1045 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1046 |
st.session_state.te_freq['Freq'] = st.session_state.te_freq['Freq'].astype(int)
|
1047 |
st.session_state.te_freq['Position'] = st.session_state.te_freq['Player'].map(maps_dict['Pos_map'])
|
|
|
1053 |
for checkVar in range(len(team_list)):
|
1054 |
st.session_state.te_freq['Team'] = st.session_state.te_freq['Team'].replace(item_list, team_list)
|
1055 |
|
1056 |
+
st.session_state.flex_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Export.iloc[:,[7]].values, return_counts=True)),
|
1057 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1058 |
st.session_state.flex_freq['Freq'] = st.session_state.flex_freq['Freq'].astype(int)
|
1059 |
st.session_state.flex_freq['Position'] = st.session_state.flex_freq['Player'].map(maps_dict['Pos_map'])
|
|
|
1065 |
for checkVar in range(len(team_list)):
|
1066 |
st.session_state.flex_freq['Team'] = st.session_state.flex_freq['Team'].replace(item_list, team_list)
|
1067 |
|
1068 |
+
st.session_state.dst_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Export.iloc[:,8:9].values, return_counts=True)),
|
1069 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1070 |
st.session_state.dst_freq['Freq'] = st.session_state.dst_freq['Freq'].astype(int)
|
1071 |
st.session_state.dst_freq['Position'] = st.session_state.dst_freq['Player'].map(maps_dict['Pos_map'])
|