James McCool
Refactor init_baselines function in app.py to accept a slate variable, allowing dynamic filtering of player data based on the selected slate. Update all relevant calls to init_baselines to ensure consistency across the application. Adjust sharp_split values for improved simulation accuracy. This enhances flexibility in data retrieval for DraftKings and FanDuel contests.
8f7601b
import streamlit as st
st.set_page_config(layout="wide")
import numpy as np
import pandas as pd
import pymongo
import time
@st.cache_resource
def init_conn():
uri = st.secrets['mongo_uri']
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
db = client["NFL_Database"]
return db
db = init_conn()
percentages_format = {'Exposure': '{:.2%}'}
freq_format = {'Exposure': '{:.2%}', 'Proj Own': '{:.2%}', 'Edge': '{:.2%}'}
dk_columns = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
fd_columns = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
@st.cache_data(ttl = 600)
def init_DK_seed_frames(sharp_split):
collection = db['DK_NFL_name_map']
cursor = collection.find()
raw_data = pd.DataFrame(list(cursor))
names_dict = dict(zip(raw_data['key'], raw_data['value']))
collection = db["DK_NFL_seed_frame"]
cursor = collection.find().limit(sharp_split)
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
dict_columns = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST']
st.write("converting names")
for col in dict_columns:
raw_display[col] = raw_display[col].map(names_dict)
DK_seed = raw_display.to_numpy()
return DK_seed
@st.cache_data(ttl = 600)
def init_DK_Secondary_seed_frames(sharp_split):
collection = db['DK_NFL_Secondary_name_map']
cursor = collection.find()
raw_data = pd.DataFrame(list(cursor))
names_dict = dict(zip(raw_data['key'], raw_data['value']))
collection = db["DK_NFL_Secondary_seed_frame"]
cursor = collection.find().limit(sharp_split)
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
dict_columns = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST']
st.write("converting names")
for col in dict_columns:
raw_display[col] = raw_display[col].map(names_dict)
DK_seed = raw_display.to_numpy()
return DK_seed
@st.cache_data(ttl = 599)
def init_FD_seed_frames(sharp_split):
collection = db['FD_NFL_name_map']
cursor = collection.find()
raw_data = pd.DataFrame(list(cursor))
names_dict = dict(zip(raw_data['key'], raw_data['value']))
collection = db["FD_NFL_seed_frame"]
cursor = collection.find().limit(sharp_split)
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
dict_columns = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST']
st.write("converting names")
for col in dict_columns:
raw_display[col] = raw_display[col].map(names_dict)
FD_seed = raw_display.to_numpy()
return FD_seed
@st.cache_data(ttl = 599)
def init_FD_Secondary_seed_frames(sharp_split):
collection = db['FD_NFL_Secondary_name_map']
cursor = collection.find()
raw_data = pd.DataFrame(list(cursor))
names_dict = dict(zip(raw_data['key'], raw_data['value']))
collection = db["FD_NFL_Secondary_seed_frame"]
cursor = collection.find().limit(sharp_split)
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
dict_columns = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST']
st.write("converting names")
for col in dict_columns:
raw_display[col] = raw_display[col].map(names_dict)
FD_seed = raw_display.to_numpy()
return FD_seed
@st.cache_data(ttl = 599)
def init_baselines(slate_var):
collection = db["DK_NFL_ROO"]
cursor = collection.find()
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[raw_display['slate'] == slate_var]
raw_display = raw_display[raw_display['version'] == 'overall']
dk_raw = raw_display[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%',
'Own', 'Small_Field_Own', 'Large_Field_Own', 'Cash_Field_Own', 'CPT_Own', 'LevX', 'version', 'slate', 'timestamp', 'player_id', 'site']]
dk_raw['STDev'] = (dk_raw['Ceiling'] - dk_raw['Floor']) / 4
collection = db["FD_NFL_ROO"]
cursor = collection.find()
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[raw_display['slate'] == slate_var]
raw_display = raw_display[raw_display['version'] == 'overall']
fd_raw = raw_display[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%',
'Own', 'Small_Field_Own', 'Large_Field_Own', 'Cash_Field_Own', 'CPT_Own', 'LevX', 'version', 'slate', 'timestamp', 'player_id', 'site']]
fd_raw['STDev'] = (fd_raw['Ceiling'] - fd_raw['Floor']) / 4
return dk_raw, fd_raw
@st.cache_data
def convert_df(array):
array = pd.DataFrame(array, columns=column_names)
return array.to_csv().encode('utf-8')
@st.cache_data
def calculate_DK_value_frequencies(np_array):
unique, counts = np.unique(np_array[:, :9], return_counts=True)
frequencies = counts / len(np_array) # Normalize by the number of rows
combined_array = np.column_stack((unique, frequencies))
return combined_array
@st.cache_data
def calculate_FD_value_frequencies(np_array):
unique, counts = np.unique(np_array[:, :9], return_counts=True)
frequencies = counts / len(np_array) # Normalize by the number of rows
combined_array = np.column_stack((unique, frequencies))
return combined_array
@st.cache_data
def sim_contest(Sim_size, seed_frame, maps_dict, Contest_Size):
SimVar = 1
Sim_Winners = []
fp_array = seed_frame.copy()
# Pre-vectorize functions
vec_projection_map = np.vectorize(maps_dict['Projection_map'].__getitem__)
vec_stdev_map = np.vectorize(maps_dict['STDev_map'].__getitem__)
st.write('Simulating contest on frames')
while SimVar <= Sim_size:
fp_random = fp_array[np.random.choice(fp_array.shape[0], Contest_Size)]
sample_arrays1 = np.c_[
fp_random,
np.sum(np.random.normal(
loc=vec_projection_map(fp_random[:, :-7]),
scale=vec_stdev_map(fp_random[:, :-7])),
axis=1)
]
sample_arrays = sample_arrays1
final_array = sample_arrays[sample_arrays[:, 10].argsort()[::-1]]
best_lineup = final_array[final_array[:, -1].argsort(kind='stable')[::-1][:1]]
Sim_Winners.append(best_lineup)
SimVar += 1
return Sim_Winners
tab1, tab2 = st.tabs(['Contest Sims', 'Data Export'])
with tab2:
col1, col2 = st.columns([1, 7])
with col1:
if st.button("Load/Reset Data", key='reset1'):
st.cache_data.clear()
for key in st.session_state.keys():
del st.session_state[key]
DK_seed = init_DK_seed_frames(10000)
FD_seed = init_FD_seed_frames(10000)
dk_raw, fd_raw = init_baselines('Main Slate')
dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate'))
site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'))
sharp_split_var = st.number_input("How many lineups do you want?", value=10000, max_value=500000, min_value=10000, step=10000)
if site_var1 == 'Draftkings':
team_var1 = st.radio("Do you want a frame with specific teams?", ('Full Slate', 'Specific Teams'), key='team_var1')
if team_var1 == 'Specific Teams':
dk_raw, fd_raw = init_baselines('Main Slate')
team_var2 = st.multiselect('Which teams do you want?', options = dk_raw['Team'].unique())
elif team_var1 == 'Full Slate':
dk_raw, fd_raw = init_baselines('Main Slate')
team_var2 = dk_raw.Team.values.tolist()
stack_var1 = st.radio("Do you want a frame with specific stack sizes?", ('Full Slate', 'Specific Stack Sizes'), key='stack_var1')
if stack_var1 == 'Specific Stack Sizes':
stack_var2 = st.multiselect('Which stack sizes do you want?', options = [5, 4, 3, 2, 1, 0])
elif stack_var1 == 'Full Slate':
stack_var2 = [5, 4, 3, 2, 1, 0]
elif site_var1 == 'Fanduel':
team_var1 = st.radio("Do you want a frame with specific teams?", ('Full Slate', 'Specific Teams'), key='team_var1')
if team_var1 == 'Specific Teams':
dk_raw, fd_raw = init_baselines('Main Slate')
team_var2 = st.multiselect('Which teams do you want?', options = fd_raw['Team'].unique())
elif team_var1 == 'Full Slate':
dk_raw, fd_raw = init_baselines('Main Slate')
team_var2 = fd_raw.Team.values.tolist()
stack_var1 = st.radio("Do you want a frame with specific stack sizes?", ('Full Slate', 'Specific Stack Sizes'), key='stack_var1')
if stack_var1 == 'Specific Stack Sizes':
stack_var2 = st.multiselect('Which stack sizes do you want?', options = [5, 4, 3, 2, 1, 0])
elif stack_var1 == 'Full Slate':
stack_var2 = [5, 4, 3, 2, 1, 0]
if st.button("Prepare data export", key='data_export'):
if 'working_seed' in st.session_state:
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
elif 'working_seed' not in st.session_state:
if site_var1 == 'Draftkings':
if slate_var1 == 'Main Slate':
st.session_state.working_seed = init_DK_seed_frames(sharp_split_var)
dk_id_dict = dict(zip(st.session_state.working_seed.Player, st.session_state.working_seed.player_id))
elif slate_var1 == 'Secondary Slate':
st.session_state.working_seed = init_DK_Secondary_seed_frames(sharp_split_var)
dk_id_dict = dict(zip(st.session_state.working_seed.Player, st.session_state.working_seed.player_id))
raw_baselines = dk_raw
column_names = dk_columns
elif site_var1 == 'Fanduel':
if slate_var1 == 'Main Slate':
st.session_state.working_seed = init_FD_seed_frames(sharp_split_var)
fd_id_dict = dict(zip(st.session_state.working_seed.Player, st.session_state.working_seed.player_id))
elif slate_var1 == 'Secondary Slate':
st.session_state.working_seed = init_FD_Secondary_seed_frames(sharp_split_var)
fd_id_dict = dict(zip(st.session_state.working_seed.Player, st.session_state.working_seed.player_id))
raw_baselines = fd_raw
column_names = fd_columns
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
data_export = st.session_state.working_seed.copy()
for col in range(9):
data_export[:, col] = np.array([dk_id_dict.get(x, x) for x in data_export[:, col]])
st.download_button(
label="Export optimals set",
data=convert_df(data_export),
file_name='NFL_optimals_export.csv',
mime='text/csv',
)
with col2:
if st.button("Load Data", key='load_data'):
if site_var1 == 'Draftkings':
if 'working_seed' in st.session_state:
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
elif 'working_seed' not in st.session_state:
if slate_var1 == 'Main Slate':
st.session_state.working_seed = init_DK_seed_frames(sharp_split_var)
dk_id_dict = dict(zip(st.session_state.working_seed.Player, st.session_state.working_seed.player_id))
dk_raw, fd_raw = init_baselines('Main Slate')
elif slate_var1 == 'Secondary Slate':
st.session_state.working_seed = init_DK_Secondary_seed_frames(sharp_split_var)
dk_id_dict = dict(zip(st.session_state.working_seed.Player, st.session_state.working_seed.player_id))
dk_raw, fd_raw = init_baselines('Secondary Slate')
raw_baselines = dk_raw
column_names = dk_columns
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
elif site_var1 == 'Fanduel':
if 'working_seed' in st.session_state:
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
elif 'working_seed' not in st.session_state:
if slate_var1 == 'Main Slate':
st.session_state.working_seed = init_FD_seed_frames(sharp_split_var)
fd_id_dict = dict(zip(st.session_state.working_seed.Player, st.session_state.working_seed.player_id))
dk_raw, fd_raw = init_baselines('Main Slate')
elif slate_var1 == 'Secondary Slate':
st.session_state.working_seed = init_FD_Secondary_seed_frames(sharp_split_var)
fd_id_dict = dict(zip(st.session_state.working_seed.Player, st.session_state.working_seed.player_id))
dk_raw, fd_raw = init_baselines('Secondary Slate')
raw_baselines = fd_raw
column_names = fd_columns
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
with st.container():
if 'data_export_display' in st.session_state:
st.dataframe(st.session_state.data_export_display.style.format(freq_format, precision=2), use_container_width = True)
with tab1:
col1, col2 = st.columns([1, 7])
with col1:
if st.button("Load/Reset Data", key='reset2'):
st.cache_data.clear()
for key in st.session_state.keys():
del st.session_state[key]
DK_seed = init_DK_seed_frames(10000)
FD_seed = init_FD_seed_frames(10000)
dk_raw, fd_raw = init_baselines('Main Slate')
dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
sim_slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate'), key='sim_slate_var1')
sim_site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='sim_site_var1')
contest_var1 = st.selectbox("What contest size are you simulating?", ('Small', 'Medium', 'Large', 'Custom'))
if contest_var1 == 'Small':
Contest_Size = 1000
elif contest_var1 == 'Medium':
Contest_Size = 5000
elif contest_var1 == 'Large':
Contest_Size = 10000
elif contest_var1 == 'Custom':
Contest_Size = st.number_input("Insert contest size", value=100, placeholder="Type a number under 10,000...")
strength_var1 = st.selectbox("How sharp is the field in the contest?", ('Very', 'Above Average', 'Average', 'Below Average', 'Not Very'))
if strength_var1 == 'Not Very':
sharp_split = 500000
elif strength_var1 == 'Below Average':
sharp_split = 250000
elif strength_var1 == 'Average':
sharp_split = 100000
elif strength_var1 == 'Above Average':
sharp_split = 50000
elif strength_var1 == 'Very':
sharp_split = 10000
with col2:
if st.button("Run Contest Sim"):
if 'working_seed' in st.session_state:
st.session_state.maps_dict = {
'Projection_map':dict(zip(raw_baselines.Player,raw_baselines.Median)),
'Salary_map':dict(zip(raw_baselines.Player,raw_baselines.Salary)),
'Pos_map':dict(zip(raw_baselines.Player,raw_baselines.Position)),
'Own_map':dict(zip(raw_baselines.Player,raw_baselines['Own'])),
'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)),
'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev))
}
Sim_Winners = sim_contest(1000, st.session_state.working_seed, st.session_state.maps_dict, Contest_Size)
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners))
# Initial setup
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=column_names + ['Fantasy'])
Sim_Winner_Frame['GPP_Proj'] = (Sim_Winner_Frame['proj'] + Sim_Winner_Frame['Fantasy']) / 2
Sim_Winner_Frame['unique_id'] = Sim_Winner_Frame['proj'].astype(str) + Sim_Winner_Frame['salary'].astype(str) + Sim_Winner_Frame['Team'].astype(str) + Sim_Winner_Frame['Secondary'].astype(str)
Sim_Winner_Frame = Sim_Winner_Frame.assign(win_count=Sim_Winner_Frame['unique_id'].map(Sim_Winner_Frame['unique_id'].value_counts()))
# Type Casting
type_cast_dict = {'salary': int, 'proj': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float32, 'Own': np.float32}
Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict)
# Sorting
st.session_state.Sim_Winner_Frame = Sim_Winner_Frame.sort_values(by=['win_count', 'GPP_Proj'], ascending= [False, False]).copy().drop_duplicates(subset='unique_id').head(100)
st.session_state.Sim_Winner_Frame.drop(columns='unique_id', inplace=True)
# Data Copying
st.session_state.Sim_Winner_Export = Sim_Winner_Frame.copy()
# Data Copying
st.session_state.Sim_Winner_Display = Sim_Winner_Frame.copy()
else:
if sim_site_var1 == 'Draftkings':
if sim_slate_var1 == 'Main Slate':
st.session_state.working_seed = init_DK_seed_frames(sharp_split)
dk_raw, fd_raw = init_baselines('Main Slate')
dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
elif sim_slate_var1 == 'Secondary Slate':
st.session_state.working_seed = init_DK_Secondary_seed_frames(sharp_split)
dk_raw, fd_raw = init_baselines('Secondary Slate')
dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
raw_baselines = dk_raw
column_names = dk_columns
elif sim_site_var1 == 'Fanduel':
if sim_slate_var1 == 'Main Slate':
st.session_state.working_seed = init_FD_seed_frames(sharp_split)
dk_raw, fd_raw = init_baselines('Main Slate')
fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
elif sim_slate_var1 == 'Secondary Slate':
st.session_state.working_seed = init_FD_Secondary_seed_frames(sharp_split)
dk_raw, fd_raw = init_baselines('Secondary Slate')
fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
raw_baselines = fd_raw
column_names = fd_columns
st.session_state.maps_dict = {
'Projection_map':dict(zip(raw_baselines.Player,raw_baselines.Median)),
'Salary_map':dict(zip(raw_baselines.Player,raw_baselines.Salary)),
'Pos_map':dict(zip(raw_baselines.Player,raw_baselines.Position)),
'Own_map':dict(zip(raw_baselines.Player,raw_baselines['Own'])),
'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)),
'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev))
}
Sim_Winners = sim_contest(1000, st.session_state.working_seed, st.session_state.maps_dict, Contest_Size)
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners))
#st.table(Sim_Winner_Frame)
# Initial setup
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=column_names + ['Fantasy'])
Sim_Winner_Frame['GPP_Proj'] = (Sim_Winner_Frame['proj'] + Sim_Winner_Frame['Fantasy']) / 2
Sim_Winner_Frame['unique_id'] = Sim_Winner_Frame['proj'].astype(str) + Sim_Winner_Frame['salary'].astype(str) + Sim_Winner_Frame['Team'].astype(str) + Sim_Winner_Frame['Secondary'].astype(str)
Sim_Winner_Frame = Sim_Winner_Frame.assign(win_count=Sim_Winner_Frame['unique_id'].map(Sim_Winner_Frame['unique_id'].value_counts()))
# Type Casting
type_cast_dict = {'salary': int, 'proj': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float32, 'Own': np.float32}
Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict)
# Sorting
st.session_state.Sim_Winner_Frame = Sim_Winner_Frame.sort_values(by=['win_count', 'GPP_Proj'], ascending= [False, False]).copy().drop_duplicates(subset='unique_id').head(100)
st.session_state.Sim_Winner_Frame.drop(columns='unique_id', inplace=True)
# Data Copying
st.session_state.Sim_Winner_Export = Sim_Winner_Frame.copy()
for col in st.session_state.Sim_Winner_Export.iloc[:, 0:9].columns:
st.session_state.Sim_Winner_Export[col] = st.session_state.Sim_Winner_Export[col].map(dk_id_dict)
# Data Copying
st.session_state.Sim_Winner_Display = Sim_Winner_Frame.copy()
st.session_state.freq_copy = st.session_state.Sim_Winner_Display
if sim_site_var1 == 'Draftkings':
freq_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:9].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
elif sim_site_var1 == 'Fanduel':
freq_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:9].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
freq_working['Freq'] = freq_working['Freq'].astype(int)
freq_working['Position'] = freq_working['Player'].map(st.session_state.maps_dict['Pos_map'])
freq_working['Salary'] = freq_working['Player'].map(st.session_state.maps_dict['Salary_map'])
freq_working['Proj Own'] = freq_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
freq_working['Exposure'] = freq_working['Freq']/(1000)
freq_working['Edge'] = freq_working['Exposure'] - freq_working['Proj Own']
freq_working['Team'] = freq_working['Player'].map(st.session_state.maps_dict['Team_map'])
st.session_state.player_freq = freq_working.copy()
if sim_site_var1 == 'Draftkings':
qb_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:1].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
elif sim_site_var1 == 'Fanduel':
qb_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:1].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
qb_working['Freq'] = qb_working['Freq'].astype(int)
qb_working['Position'] = qb_working['Player'].map(st.session_state.maps_dict['Pos_map'])
qb_working['Salary'] = qb_working['Player'].map(st.session_state.maps_dict['Salary_map'])
qb_working['Proj Own'] = qb_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
qb_working['Exposure'] = qb_working['Freq']/(1000)
qb_working['Edge'] = qb_working['Exposure'] - qb_working['Proj Own']
qb_working['Team'] = qb_working['Player'].map(st.session_state.maps_dict['Team_map'])
st.session_state.qb_freq = qb_working.copy()
if sim_site_var1 == 'Draftkings':
rbwrte_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,1:7].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
elif sim_site_var1 == 'Fanduel':
rbwrte_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,1:7].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
rbwrte_working['Freq'] = rbwrte_working['Freq'].astype(int)
rbwrte_working['Position'] = rbwrte_working['Player'].map(st.session_state.maps_dict['Pos_map'])
rbwrte_working['Salary'] = rbwrte_working['Player'].map(st.session_state.maps_dict['Salary_map'])
rbwrte_working['Proj Own'] = rbwrte_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
rbwrte_working['Exposure'] = rbwrte_working['Freq']/(1000)
rbwrte_working['Edge'] = rbwrte_working['Exposure'] - rbwrte_working['Proj Own']
rbwrte_working['Team'] = rbwrte_working['Player'].map(st.session_state.maps_dict['Team_map'])
st.session_state.rbwrte_freq = rbwrte_working.copy()
if sim_site_var1 == 'Draftkings':
rb_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,1:3].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
elif sim_site_var1 == 'Fanduel':
rb_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,1:3].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
rb_working['Freq'] = rb_working['Freq'].astype(int)
rb_working['Position'] = rb_working['Player'].map(st.session_state.maps_dict['Pos_map'])
rb_working['Salary'] = rb_working['Player'].map(st.session_state.maps_dict['Salary_map'])
rb_working['Proj Own'] = rb_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
rb_working['Exposure'] = rb_working['Freq']/(1000)
rb_working['Edge'] = rb_working['Exposure'] - rb_working['Proj Own']
rb_working['Team'] = rb_working['Player'].map(st.session_state.maps_dict['Team_map'])
st.session_state.rb_freq = rb_working.copy()
if sim_site_var1 == 'Draftkings':
wr_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,3:6].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
elif sim_site_var1 == 'Fanduel':
wr_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,3:6].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
wr_working['Freq'] = wr_working['Freq'].astype(int)
wr_working['Position'] = wr_working['Player'].map(st.session_state.maps_dict['Pos_map'])
wr_working['Salary'] = wr_working['Player'].map(st.session_state.maps_dict['Salary_map'])
wr_working['Proj Own'] = wr_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
wr_working['Exposure'] = wr_working['Freq']/(1000)
wr_working['Edge'] = wr_working['Exposure'] - wr_working['Proj Own']
wr_working['Team'] = wr_working['Player'].map(st.session_state.maps_dict['Team_map'])
st.session_state.wr_freq = wr_working.copy()
if sim_site_var1 == 'Draftkings':
te_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,6:7].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
elif sim_site_var1 == 'Fanduel':
te_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,6:7].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
te_working['Freq'] = te_working['Freq'].astype(int)
te_working['Position'] = te_working['Player'].map(st.session_state.maps_dict['Pos_map'])
te_working['Salary'] = te_working['Player'].map(st.session_state.maps_dict['Salary_map'])
te_working['Proj Own'] = te_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
te_working['Exposure'] = te_working['Freq']/(1000)
te_working['Edge'] = te_working['Exposure'] - te_working['Proj Own']
te_working['Team'] = te_working['Player'].map(st.session_state.maps_dict['Team_map'])
st.session_state.te_freq = te_working.copy()
if sim_site_var1 == 'Draftkings':
flex_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,7:8].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
elif sim_site_var1 == 'Fanduel':
flex_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,7:8].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
flex_working['Freq'] = flex_working['Freq'].astype(int)
flex_working['Position'] = flex_working['Player'].map(st.session_state.maps_dict['Pos_map'])
flex_working['Salary'] = flex_working['Player'].map(st.session_state.maps_dict['Salary_map'])
flex_working['Proj Own'] = flex_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
flex_working['Exposure'] = flex_working['Freq']/(1000)
flex_working['Edge'] = flex_working['Exposure'] - flex_working['Proj Own']
flex_working['Team'] = flex_working['Player'].map(st.session_state.maps_dict['Team_map'])
st.session_state.flex_freq = flex_working.copy()
if sim_site_var1 == 'Draftkings':
dst_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,8:9].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
elif sim_site_var1 == 'Fanduel':
dst_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,8:9].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
dst_working['Freq'] = dst_working['Freq'].astype(int)
dst_working['Position'] = dst_working['Player'].map(st.session_state.maps_dict['Pos_map'])
dst_working['Salary'] = dst_working['Player'].map(st.session_state.maps_dict['Salary_map'])
dst_working['Proj Own'] = dst_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
dst_working['Exposure'] = dst_working['Freq']/(1000)
dst_working['Edge'] = dst_working['Exposure'] - dst_working['Proj Own']
dst_working['Team'] = dst_working['Player'].map(st.session_state.maps_dict['Team_map'])
st.session_state.dst_freq = dst_working.copy()
if sim_site_var1 == 'Draftkings':
team_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,11:12].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
elif sim_site_var1 == 'Fanduel':
team_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,11:12].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
team_working['Freq'] = team_working['Freq'].astype(int)
team_working['Exposure'] = team_working['Freq']/(1000)
st.session_state.team_freq = team_working.copy()
with st.container():
if st.button("Reset Sim", key='reset_sim'):
for key in st.session_state.keys():
del st.session_state[key]
if 'player_freq' in st.session_state:
player_split_var2 = st.radio("Are you wanting to isolate any lineups with specific players?", ('Full Players', 'Specific Players'), key='player_split_var2')
if player_split_var2 == 'Specific Players':
find_var2 = st.multiselect('Which players must be included in the lineups?', options = st.session_state.player_freq['Player'].unique())
elif player_split_var2 == 'Full Players':
find_var2 = st.session_state.player_freq.Player.values.tolist()
if player_split_var2 == 'Specific Players':
st.session_state.Sim_Winner_Display = st.session_state.Sim_Winner_Frame[np.equal.outer(st.session_state.Sim_Winner_Frame.to_numpy(), find_var2).any(axis=1).all(axis=1)]
if player_split_var2 == 'Full Players':
st.session_state.Sim_Winner_Display = st.session_state.Sim_Winner_Frame
if 'Sim_Winner_Display' in st.session_state:
st.dataframe(st.session_state.Sim_Winner_Display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
if 'Sim_Winner_Export' in st.session_state:
st.download_button(
label="Export Full Frame",
data=st.session_state.Sim_Winner_Export.to_csv().encode('utf-8'),
file_name='MLB_consim_export.csv',
mime='text/csv',
)
tab1, tab2 = st.tabs(['Winning Frame Statistics', 'Flex Exposure Statistics'])
with tab1:
if 'Sim_Winner_Display' in st.session_state:
# Create a new dataframe with summary statistics
summary_df = pd.DataFrame({
'Metric': ['Min', 'Average', 'Max', 'STDdev'],
'Salary': [
st.session_state.Sim_Winner_Display['salary'].min(),
st.session_state.Sim_Winner_Display['salary'].mean(),
st.session_state.Sim_Winner_Display['salary'].max(),
st.session_state.Sim_Winner_Display['salary'].std()
],
'Proj': [
st.session_state.Sim_Winner_Display['proj'].min(),
st.session_state.Sim_Winner_Display['proj'].mean(),
st.session_state.Sim_Winner_Display['proj'].max(),
st.session_state.Sim_Winner_Display['proj'].std()
],
'Own': [
st.session_state.Sim_Winner_Display['Own'].min(),
st.session_state.Sim_Winner_Display['Own'].mean(),
st.session_state.Sim_Winner_Display['Own'].max(),
st.session_state.Sim_Winner_Display['Own'].std()
],
'Fantasy': [
st.session_state.Sim_Winner_Display['Fantasy'].min(),
st.session_state.Sim_Winner_Display['Fantasy'].mean(),
st.session_state.Sim_Winner_Display['Fantasy'].max(),
st.session_state.Sim_Winner_Display['Fantasy'].std()
],
'GPP_Proj': [
st.session_state.Sim_Winner_Display['GPP_Proj'].min(),
st.session_state.Sim_Winner_Display['GPP_Proj'].mean(),
st.session_state.Sim_Winner_Display['GPP_Proj'].max(),
st.session_state.Sim_Winner_Display['GPP_Proj'].std()
]
})
# Set the index of the summary dataframe as the "Metric" column
summary_df = summary_df.set_index('Metric')
# Display the summary dataframe
st.subheader("Winning Frame Statistics")
st.dataframe(summary_df.style.format({
'Salary': '{:.2f}',
'Proj': '{:.2f}',
'Fantasy': '{:.2f}',
'GPP_Proj': '{:.2f}'
}).background_gradient(cmap='RdYlGn', axis=0, subset=['Salary', 'Proj', 'Own', 'Fantasy', 'GPP_Proj']), use_container_width=True)
with tab2:
if 'Sim_Winner_Display' in st.session_state:
# Apply position mapping to FLEX column
flex_positions = st.session_state.freq_copy['FLEX'].map(st.session_state.maps_dict['Pos_map'])
# Count occurrences of each position in FLEX
flex_counts = flex_positions.value_counts()
# Calculate average statistics for each FLEX position
flex_stats = st.session_state.freq_copy.groupby(flex_positions).agg({
'proj': 'mean',
'Own': 'mean',
'Fantasy': 'mean',
'GPP_Proj': 'mean'
})
# Combine counts and average statistics
flex_summary = pd.concat([flex_counts, flex_stats], axis=1)
flex_summary.columns = ['Count', 'Avg Proj', 'Avg Own', 'Avg Fantasy', 'Avg GPP_Proj']
flex_summary = flex_summary.reset_index()
flex_summary.columns = ['Position', 'Count', 'Avg Proj', 'Avg Own', 'Avg Fantasy', 'Avg GPP_Proj']
# Display the summary dataframe
st.subheader("FLEX Position Statistics")
st.dataframe(flex_summary.style.format({
'Count': '{:.0f}',
'Avg Proj': '{:.2f}',
'Avg Fantasy': '{:.2f}',
'Avg GPP_Proj': '{:.2f}'
}).background_gradient(cmap='RdYlGn', axis=0, subset=['Count', 'Avg Proj', 'Avg Own', 'Avg Fantasy', 'Avg GPP_Proj']), use_container_width=True)
else:
st.write("Simulation data or position mapping not available.")
with st.container():
tab1, tab2, tab3, tab4, tab5, tab6, tab7, tab8, tab9 = st.tabs(['Overall Exposures', 'QB Exposures', 'RB-WR-TE Exposures', 'RB Exposures', 'WR Exposures', 'TE Exposures', 'FLEX Exposures', 'DST Exposures', 'Team Exposures'])
with tab1:
if 'player_freq' in st.session_state:
st.dataframe(st.session_state.player_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
st.download_button(
label="Export Exposures",
data=st.session_state.player_freq.to_csv().encode('utf-8'),
file_name='player_freq_export.csv',
mime='text/csv',
key='overall'
)
with tab2:
if 'qb_freq' in st.session_state:
st.dataframe(st.session_state.qb_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
st.download_button(
label="Export Exposures",
data=st.session_state.qb_freq.to_csv().encode('utf-8'),
file_name='qb_freq.csv',
mime='text/csv',
key='qb'
)
with tab3:
if 'rbwrte_freq' in st.session_state:
st.dataframe(st.session_state.rbwrte_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
st.download_button(
label="Export Exposures",
data=st.session_state.rbwrte_freq.to_csv().encode('utf-8'),
file_name='rbwrte_freq.csv',
mime='text/csv',
key='rbwrte'
)
with tab4:
if 'rb_freq' in st.session_state:
st.dataframe(st.session_state.rb_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
st.download_button(
label="Export Exposures",
data=st.session_state.rb_freq.to_csv().encode('utf-8'),
file_name='rb_freq.csv',
mime='text/csv',
key='rb'
)
with tab5:
if 'wr_freq' in st.session_state:
st.dataframe(st.session_state.wr_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
st.download_button(
label="Export Exposures",
data=st.session_state.wr_freq.to_csv().encode('utf-8'),
file_name='wr_freq.csv',
mime='text/csv',
key='wr'
)
with tab6:
if 'te_freq' in st.session_state:
st.dataframe(st.session_state.te_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
st.download_button(
label="Export Exposures",
data=st.session_state.te_freq.to_csv().encode('utf-8'),
file_name='te_freq.csv',
mime='text/csv',
key='te'
)
with tab7:
if 'flex_freq' in st.session_state:
st.dataframe(st.session_state.flex_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
st.download_button(
label="Export Exposures",
data=st.session_state.flex_freq.to_csv().encode('utf-8'),
file_name='flex_freq.csv',
mime='text/csv',
key='flex'
)
with tab8:
if 'dst_freq' in st.session_state:
st.dataframe(st.session_state.dst_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
st.download_button(
label="Export Exposures",
data=st.session_state.dst_freq.to_csv().encode('utf-8'),
file_name='dst_freq.csv',
mime='text/csv',
key='dst'
)
with tab9:
if 'team_freq' in st.session_state:
st.dataframe(st.session_state.team_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(percentages_format, precision=2), use_container_width = True)
st.download_button(
label="Export Exposures",
data=st.session_state.team_freq.to_csv().encode('utf-8'),
file_name='team_freq.csv',
mime='text/csv',
key='team'
)