Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -30,6 +30,7 @@ def init_conn():
|
|
30 |
}
|
31 |
|
32 |
gc_con = gspread.service_account_from_dict(credentials)
|
|
|
33 |
return gc_con
|
34 |
|
35 |
gcservice_account = init_conn()
|
@@ -73,10 +74,14 @@ def set_export_ids():
|
|
73 |
|
74 |
return dk_ids, fd_ids
|
75 |
|
76 |
-
|
77 |
-
|
78 |
-
|
|
|
79 |
|
|
|
|
|
|
|
80 |
def sim_contest(Sim_size, FinalPortfolio, CleanPortfolio, maps_dict, up_dict, insert_port):
|
81 |
SimVar = 1
|
82 |
Sim_Winners = []
|
@@ -138,14 +143,14 @@ def run_seed_frame(seed_depth1, Strength_var, strength_grow, Teams_used, Total_R
|
|
138 |
while RunsVar <= seed_depth_def:
|
139 |
if RunsVar <= 3:
|
140 |
FieldStrength = Strength_var_def
|
141 |
-
FinalPortfolio, maps_dict = get_correlated_portfolio_for_sim(Total_Runs_def * .
|
142 |
-
FinalPortfolio2, maps_dict2 = get_uncorrelated_portfolio_for_sim(Total_Runs_def * .
|
143 |
FinalPortfolio_init = pd.concat([FinalPortfolio, FinalPortfolio2], axis=0)
|
144 |
maps_dict.update(maps_dict2)
|
145 |
elif RunsVar > 3 and RunsVar <= 4:
|
146 |
FieldStrength += (strength_grow_def + ((30 - len(Teams_used_def)) * .001))
|
147 |
-
FinalPortfolio3, maps_dict3 = get_correlated_portfolio_for_sim(Total_Runs_def * .
|
148 |
-
FinalPortfolio4, maps_dict4 = get_uncorrelated_portfolio_for_sim(Total_Runs_def * .
|
149 |
FinalPortfolio_merge_3 = pd.concat([FinalPortfolio_init, FinalPortfolio3], axis=0)
|
150 |
FinalPortfolio_merge_4 = pd.concat([FinalPortfolio_merge_3, FinalPortfolio4], axis=0)
|
151 |
FinalPortfolio_step_2 = FinalPortfolio_merge_4.drop_duplicates(subset = ['Projection', 'Own'],keep = 'last').reset_index(drop = True)
|
@@ -153,8 +158,8 @@ def run_seed_frame(seed_depth1, Strength_var, strength_grow, Teams_used, Total_R
|
|
153 |
maps_dict.update(maps_dict4)
|
154 |
elif RunsVar > 4:
|
155 |
FieldStrength = 1
|
156 |
-
FinalPortfolio5, maps_dict5 = get_correlated_portfolio_for_sim(Total_Runs_def * .
|
157 |
-
FinalPortfolio6, maps_dict6 = get_uncorrelated_portfolio_for_sim(Total_Runs_def * .
|
158 |
FinalPortfolio_merge_5 = pd.concat([FinalPortfolio_step_2, FinalPortfolio5], axis=0)
|
159 |
FinalPortfolio_merge_6 = pd.concat([FinalPortfolio_merge_5, FinalPortfolio6], axis=0)
|
160 |
FinalPortfolio_export = FinalPortfolio_merge_6.drop_duplicates(subset = ['Projection', 'Own'],keep = 'last').reset_index(drop = True)
|
@@ -209,7 +214,7 @@ def get_overall_merged_df():
|
|
209 |
|
210 |
df_out = pd.concat(ref_dict['pos_dfs'], ignore_index=True)
|
211 |
|
212 |
-
return
|
213 |
|
214 |
def calculate_range_var(count, min_val, FieldStrength, field_growth):
|
215 |
var = round(len(count[0]) * FieldStrength)
|
@@ -220,7 +225,7 @@ def calculate_range_var(count, min_val, FieldStrength, field_growth):
|
|
220 |
|
221 |
def create_random_portfolio(Total_Sample_Size, raw_baselines, field_growth):
|
222 |
|
223 |
-
|
224 |
max_var = len(raw_baselines[raw_baselines['Position'] == 'QB'])
|
225 |
|
226 |
field_growth_rounded = round(field_growth)
|
@@ -467,14 +472,6 @@ def get_uncorrelated_portfolio_for_sim(Total_Sample_Size, sharp_split, field_gro
|
|
467 |
|
468 |
return RandomPortfolio, maps_dict
|
469 |
|
470 |
-
dk_roo_raw = load_dk_player_projections()
|
471 |
-
fd_roo_raw = load_fd_player_projections()
|
472 |
-
t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST"
|
473 |
-
dkid_dict, fdid_dict = set_export_ids()
|
474 |
-
|
475 |
-
static_exposure = pd.DataFrame(columns=['Player', 'count'])
|
476 |
-
overall_exposure = pd.DataFrame(columns=['Player', 'count'])
|
477 |
-
|
478 |
tab1, tab2 = st.tabs(['Uploads', 'Contest Sim'])
|
479 |
|
480 |
with tab1:
|
@@ -507,7 +504,6 @@ with tab1:
|
|
507 |
player_salary_dict = dict(zip(proj_dataframe.Player, proj_dataframe.Salary))
|
508 |
player_proj_dict = dict(zip(proj_dataframe.Player, proj_dataframe.Median))
|
509 |
player_own_dict = dict(zip(proj_dataframe.Player, proj_dataframe.Own))
|
510 |
-
player_team_dict = dict(zip(proj_dataframe.Player, proj_dataframe.Team))
|
511 |
|
512 |
with col2:
|
513 |
st.info("The Portfolio file must contain only columns in order and explicitly named: 'QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', and 'DST'. Upload your projections first to avoid an error message.")
|
@@ -575,23 +571,6 @@ with tab1:
|
|
575 |
split_portfolio['TE'].map(player_own_dict),
|
576 |
split_portfolio['FLEX'].map(player_own_dict),
|
577 |
split_portfolio['DST'].map(player_own_dict)])
|
578 |
-
|
579 |
-
split_portfolio['QB_team'] = split_portfolio['QB'].map(player_team_dict)
|
580 |
-
split_portfolio['RB1_team'] = split_portfolio['RB1'].map(player_team_dict)
|
581 |
-
split_portfolio['RB2_team'] = split_portfolio['RB2'].map(player_team_dict)
|
582 |
-
split_portfolio['WR1_team'] = split_portfolio['WR1'].map(player_team_dict)
|
583 |
-
split_portfolio['WR2_team'] = split_portfolio['WR2'].map(player_team_dict)
|
584 |
-
split_portfolio['WR3_team'] = split_portfolio['WR3'].map(player_team_dict)
|
585 |
-
split_portfolio['TE_team'] = split_portfolio['TE'].map(player_team_dict)
|
586 |
-
split_portfolio['FLEX_team'] = split_portfolio['FLEX'].map(player_team_dict)
|
587 |
-
split_portfolio['DST_team'] = split_portfolio['DST'].map(player_team_dict)
|
588 |
-
|
589 |
-
split_portfolio = split_portfolio[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'Salary', 'Projection', 'Ownership', 'QB_team',
|
590 |
-
'RB1_team', 'RB2_team', 'WR1_team', 'WR2_team', 'WR3_team', 'TE_team', 'FLEX_team', 'DST_team']]
|
591 |
-
|
592 |
-
split_portfolio['Main_Stack'] = split_portfolio.iloc[:, 15:19].apply(lambda row: row.value_counts().nlargest(2).index[0],axis=1)
|
593 |
-
split_portfolio['Main_Stack_Size'] = split_portfolio.iloc[:, 15:19].apply(lambda row: row.value_counts().nlargest(2).values[0],axis=1)
|
594 |
-
split_portfolio['Main_Stack_Size'] = split_portfolio['Main_Stack_Size'] - 1
|
595 |
|
596 |
|
597 |
except:
|
@@ -648,23 +627,6 @@ with tab1:
|
|
648 |
split_portfolio['TE'].map(player_own_dict),
|
649 |
split_portfolio['FLEX'].map(player_own_dict),
|
650 |
split_portfolio['DST'].map(player_own_dict)])
|
651 |
-
|
652 |
-
split_portfolio['QB_team'] = split_portfolio['QB'].map(player_team_dict)
|
653 |
-
split_portfolio['RB1_team'] = split_portfolio['RB1'].map(player_team_dict)
|
654 |
-
split_portfolio['RB2_team'] = split_portfolio['RB2'].map(player_team_dict)
|
655 |
-
split_portfolio['WR1_team'] = split_portfolio['WR1'].map(player_team_dict)
|
656 |
-
split_portfolio['WR2_team'] = split_portfolio['WR2'].map(player_team_dict)
|
657 |
-
split_portfolio['WR3_team'] = split_portfolio['WR3'].map(player_team_dict)
|
658 |
-
split_portfolio['TE_team'] = split_portfolio['TE'].map(player_team_dict)
|
659 |
-
split_portfolio['FLEX_team'] = split_portfolio['FLEX'].map(player_team_dict)
|
660 |
-
split_portfolio['DST_team'] = split_portfolio['DST'].map(player_team_dict)
|
661 |
-
|
662 |
-
split_portfolio = split_portfolio[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'Salary', 'Projection', 'Ownership', 'QB_team',
|
663 |
-
'RB1_team', 'RB2_team', 'WR1_team', 'WR2_team', 'WR3_team', 'TE_team', 'FLEX_team', 'DST_team']]
|
664 |
-
|
665 |
-
split_portfolio['Main_Stack'] = split_portfolio.iloc[:, 15:19].apply(lambda row: row.value_counts().nlargest(2).index[0],axis=1)
|
666 |
-
split_portfolio['Main_Stack_Size'] = split_portfolio.iloc[:, 15:19].apply(lambda row: row.value_counts().nlargest(2).values[0],axis=1)
|
667 |
-
split_portfolio['Main_Stack_Size'] = split_portfolio['Main_Stack_Size'] - 1
|
668 |
|
669 |
except:
|
670 |
split_portfolio = portfolio_dataframe
|
@@ -698,87 +660,9 @@ with tab1:
|
|
698 |
split_portfolio['TE'].map(player_own_dict),
|
699 |
split_portfolio['FLEX'].map(player_own_dict),
|
700 |
split_portfolio['DST'].map(player_own_dict)])
|
701 |
-
|
702 |
-
|
703 |
-
split_portfolio['RB1_team'] = split_portfolio['RB1'].map(player_team_dict)
|
704 |
-
split_portfolio['RB2_team'] = split_portfolio['RB2'].map(player_team_dict)
|
705 |
-
split_portfolio['WR1_team'] = split_portfolio['WR1'].map(player_team_dict)
|
706 |
-
split_portfolio['WR2_team'] = split_portfolio['WR2'].map(player_team_dict)
|
707 |
-
split_portfolio['WR3_team'] = split_portfolio['WR3'].map(player_team_dict)
|
708 |
-
split_portfolio['TE_team'] = split_portfolio['TE'].map(player_team_dict)
|
709 |
-
split_portfolio['FLEX_team'] = split_portfolio['FLEX'].map(player_team_dict)
|
710 |
-
split_portfolio['DST_team'] = split_portfolio['DST'].map(player_team_dict)
|
711 |
-
|
712 |
-
split_portfolio = split_portfolio[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'Salary', 'Projection', 'Ownership', 'QB_team',
|
713 |
-
'RB1_team', 'RB2_team', 'WR1_team', 'WR2_team', 'WR3_team', 'TE_team', 'FLEX_team', 'DST_team']]
|
714 |
-
|
715 |
-
split_portfolio['Main_Stack'] = split_portfolio.iloc[:, 15:19].apply(lambda row: row.value_counts().nlargest(2).index[0],axis=1)
|
716 |
-
split_portfolio['Main_Stack_Size'] = split_portfolio.iloc[:, 15:19].apply(lambda row: row.value_counts().nlargest(2).values[0],axis=1)
|
717 |
-
split_portfolio['Main_Stack_Size'] = split_portfolio['Main_Stack_Size'] - 1
|
718 |
-
|
719 |
-
for player_cols in split_portfolio.iloc[:, :9]:
|
720 |
-
static_col_raw = split_portfolio[player_cols].value_counts()
|
721 |
-
static_col = static_col_raw.to_frame()
|
722 |
-
static_col.reset_index(inplace=True)
|
723 |
-
static_col.columns = ['Player', 'count']
|
724 |
-
static_exposure = pd.concat([static_exposure, static_col], ignore_index=True)
|
725 |
-
static_exposure['Exposure'] = static_exposure['count'] / len(split_portfolio)
|
726 |
-
static_exposure = static_exposure[['Player', 'Exposure']]
|
727 |
|
728 |
-
with st.container():
|
729 |
-
col1, col2 = st.columns([3, 3])
|
730 |
-
|
731 |
-
if portfolio_file is not None:
|
732 |
-
with col1:
|
733 |
-
team_split_var1 = st.radio("Are you wanting to isolate any lineups with specific main stacks?", ('Full Portfolio', 'Specific Stacks'))
|
734 |
-
if team_split_var1 == 'Specific Stacks':
|
735 |
-
team_var1 = st.multiselect('Which main stacks would you like to include in the Portfolio?', options = split_portfolio['Main_Stack'].unique())
|
736 |
-
elif team_split_var1 == 'Full Portfolio':
|
737 |
-
team_var1 = split_portfolio.Main_Stack.values.tolist()
|
738 |
-
with col2:
|
739 |
-
player_split_var1 = st.radio("Are you wanting to isolate any lineups with specific players?", ('Full Players', 'Specific Players'))
|
740 |
-
if player_split_var1 == 'Specific Players':
|
741 |
-
find_var1 = st.multiselect('Which players must be included in the lineups?', options = static_exposure['Player'].unique())
|
742 |
-
elif player_split_var1 == 'Full Players':
|
743 |
-
find_var1 = static_exposure.Player.values.tolist()
|
744 |
-
|
745 |
-
split_portfolio = split_portfolio[split_portfolio['Main_Stack'].isin(team_var1)]
|
746 |
-
if player_split_var1 == 'Specific Players':
|
747 |
-
split_portfolio = split_portfolio[np.equal.outer(split_portfolio.to_numpy(copy=False), find_var1).any(axis=1).all(axis=1)]
|
748 |
-
elif player_split_var1 == 'Full Players':
|
749 |
-
split_portfolio = split_portfolio
|
750 |
-
|
751 |
-
for player_cols in split_portfolio.iloc[:, :9]:
|
752 |
-
exposure_col_raw = split_portfolio[player_cols].value_counts()
|
753 |
-
exposure_col = exposure_col_raw.to_frame()
|
754 |
-
exposure_col.reset_index(inplace=True)
|
755 |
-
exposure_col.columns = ['Player', 'count']
|
756 |
-
overall_exposure = pd.concat([overall_exposure, exposure_col], ignore_index=True)
|
757 |
-
overall_exposure['Exposure'] = overall_exposure['count'] / len(split_portfolio)
|
758 |
-
overall_exposure = overall_exposure.groupby('Player').sum()
|
759 |
-
overall_exposure.reset_index(inplace=True)
|
760 |
-
overall_exposure = overall_exposure[['Player', 'Exposure']]
|
761 |
-
overall_exposure = overall_exposure.set_index('Player')
|
762 |
-
overall_exposure = overall_exposure.sort_values(by='Exposure', ascending=False)
|
763 |
-
overall_exposure['Exposure'] = overall_exposure['Exposure'].astype(float).map(lambda n: '{:.2%}'.format(n))
|
764 |
-
|
765 |
-
with st.container():
|
766 |
-
col1, col2 = st.columns([1, 6])
|
767 |
-
|
768 |
-
with col1:
|
769 |
-
if portfolio_file is not None:
|
770 |
-
st.header('Exposure View')
|
771 |
-
st.dataframe(overall_exposure)
|
772 |
-
|
773 |
-
with col2:
|
774 |
-
if portfolio_file is not None:
|
775 |
-
st.header('Portfolio View')
|
776 |
-
split_portfolio = split_portfolio.reset_index()
|
777 |
-
split_portfolio['Lineup'] = split_portfolio['index'] + 1
|
778 |
-
display_portfolio = split_portfolio[['Lineup', 'QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'Salary', 'Main_Stack', 'Main_Stack_Size', 'Projection', 'Ownership']]
|
779 |
-
display_portfolio = display_portfolio.set_index('Lineup')
|
780 |
-
st.dataframe(display_portfolio.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').background_gradient(cmap='RdYlGn_r', subset=['Ownership']).format(precision=2))
|
781 |
-
|
782 |
with tab2:
|
783 |
col1, col2 = st.columns([1, 7])
|
784 |
with col1:
|
@@ -796,7 +680,7 @@ with tab2:
|
|
796 |
site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'))
|
797 |
if site_var1 == 'Draftkings':
|
798 |
if slate_var1 == 'User':
|
799 |
-
raw_baselines = proj_dataframe[['Player', 'Salary', 'Position', 'Team', 'Opp', 'Median', 'Own']]
|
800 |
elif slate_var1 != 'User':
|
801 |
raw_baselines = dk_roo_raw[dk_roo_raw['slate'] == str(slate_var1)]
|
802 |
raw_baselines = raw_baselines[raw_baselines['version'] == 'overall']
|
@@ -854,12 +738,11 @@ with tab2:
|
|
854 |
with st.container():
|
855 |
if st.button("Simulate Contest"):
|
856 |
with st.container():
|
857 |
-
st.write('Contest Simulation Starting')
|
858 |
for key in st.session_state.keys():
|
859 |
del st.session_state[key]
|
860 |
|
861 |
if slate_var1 == 'User':
|
862 |
-
initial_proj = proj_dataframe[['Player', 'Team', 'Position', 'Median', 'Own', 'Floor', 'Ceiling', 'Salary']]
|
863 |
|
864 |
# Define the calculation to be applied
|
865 |
def calculate_own(position, own, mean_own, factor, max_own=75):
|
@@ -884,7 +767,7 @@ with tab2:
|
|
884 |
|
885 |
elif slate_var1 != 'User':
|
886 |
# Copy only the necessary columns
|
887 |
-
initial_proj = raw_baselines[['Player', 'Team', 'Position', 'Median', 'Own', 'Floor', 'Ceiling', 'Salary']]
|
888 |
|
889 |
# Define the calculation to be applied
|
890 |
def calculate_own(position, own, mean_own, factor, max_own=75):
|
@@ -1070,12 +953,10 @@ with tab2:
|
|
1070 |
'team_check_map':dict(zip(cleaport_players.Player,nerf_frame.Team))
|
1071 |
}
|
1072 |
|
1073 |
-
st.write('Seed frame creation')
|
1074 |
FinalPortfolio, maps_dict = run_seed_frame(10, Strength_var, strength_grow, Teams_used, 1000000, field_growth)
|
1075 |
|
1076 |
Sim_Winners = sim_contest(2500, FinalPortfolio, CleanPortfolio, maps_dict, up_dict, insert_port)
|
1077 |
-
|
1078 |
-
st.write('Contest simulation complete')
|
1079 |
# Initial setup
|
1080 |
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=FinalPortfolio.columns.tolist() + ['Fantasy'])
|
1081 |
Sim_Winner_Frame['GPP_Proj'] = (Sim_Winner_Frame['Projection'] + Sim_Winner_Frame['Fantasy']) / 2
|
@@ -1084,11 +965,13 @@ with tab2:
|
|
1084 |
type_cast_dict = {'Salary': int, 'Projection': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float16}
|
1085 |
Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict)
|
1086 |
|
|
|
|
|
1087 |
# Sorting
|
1088 |
st.session_state.Sim_Winner_Frame = Sim_Winner_Frame.sort_values(by='GPP_Proj', ascending=False)
|
1089 |
|
1090 |
# Data Copying
|
1091 |
-
st.session_state.Sim_Winner_Export = Sim_Winner_Frame
|
1092 |
|
1093 |
# Conditional Replacement
|
1094 |
columns_to_replace = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST']
|
@@ -1100,107 +983,94 @@ with tab2:
|
|
1100 |
|
1101 |
for col in columns_to_replace:
|
1102 |
st.session_state.Sim_Winner_Export[col].replace(replace_dict, inplace=True)
|
|
|
|
|
1103 |
|
1104 |
-
player_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Frame.iloc[:,0:9].values, return_counts=True)),
|
1105 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1106 |
-
player_freq['Freq'] = player_freq['Freq'].astype(int)
|
1107 |
-
player_freq['Position'] = player_freq['Player'].map(maps_dict['Pos_map'])
|
1108 |
-
player_freq['Salary'] = player_freq['Player'].map(maps_dict['Salary_map'])
|
1109 |
-
player_freq['Proj Own'] = player_freq['Player'].map(maps_dict['Own_map']) / 100
|
1110 |
-
player_freq['Exposure'] = player_freq['Freq']/(2500)
|
1111 |
-
player_freq['Edge'] = player_freq['Exposure'] - player_freq['Proj Own']
|
1112 |
-
player_freq['Team'] = player_freq['Player'].map(maps_dict['Team_map'])
|
1113 |
for checkVar in range(len(team_list)):
|
1114 |
-
player_freq['Team'] = player_freq['Team'].replace(item_list, team_list)
|
1115 |
-
|
1116 |
-
st.session_state.player_freq = player_freq[['Player', 'Position', 'Team', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
1117 |
|
1118 |
-
qb_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Frame.iloc[:,0:1].values, return_counts=True)),
|
1119 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1120 |
-
qb_freq['Freq'] = qb_freq['Freq'].astype(int)
|
1121 |
-
qb_freq['Position'] = qb_freq['Player'].map(maps_dict['Pos_map'])
|
1122 |
-
qb_freq['Salary'] = qb_freq['Player'].map(maps_dict['Salary_map'])
|
1123 |
-
qb_freq['Proj Own'] = qb_freq['Player'].map(maps_dict['Own_map']) / 100
|
1124 |
-
qb_freq['Exposure'] = qb_freq['Freq']/(2500)
|
1125 |
-
qb_freq['Edge'] = qb_freq['Exposure'] - qb_freq['Proj Own']
|
1126 |
-
qb_freq['Team'] = qb_freq['Player'].map(maps_dict['Team_map'])
|
1127 |
for checkVar in range(len(team_list)):
|
1128 |
-
qb_freq['Team'] = qb_freq['Team'].replace(item_list, team_list)
|
1129 |
-
|
1130 |
-
st.session_state.qb_freq = qb_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
1131 |
|
1132 |
-
rb_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Frame.iloc[:,[1, 2]].values, return_counts=True)),
|
1133 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1134 |
-
rb_freq['Freq'] = rb_freq['Freq'].astype(int)
|
1135 |
-
rb_freq['Position'] = rb_freq['Player'].map(maps_dict['Pos_map'])
|
1136 |
-
rb_freq['Salary'] = rb_freq['Player'].map(maps_dict['Salary_map'])
|
1137 |
-
rb_freq['Proj Own'] = rb_freq['Player'].map(maps_dict['Own_map']) / 100
|
1138 |
-
rb_freq['Exposure'] = rb_freq['Freq']/2500
|
1139 |
-
rb_freq['Edge'] = rb_freq['Exposure'] - rb_freq['Proj Own']
|
1140 |
-
rb_freq['Team'] = rb_freq['Player'].map(maps_dict['Team_map'])
|
1141 |
for checkVar in range(len(team_list)):
|
1142 |
-
rb_freq['Team'] = rb_freq['Team'].replace(item_list, team_list)
|
1143 |
-
|
1144 |
-
st.session_state.rb_freq = rb_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
1145 |
|
1146 |
-
wr_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Frame.iloc[:,[3, 4, 5]].values, return_counts=True)),
|
1147 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1148 |
-
wr_freq['Freq'] = wr_freq['Freq'].astype(int)
|
1149 |
-
wr_freq['Position'] = wr_freq['Player'].map(maps_dict['Pos_map'])
|
1150 |
-
wr_freq['Salary'] = wr_freq['Player'].map(maps_dict['Salary_map'])
|
1151 |
-
wr_freq['Proj Own'] = wr_freq['Player'].map(maps_dict['Own_map']) / 100
|
1152 |
-
wr_freq['Exposure'] = wr_freq['Freq']/2500
|
1153 |
-
wr_freq['Edge'] = wr_freq['Exposure'] - wr_freq['Proj Own']
|
1154 |
-
wr_freq['Team'] = wr_freq['Player'].map(maps_dict['Team_map'])
|
1155 |
for checkVar in range(len(team_list)):
|
1156 |
-
wr_freq['Team'] = wr_freq['Team'].replace(item_list, team_list)
|
1157 |
-
|
1158 |
-
st.session_state.wr_freq = wr_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
1159 |
|
1160 |
-
te_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Frame.iloc[:,[6]].values, return_counts=True)),
|
1161 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1162 |
-
te_freq['Freq'] = te_freq['Freq'].astype(int)
|
1163 |
-
te_freq['Position'] = te_freq['Player'].map(maps_dict['Pos_map'])
|
1164 |
-
te_freq['Salary'] = te_freq['Player'].map(maps_dict['Salary_map'])
|
1165 |
-
te_freq['Proj Own'] = te_freq['Player'].map(maps_dict['Own_map']) / 100
|
1166 |
-
te_freq['Exposure'] = te_freq['Freq']/2500
|
1167 |
-
te_freq['Edge'] = te_freq['Exposure'] - te_freq['Proj Own']
|
1168 |
-
te_freq['Team'] = te_freq['Player'].map(maps_dict['Team_map'])
|
1169 |
for checkVar in range(len(team_list)):
|
1170 |
-
te_freq['Team'] = te_freq['Team'].replace(item_list, team_list)
|
1171 |
-
|
1172 |
-
st.session_state.te_freq = te_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
1173 |
|
1174 |
-
flex_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Frame.iloc[:,[7]].values, return_counts=True)),
|
1175 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1176 |
-
flex_freq['Freq'] = flex_freq['Freq'].astype(int)
|
1177 |
-
flex_freq['Position'] = flex_freq['Player'].map(maps_dict['Pos_map'])
|
1178 |
-
flex_freq['Salary'] = flex_freq['Player'].map(maps_dict['Salary_map'])
|
1179 |
-
flex_freq['Proj Own'] = flex_freq['Player'].map(maps_dict['Own_map']) / 100
|
1180 |
-
flex_freq['Exposure'] = flex_freq['Freq']/2500
|
1181 |
-
flex_freq['Edge'] = flex_freq['Exposure'] - flex_freq['Proj Own']
|
1182 |
-
flex_freq['Team'] = flex_freq['Player'].map(maps_dict['Team_map'])
|
1183 |
for checkVar in range(len(team_list)):
|
1184 |
-
flex_freq['Team'] = flex_freq['Team'].replace(item_list, team_list)
|
1185 |
-
|
1186 |
-
st.session_state.flex_freq = flex_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
1187 |
|
1188 |
-
dst_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Frame.iloc[:,8:9].values, return_counts=True)),
|
1189 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1190 |
-
dst_freq['Freq'] = dst_freq['Freq'].astype(int)
|
1191 |
-
dst_freq['Position'] = dst_freq['Player'].map(maps_dict['Pos_map'])
|
1192 |
-
dst_freq['Salary'] = dst_freq['Player'].map(maps_dict['Salary_map'])
|
1193 |
-
dst_freq['Proj Own'] = dst_freq['Player'].map(maps_dict['Own_map']) / 100
|
1194 |
-
dst_freq['Exposure'] = dst_freq['Freq']/2500
|
1195 |
-
dst_freq['Edge'] = dst_freq['Exposure'] - dst_freq['Proj Own']
|
1196 |
-
dst_freq['Team'] = dst_freq['Player'].map(maps_dict['Team_map'])
|
1197 |
for checkVar in range(len(team_list)):
|
1198 |
-
dst_freq['Team'] = dst_freq['Team'].replace(item_list, team_list)
|
1199 |
-
|
1200 |
-
st.session_state.dst_freq = dst_freq[['Player', 'Team', 'Position', 'Salary', 'Proj Own', 'Exposure', 'Edge']]
|
1201 |
|
1202 |
with st.container():
|
1203 |
-
simulate_container = st.empty()
|
1204 |
if 'player_freq' in st.session_state:
|
1205 |
player_split_var2 = st.radio("Are you wanting to isolate any lineups with specific players?", ('Full Players', 'Specific Players'), key='player_split_var2')
|
1206 |
if player_split_var2 == 'Specific Players':
|
@@ -1209,7 +1079,7 @@ with tab2:
|
|
1209 |
find_var2 = st.session_state.player_freq.Player.values.tolist()
|
1210 |
|
1211 |
if player_split_var2 == 'Specific Players':
|
1212 |
-
st.session_state.Sim_Winner_Display = st.session_state.Sim_Winner_Frame[np.equal.outer(st.session_state.Sim_Winner_Frame.to_numpy(
|
1213 |
if player_split_var2 == 'Full Players':
|
1214 |
st.session_state.Sim_Winner_Display = st.session_state.Sim_Winner_Frame
|
1215 |
if 'Sim_Winner_Display' in st.session_state:
|
@@ -1217,20 +1087,19 @@ with tab2:
|
|
1217 |
if 'Sim_Winner_Export' in st.session_state:
|
1218 |
st.download_button(
|
1219 |
label="Export Tables",
|
1220 |
-
data=
|
1221 |
file_name='NFL_consim_export.csv',
|
1222 |
mime='text/csv',
|
1223 |
)
|
1224 |
|
1225 |
with st.container():
|
1226 |
-
freq_container = st.empty()
|
1227 |
tab1, tab2, tab3, tab4, tab5, tab6, tab7 = st.tabs(['Overall Exposures', 'QB Exposures', 'RB Exposures', 'WR Exposures', 'TE Exposures', 'FLEX Exposures', 'DST Exposures'])
|
1228 |
with tab1:
|
1229 |
if 'player_freq' in st.session_state:
|
1230 |
st.dataframe(st.session_state.player_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
1231 |
st.download_button(
|
1232 |
label="Export Exposures",
|
1233 |
-
data=
|
1234 |
file_name='player_freq_export.csv',
|
1235 |
mime='text/csv',
|
1236 |
)
|
@@ -1239,7 +1108,7 @@ with tab2:
|
|
1239 |
st.dataframe(st.session_state.qb_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
1240 |
st.download_button(
|
1241 |
label="Export Exposures",
|
1242 |
-
data=
|
1243 |
file_name='qb_freq_export.csv',
|
1244 |
mime='text/csv',
|
1245 |
)
|
@@ -1248,7 +1117,7 @@ with tab2:
|
|
1248 |
st.dataframe(st.session_state.rb_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
1249 |
st.download_button(
|
1250 |
label="Export Exposures",
|
1251 |
-
data=
|
1252 |
file_name='rb_freq_export.csv',
|
1253 |
mime='text/csv',
|
1254 |
)
|
@@ -1257,7 +1126,7 @@ with tab2:
|
|
1257 |
st.dataframe(st.session_state.wr_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
1258 |
st.download_button(
|
1259 |
label="Export Exposures",
|
1260 |
-
data=
|
1261 |
file_name='wr_freq_export.csv',
|
1262 |
mime='text/csv',
|
1263 |
)
|
@@ -1266,7 +1135,7 @@ with tab2:
|
|
1266 |
st.dataframe(st.session_state.te_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
1267 |
st.download_button(
|
1268 |
label="Export Exposures",
|
1269 |
-
data=
|
1270 |
file_name='te_freq_export.csv',
|
1271 |
mime='text/csv',
|
1272 |
)
|
@@ -1275,7 +1144,7 @@ with tab2:
|
|
1275 |
st.dataframe(st.session_state.flex_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
1276 |
st.download_button(
|
1277 |
label="Export Exposures",
|
1278 |
-
data=
|
1279 |
file_name='flex_freq_export.csv',
|
1280 |
mime='text/csv',
|
1281 |
)
|
@@ -1284,7 +1153,7 @@ with tab2:
|
|
1284 |
st.dataframe(st.session_state.dst_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
1285 |
st.download_button(
|
1286 |
label="Export Exposures",
|
1287 |
-
data=
|
1288 |
file_name='dst_freq_export.csv',
|
1289 |
mime='text/csv',
|
1290 |
)
|
@@ -1295,4 +1164,5 @@ del t_stamp
|
|
1295 |
del dkid_dict, fdid_dict
|
1296 |
del static_exposure, overall_exposure
|
1297 |
del insert_port1, Contest_Size, sharp_split, Strength_var, scaling_var, Sort_function, Sim_function, strength_grow, field_growth
|
1298 |
-
del raw_baselines
|
|
|
|
30 |
}
|
31 |
|
32 |
gc_con = gspread.service_account_from_dict(credentials)
|
33 |
+
|
34 |
return gc_con
|
35 |
|
36 |
gcservice_account = init_conn()
|
|
|
74 |
|
75 |
return dk_ids, fd_ids
|
76 |
|
77 |
+
dk_roo_raw = load_dk_player_projections()
|
78 |
+
fd_roo_raw = load_fd_player_projections()
|
79 |
+
t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST"
|
80 |
+
dkid_dict, fdid_dict = set_export_ids()
|
81 |
|
82 |
+
static_exposure = pd.DataFrame(columns=['Player', 'count'])
|
83 |
+
overall_exposure = pd.DataFrame(columns=['Player', 'count'])
|
84 |
+
|
85 |
def sim_contest(Sim_size, FinalPortfolio, CleanPortfolio, maps_dict, up_dict, insert_port):
|
86 |
SimVar = 1
|
87 |
Sim_Winners = []
|
|
|
143 |
while RunsVar <= seed_depth_def:
|
144 |
if RunsVar <= 3:
|
145 |
FieldStrength = Strength_var_def
|
146 |
+
FinalPortfolio, maps_dict = get_correlated_portfolio_for_sim(Total_Runs_def * .25, sharp_split, field_growth)
|
147 |
+
FinalPortfolio2, maps_dict2 = get_uncorrelated_portfolio_for_sim(Total_Runs_def * .25, sharp_split, field_growth)
|
148 |
FinalPortfolio_init = pd.concat([FinalPortfolio, FinalPortfolio2], axis=0)
|
149 |
maps_dict.update(maps_dict2)
|
150 |
elif RunsVar > 3 and RunsVar <= 4:
|
151 |
FieldStrength += (strength_grow_def + ((30 - len(Teams_used_def)) * .001))
|
152 |
+
FinalPortfolio3, maps_dict3 = get_correlated_portfolio_for_sim(Total_Runs_def * .25, sharp_split, field_growth)
|
153 |
+
FinalPortfolio4, maps_dict4 = get_uncorrelated_portfolio_for_sim(Total_Runs_def * .25, sharp_split, field_growth)
|
154 |
FinalPortfolio_merge_3 = pd.concat([FinalPortfolio_init, FinalPortfolio3], axis=0)
|
155 |
FinalPortfolio_merge_4 = pd.concat([FinalPortfolio_merge_3, FinalPortfolio4], axis=0)
|
156 |
FinalPortfolio_step_2 = FinalPortfolio_merge_4.drop_duplicates(subset = ['Projection', 'Own'],keep = 'last').reset_index(drop = True)
|
|
|
158 |
maps_dict.update(maps_dict4)
|
159 |
elif RunsVar > 4:
|
160 |
FieldStrength = 1
|
161 |
+
FinalPortfolio5, maps_dict5 = get_correlated_portfolio_for_sim(Total_Runs_def * .25, sharp_split, field_growth)
|
162 |
+
FinalPortfolio6, maps_dict6 = get_uncorrelated_portfolio_for_sim(Total_Runs_def * .25, sharp_split, field_growth)
|
163 |
FinalPortfolio_merge_5 = pd.concat([FinalPortfolio_step_2, FinalPortfolio5], axis=0)
|
164 |
FinalPortfolio_merge_6 = pd.concat([FinalPortfolio_merge_5, FinalPortfolio6], axis=0)
|
165 |
FinalPortfolio_export = FinalPortfolio_merge_6.drop_duplicates(subset = ['Projection', 'Own'],keep = 'last').reset_index(drop = True)
|
|
|
214 |
|
215 |
df_out = pd.concat(ref_dict['pos_dfs'], ignore_index=True)
|
216 |
|
217 |
+
return ref_dict
|
218 |
|
219 |
def calculate_range_var(count, min_val, FieldStrength, field_growth):
|
220 |
var = round(len(count[0]) * FieldStrength)
|
|
|
225 |
|
226 |
def create_random_portfolio(Total_Sample_Size, raw_baselines, field_growth):
|
227 |
|
228 |
+
full_pos_player_dict = get_overall_merged_df()
|
229 |
max_var = len(raw_baselines[raw_baselines['Position'] == 'QB'])
|
230 |
|
231 |
field_growth_rounded = round(field_growth)
|
|
|
472 |
|
473 |
return RandomPortfolio, maps_dict
|
474 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
475 |
tab1, tab2 = st.tabs(['Uploads', 'Contest Sim'])
|
476 |
|
477 |
with tab1:
|
|
|
504 |
player_salary_dict = dict(zip(proj_dataframe.Player, proj_dataframe.Salary))
|
505 |
player_proj_dict = dict(zip(proj_dataframe.Player, proj_dataframe.Median))
|
506 |
player_own_dict = dict(zip(proj_dataframe.Player, proj_dataframe.Own))
|
|
|
507 |
|
508 |
with col2:
|
509 |
st.info("The Portfolio file must contain only columns in order and explicitly named: 'QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', and 'DST'. Upload your projections first to avoid an error message.")
|
|
|
571 |
split_portfolio['TE'].map(player_own_dict),
|
572 |
split_portfolio['FLEX'].map(player_own_dict),
|
573 |
split_portfolio['DST'].map(player_own_dict)])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
574 |
|
575 |
|
576 |
except:
|
|
|
627 |
split_portfolio['TE'].map(player_own_dict),
|
628 |
split_portfolio['FLEX'].map(player_own_dict),
|
629 |
split_portfolio['DST'].map(player_own_dict)])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
630 |
|
631 |
except:
|
632 |
split_portfolio = portfolio_dataframe
|
|
|
660 |
split_portfolio['TE'].map(player_own_dict),
|
661 |
split_portfolio['FLEX'].map(player_own_dict),
|
662 |
split_portfolio['DST'].map(player_own_dict)])
|
663 |
+
|
664 |
+
gc.collect()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
665 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
666 |
with tab2:
|
667 |
col1, col2 = st.columns([1, 7])
|
668 |
with col1:
|
|
|
680 |
site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'))
|
681 |
if site_var1 == 'Draftkings':
|
682 |
if slate_var1 == 'User':
|
683 |
+
raw_baselines = proj_dataframe[['Player', 'Salary', 'Position', 'Team', 'Opp', 'Median', 'Own']]
|
684 |
elif slate_var1 != 'User':
|
685 |
raw_baselines = dk_roo_raw[dk_roo_raw['slate'] == str(slate_var1)]
|
686 |
raw_baselines = raw_baselines[raw_baselines['version'] == 'overall']
|
|
|
738 |
with st.container():
|
739 |
if st.button("Simulate Contest"):
|
740 |
with st.container():
|
|
|
741 |
for key in st.session_state.keys():
|
742 |
del st.session_state[key]
|
743 |
|
744 |
if slate_var1 == 'User':
|
745 |
+
initial_proj = proj_dataframe[['Player', 'Team', 'Position', 'Median', 'Own', 'Floor', 'Ceiling', 'Salary']]
|
746 |
|
747 |
# Define the calculation to be applied
|
748 |
def calculate_own(position, own, mean_own, factor, max_own=75):
|
|
|
767 |
|
768 |
elif slate_var1 != 'User':
|
769 |
# Copy only the necessary columns
|
770 |
+
initial_proj = raw_baselines[['Player', 'Team', 'Position', 'Median', 'Own', 'Floor', 'Ceiling', 'Salary']]
|
771 |
|
772 |
# Define the calculation to be applied
|
773 |
def calculate_own(position, own, mean_own, factor, max_own=75):
|
|
|
953 |
'team_check_map':dict(zip(cleaport_players.Player,nerf_frame.Team))
|
954 |
}
|
955 |
|
|
|
956 |
FinalPortfolio, maps_dict = run_seed_frame(10, Strength_var, strength_grow, Teams_used, 1000000, field_growth)
|
957 |
|
958 |
Sim_Winners = sim_contest(2500, FinalPortfolio, CleanPortfolio, maps_dict, up_dict, insert_port)
|
959 |
+
|
|
|
960 |
# Initial setup
|
961 |
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=FinalPortfolio.columns.tolist() + ['Fantasy'])
|
962 |
Sim_Winner_Frame['GPP_Proj'] = (Sim_Winner_Frame['Projection'] + Sim_Winner_Frame['Fantasy']) / 2
|
|
|
965 |
type_cast_dict = {'Salary': int, 'Projection': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float16}
|
966 |
Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict)
|
967 |
|
968 |
+
del FinalPortfolio, insert_port, type_cast_dict
|
969 |
+
|
970 |
# Sorting
|
971 |
st.session_state.Sim_Winner_Frame = Sim_Winner_Frame.sort_values(by='GPP_Proj', ascending=False)
|
972 |
|
973 |
# Data Copying
|
974 |
+
st.session_state.Sim_Winner_Export = Sim_Winner_Frame
|
975 |
|
976 |
# Conditional Replacement
|
977 |
columns_to_replace = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST']
|
|
|
983 |
|
984 |
for col in columns_to_replace:
|
985 |
st.session_state.Sim_Winner_Export[col].replace(replace_dict, inplace=True)
|
986 |
+
|
987 |
+
del replace_dict, Sim_Winner_Frame, Sim_Winners
|
988 |
|
989 |
+
st.session_state.player_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Frame.iloc[:,0:9].values, return_counts=True)),
|
990 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
991 |
+
st.session_state.player_freq['Freq'] = st.session_state.player_freq['Freq'].astype(int)
|
992 |
+
st.session_state.player_freq['Position'] = st.session_state.player_freq['Player'].map(maps_dict['Pos_map'])
|
993 |
+
st.session_state.player_freq['Salary'] = st.session_state.player_freq['Player'].map(maps_dict['Salary_map'])
|
994 |
+
st.session_state.player_freq['Proj Own'] = st.session_state.player_freq['Player'].map(maps_dict['Own_map']) / 100
|
995 |
+
st.session_state.player_freq['Exposure'] = st.session_state.player_freq['Freq']/(2500)
|
996 |
+
st.session_state.player_freq['Edge'] = st.session_state.player_freq['Exposure'] - st.session_state.player_freq['Proj Own']
|
997 |
+
st.session_state.player_freq['Team'] = st.session_state.player_freq['Player'].map(maps_dict['Team_map'])
|
998 |
for checkVar in range(len(team_list)):
|
999 |
+
st.session_state.player_freq['Team'] = st.session_state.player_freq['Team'].replace(item_list, team_list)
|
|
|
|
|
1000 |
|
1001 |
+
st.session_state.qb_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Frame.iloc[:,0:1].values, return_counts=True)),
|
1002 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1003 |
+
st.session_state.qb_freq['Freq'] = st.session_state.qb_freq['Freq'].astype(int)
|
1004 |
+
st.session_state.qb_freq['Position'] = st.session_state.qb_freq['Player'].map(maps_dict['Pos_map'])
|
1005 |
+
st.session_state.qb_freq['Salary'] = st.session_state.qb_freq['Player'].map(maps_dict['Salary_map'])
|
1006 |
+
st.session_state.qb_freq['Proj Own'] = st.session_state.qb_freq['Player'].map(maps_dict['Own_map']) / 100
|
1007 |
+
st.session_state.qb_freq['Exposure'] = st.session_state.qb_freq['Freq']/(2500)
|
1008 |
+
st.session_state.qb_freq['Edge'] = st.session_state.qb_freq['Exposure'] - st.session_state.qb_freq['Proj Own']
|
1009 |
+
st.session_state.qb_freq['Team'] = st.session_state.qb_freq['Player'].map(maps_dict['Team_map'])
|
1010 |
for checkVar in range(len(team_list)):
|
1011 |
+
st.session_state.qb_freq['Team'] = st.session_state.qb_freq['Team'].replace(item_list, team_list)
|
|
|
|
|
1012 |
|
1013 |
+
st.session_state.rb_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Frame.iloc[:,[1, 2]].values, return_counts=True)),
|
1014 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1015 |
+
st.session_state.rb_freq['Freq'] = st.session_state.rb_freq['Freq'].astype(int)
|
1016 |
+
st.session_state.rb_freq['Position'] = st.session_state.rb_freq['Player'].map(maps_dict['Pos_map'])
|
1017 |
+
st.session_state.rb_freq['Salary'] = st.session_state.rb_freq['Player'].map(maps_dict['Salary_map'])
|
1018 |
+
st.session_state.rb_freq['Proj Own'] = st.session_state.rb_freq['Player'].map(maps_dict['Own_map']) / 100
|
1019 |
+
st.session_state.rb_freq['Exposure'] = st.session_state.rb_freq['Freq']/2500
|
1020 |
+
st.session_state.rb_freq['Edge'] = st.session_state.rb_freq['Exposure'] - st.session_state.rb_freq['Proj Own']
|
1021 |
+
st.session_state.rb_freq['Team'] = st.session_state.rb_freq['Player'].map(maps_dict['Team_map'])
|
1022 |
for checkVar in range(len(team_list)):
|
1023 |
+
st.session_state.rb_freq['Team'] = st.session_state.rb_freq['Team'].replace(item_list, team_list)
|
|
|
|
|
1024 |
|
1025 |
+
st.session_state.wr_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Frame.iloc[:,[3, 4, 5]].values, return_counts=True)),
|
1026 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1027 |
+
st.session_state.wr_freq['Freq'] = st.session_state.wr_freq['Freq'].astype(int)
|
1028 |
+
st.session_state.wr_freq['Position'] = st.session_state.wr_freq['Player'].map(maps_dict['Pos_map'])
|
1029 |
+
st.session_state.wr_freq['Salary'] = st.session_state.wr_freq['Player'].map(maps_dict['Salary_map'])
|
1030 |
+
st.session_state.wr_freq['Proj Own'] = st.session_state.wr_freq['Player'].map(maps_dict['Own_map']) / 100
|
1031 |
+
st.session_state.wr_freq['Exposure'] = st.session_state.wr_freq['Freq']/2500
|
1032 |
+
st.session_state.wr_freq['Edge'] = st.session_state.wr_freq['Exposure'] - st.session_state.wr_freq['Proj Own']
|
1033 |
+
st.session_state.wr_freq['Team'] = st.session_state.wr_freq['Player'].map(maps_dict['Team_map'])
|
1034 |
for checkVar in range(len(team_list)):
|
1035 |
+
st.session_state.wr_freq['Team'] = st.session_state.wr_freq['Team'].replace(item_list, team_list)
|
|
|
|
|
1036 |
|
1037 |
+
st.session_state.te_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Frame.iloc[:,[6]].values, return_counts=True)),
|
1038 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1039 |
+
st.session_state.te_freq['Freq'] = st.session_state.te_freq['Freq'].astype(int)
|
1040 |
+
st.session_state.te_freq['Position'] = st.session_state.te_freq['Player'].map(maps_dict['Pos_map'])
|
1041 |
+
st.session_state.te_freq['Salary'] = st.session_state.te_freq['Player'].map(maps_dict['Salary_map'])
|
1042 |
+
st.session_state.te_freq['Proj Own'] = st.session_state.te_freq['Player'].map(maps_dict['Own_map']) / 100
|
1043 |
+
st.session_state.te_freq['Exposure'] = st.session_state.te_freq['Freq']/2500
|
1044 |
+
st.session_state.te_freq['Edge'] = st.session_state.te_freq['Exposure'] - st.session_state.te_freq['Proj Own']
|
1045 |
+
st.session_state.te_freq['Team'] = st.session_state.te_freq['Player'].map(maps_dict['Team_map'])
|
1046 |
for checkVar in range(len(team_list)):
|
1047 |
+
st.session_state.te_freq['Team'] = st.session_state.te_freq['Team'].replace(item_list, team_list)
|
|
|
|
|
1048 |
|
1049 |
+
st.session_state.flex_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Frame.iloc[:,[7]].values, return_counts=True)),
|
1050 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1051 |
+
st.session_state.flex_freq['Freq'] = st.session_state.flex_freq['Freq'].astype(int)
|
1052 |
+
st.session_state.flex_freq['Position'] = st.session_state.flex_freq['Player'].map(maps_dict['Pos_map'])
|
1053 |
+
st.session_state.flex_freq['Salary'] = st.session_state.flex_freq['Player'].map(maps_dict['Salary_map'])
|
1054 |
+
st.session_state.flex_freq['Proj Own'] = st.session_state.flex_freq['Player'].map(maps_dict['Own_map']) / 100
|
1055 |
+
st.session_state.flex_freq['Exposure'] = st.session_state.flex_freq['Freq']/2500
|
1056 |
+
st.session_state.flex_freq['Edge'] = st.session_state.flex_freq['Exposure'] - st.session_state.flex_freq['Proj Own']
|
1057 |
+
st.session_state.flex_freq['Team'] = st.session_state.flex_freq['Player'].map(maps_dict['Team_map'])
|
1058 |
for checkVar in range(len(team_list)):
|
1059 |
+
st.session_state.flex_freq['Team'] = st.session_state.flex_freq['Team'].replace(item_list, team_list)
|
|
|
|
|
1060 |
|
1061 |
+
st.session_state.dst_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Frame.iloc[:,8:9].values, return_counts=True)),
|
1062 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1063 |
+
st.session_state.dst_freq['Freq'] = st.session_state.dst_freq['Freq'].astype(int)
|
1064 |
+
st.session_state.dst_freq['Position'] = st.session_state.dst_freq['Player'].map(maps_dict['Pos_map'])
|
1065 |
+
st.session_state.dst_freq['Salary'] = st.session_state.dst_freq['Player'].map(maps_dict['Salary_map'])
|
1066 |
+
st.session_state.dst_freq['Proj Own'] = st.session_state.dst_freq['Player'].map(maps_dict['Own_map']) / 100
|
1067 |
+
st.session_state.dst_freq['Exposure'] = st.session_state.dst_freq['Freq']/2500
|
1068 |
+
st.session_state.dst_freq['Edge'] = st.session_state.dst_freq['Exposure'] - st.session_state.dst_freq['Proj Own']
|
1069 |
+
st.session_state.dst_freq['Team'] = st.session_state.dst_freq['Player'].map(maps_dict['Team_map'])
|
1070 |
for checkVar in range(len(team_list)):
|
1071 |
+
st.session_state.dst_freq['Team'] = st.session_state.dst_freq['Team'].replace(item_list, team_list)
|
|
|
|
|
1072 |
|
1073 |
with st.container():
|
|
|
1074 |
if 'player_freq' in st.session_state:
|
1075 |
player_split_var2 = st.radio("Are you wanting to isolate any lineups with specific players?", ('Full Players', 'Specific Players'), key='player_split_var2')
|
1076 |
if player_split_var2 == 'Specific Players':
|
|
|
1079 |
find_var2 = st.session_state.player_freq.Player.values.tolist()
|
1080 |
|
1081 |
if player_split_var2 == 'Specific Players':
|
1082 |
+
st.session_state.Sim_Winner_Display = st.session_state.Sim_Winner_Frame[np.equal.outer(st.session_state.Sim_Winner_Frame.to_numpy(), find_var2).any(axis=1).all(axis=1)]
|
1083 |
if player_split_var2 == 'Full Players':
|
1084 |
st.session_state.Sim_Winner_Display = st.session_state.Sim_Winner_Frame
|
1085 |
if 'Sim_Winner_Display' in st.session_state:
|
|
|
1087 |
if 'Sim_Winner_Export' in st.session_state:
|
1088 |
st.download_button(
|
1089 |
label="Export Tables",
|
1090 |
+
data=st.session_state.Sim_Winner_Export.to_csv().encode('utf-8'),
|
1091 |
file_name='NFL_consim_export.csv',
|
1092 |
mime='text/csv',
|
1093 |
)
|
1094 |
|
1095 |
with st.container():
|
|
|
1096 |
tab1, tab2, tab3, tab4, tab5, tab6, tab7 = st.tabs(['Overall Exposures', 'QB Exposures', 'RB Exposures', 'WR Exposures', 'TE Exposures', 'FLEX Exposures', 'DST Exposures'])
|
1097 |
with tab1:
|
1098 |
if 'player_freq' in st.session_state:
|
1099 |
st.dataframe(st.session_state.player_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
1100 |
st.download_button(
|
1101 |
label="Export Exposures",
|
1102 |
+
data=st.session_state.player_freq.to_csv().encode('utf-8'),
|
1103 |
file_name='player_freq_export.csv',
|
1104 |
mime='text/csv',
|
1105 |
)
|
|
|
1108 |
st.dataframe(st.session_state.qb_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
1109 |
st.download_button(
|
1110 |
label="Export Exposures",
|
1111 |
+
data=st.session_state.qb_freq.to_csv().encode('utf-8'),
|
1112 |
file_name='qb_freq_export.csv',
|
1113 |
mime='text/csv',
|
1114 |
)
|
|
|
1117 |
st.dataframe(st.session_state.rb_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
1118 |
st.download_button(
|
1119 |
label="Export Exposures",
|
1120 |
+
data=st.session_state.rb_freq.to_csv().encode('utf-8'),
|
1121 |
file_name='rb_freq_export.csv',
|
1122 |
mime='text/csv',
|
1123 |
)
|
|
|
1126 |
st.dataframe(st.session_state.wr_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
1127 |
st.download_button(
|
1128 |
label="Export Exposures",
|
1129 |
+
data=st.session_state.wr_freq.to_csv().encode('utf-8'),
|
1130 |
file_name='wr_freq_export.csv',
|
1131 |
mime='text/csv',
|
1132 |
)
|
|
|
1135 |
st.dataframe(st.session_state.te_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
1136 |
st.download_button(
|
1137 |
label="Export Exposures",
|
1138 |
+
data=st.session_state.te_freq.to_csv().encode('utf-8'),
|
1139 |
file_name='te_freq_export.csv',
|
1140 |
mime='text/csv',
|
1141 |
)
|
|
|
1144 |
st.dataframe(st.session_state.flex_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
1145 |
st.download_button(
|
1146 |
label="Export Exposures",
|
1147 |
+
data=st.session_state.flex_freq.to_csv().encode('utf-8'),
|
1148 |
file_name='flex_freq_export.csv',
|
1149 |
mime='text/csv',
|
1150 |
)
|
|
|
1153 |
st.dataframe(st.session_state.dst_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
1154 |
st.download_button(
|
1155 |
label="Export Exposures",
|
1156 |
+
data=st.session_state.dst_freq.to_csv().encode('utf-8'),
|
1157 |
file_name='dst_freq_export.csv',
|
1158 |
mime='text/csv',
|
1159 |
)
|
|
|
1164 |
del dkid_dict, fdid_dict
|
1165 |
del static_exposure, overall_exposure
|
1166 |
del insert_port1, Contest_Size, sharp_split, Strength_var, scaling_var, Sort_function, Sim_function, strength_grow, field_growth
|
1167 |
+
del raw_baselines
|
1168 |
+
del freq_format
|