Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -152,10 +152,8 @@ with tab1:
|
|
152 |
opp_var1 = opp_dict[stack_var1]
|
153 |
qbstack_var1 = st.selectbox('How many forced WR/TE stacked with QB?', options = [1, 2], key='qbstack_var1')
|
154 |
ministack_var1 = st.selectbox('How many forced bring backs?', options = [0, 1, 2], key='ministack_var1')
|
155 |
-
elif
|
156 |
-
|
157 |
-
qbstack_var1 = 2
|
158 |
-
ministack_var1 = 0
|
159 |
elif contest_var1 == 'Large Field GPP':
|
160 |
st.info('The Pivot optimal uses backend functions to create a stack and lock in certain pieces, if you want control over QB pairing use the Manual model instead.')
|
161 |
opto_var1 = st.selectbox("Pivot optimal or Manual?", ('Pivot Optimal', 'Manual'), key='opto_var1')
|
@@ -192,24 +190,6 @@ with tab1:
|
|
192 |
with col2:
|
193 |
raw_baselines = raw_baselines[raw_baselines['Team'].isin(team_var1)]
|
194 |
|
195 |
-
try:
|
196 |
-
dk_stacks_raw = dk_stacks_raw[dk_stacks_raw['Team'].isin(team_var1)]
|
197 |
-
fd_stacks_raw = fd_stacks_raw[fd_stacks_raw['Team'].isin(team_var1)]
|
198 |
-
dk_Max_Rank = dk_stacks_raw['Team'][0]
|
199 |
-
fd_Max_Rank = fd_stacks_raw['Team'][0]
|
200 |
-
dk_stacks_raw = dk_stacks_raw.sort_values(by='Median', ascending=False)
|
201 |
-
fd_stacks_raw = fd_stacks_raw.sort_values(by='Median', ascending=False)
|
202 |
-
dk_Max_Upside = dk_stacks_raw['Team'][0]
|
203 |
-
fd_Max_Upside = fd_stacks_raw['Team'][0]
|
204 |
-
if contest_var1 == 'Small Field GPP':
|
205 |
-
stack_var1 = dk_Max_Rank
|
206 |
-
elif contest_var1 == 'Large Field GPP':
|
207 |
-
stack_var1 = dk_Max_Upside
|
208 |
-
opp_var1 = opp_dict[stack_var1]
|
209 |
-
except:
|
210 |
-
pass
|
211 |
-
|
212 |
-
st.write(dk_Max_Rank)
|
213 |
raw_baselines = raw_baselines[~raw_baselines['Player'].isin(avoid_var1)]
|
214 |
ownframe = raw_baselines.copy()
|
215 |
if contest_var1 == 'Cash':
|
@@ -756,6 +736,20 @@ with tab1:
|
|
756 |
qbfile = qbfile[qbfile['Position'] == 'QB']
|
757 |
qbfile = qbfile.reset_index()
|
758 |
elif contest_var1 == 'Small Field GPP':
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
759 |
qbfile = flex_file[flex_file['Team'] == stack_var1]
|
760 |
qbfile = qbfile[qbfile['Position'] == 'QB']
|
761 |
qbfile = qbfile.reset_index()
|
@@ -782,6 +776,20 @@ with tab1:
|
|
782 |
sub_idx = flex_file[flex_file['Player'] == qb_var].index
|
783 |
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 1
|
784 |
elif contest_var1 == 'Large Field GPP':
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
785 |
qbfile = flex_file[flex_file['Team'] == stack_var1]
|
786 |
qbfile = qbfile[qbfile['Position'] == 'QB']
|
787 |
qbfile = qbfile.reset_index()
|
|
|
152 |
opp_var1 = opp_dict[stack_var1]
|
153 |
qbstack_var1 = st.selectbox('How many forced WR/TE stacked with QB?', options = [1, 2], key='qbstack_var1')
|
154 |
ministack_var1 = st.selectbox('How many forced bring backs?', options = [0, 1, 2], key='ministack_var1')
|
155 |
+
elif
|
156 |
+
|
|
|
|
|
157 |
elif contest_var1 == 'Large Field GPP':
|
158 |
st.info('The Pivot optimal uses backend functions to create a stack and lock in certain pieces, if you want control over QB pairing use the Manual model instead.')
|
159 |
opto_var1 = st.selectbox("Pivot optimal or Manual?", ('Pivot Optimal', 'Manual'), key='opto_var1')
|
|
|
190 |
with col2:
|
191 |
raw_baselines = raw_baselines[raw_baselines['Team'].isin(team_var1)]
|
192 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
raw_baselines = raw_baselines[~raw_baselines['Player'].isin(avoid_var1)]
|
194 |
ownframe = raw_baselines.copy()
|
195 |
if contest_var1 == 'Cash':
|
|
|
736 |
qbfile = qbfile[qbfile['Position'] == 'QB']
|
737 |
qbfile = qbfile.reset_index()
|
738 |
elif contest_var1 == 'Small Field GPP':
|
739 |
+
if opto_var1 == "Pivot Optimal":
|
740 |
+
qbstack_var1 = 2
|
741 |
+
ministack_var1 = 0
|
742 |
+
dk_stacks_raw = dk_stacks_raw[dk_stacks_raw['Team'].isin(team_var1)]
|
743 |
+
fd_stacks_raw = fd_stacks_raw[fd_stacks_raw['Team'].isin(team_var1)]
|
744 |
+
dk_Max_Rank = dk_stacks_raw['Team'][0]
|
745 |
+
fd_Max_Rank = fd_stacks_raw['Team'][0]
|
746 |
+
dk_stacks_raw = dk_stacks_raw.sort_values(by='Median', ascending=False)
|
747 |
+
fd_stacks_raw = fd_stacks_raw.sort_values(by='Median', ascending=False)
|
748 |
+
dk_Max_Upside = dk_stacks_raw['Team'][0]
|
749 |
+
fd_Max_Upside = fd_stacks_raw['Team'][0]
|
750 |
+
stack_var1 = dk_Max_Rank
|
751 |
+
opp_var1 = opp_dict[stack_var1]
|
752 |
+
|
753 |
qbfile = flex_file[flex_file['Team'] == stack_var1]
|
754 |
qbfile = qbfile[qbfile['Position'] == 'QB']
|
755 |
qbfile = qbfile.reset_index()
|
|
|
776 |
sub_idx = flex_file[flex_file['Player'] == qb_var].index
|
777 |
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 1
|
778 |
elif contest_var1 == 'Large Field GPP':
|
779 |
+
if opto_var1 == "Pivot Optimal":
|
780 |
+
qbstack_var1 = 2
|
781 |
+
ministack_var1 = 0
|
782 |
+
dk_stacks_raw = dk_stacks_raw[dk_stacks_raw['Team'].isin(team_var1)]
|
783 |
+
fd_stacks_raw = fd_stacks_raw[fd_stacks_raw['Team'].isin(team_var1)]
|
784 |
+
dk_Max_Rank = dk_stacks_raw['Team'][0]
|
785 |
+
fd_Max_Rank = fd_stacks_raw['Team'][0]
|
786 |
+
dk_stacks_raw = dk_stacks_raw.sort_values(by='Median', ascending=False)
|
787 |
+
fd_stacks_raw = fd_stacks_raw.sort_values(by='Median', ascending=False)
|
788 |
+
dk_Max_Upside = dk_stacks_raw['Team'][0]
|
789 |
+
fd_Max_Upside = fd_stacks_raw['Team'][0]
|
790 |
+
stack_var1 = dk_Max_Upside
|
791 |
+
opp_var1 = opp_dict[stack_var1]
|
792 |
+
|
793 |
qbfile = flex_file[flex_file['Team'] == stack_var1]
|
794 |
qbfile = qbfile[qbfile['Position'] == 'QB']
|
795 |
qbfile = qbfile.reset_index()
|