Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,23 +5,28 @@ import streamlit as st
|
|
5 |
import gspread
|
6 |
from itertools import combinations
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
st.set_page_config(layout="wide")
|
27 |
|
@@ -39,74 +44,44 @@ player_roo_format = {'Top_finish': '{:.2%}','Top_5_finish': '{:.2%}', 'Top_10_fi
|
|
39 |
|
40 |
all_dk_player_projections = 'https://docs.google.com/spreadsheets/d/1I_1Ve3F4tftgfLQQoRKOJ351XfEG48s36OxXUKxmgS8/edit#gid=1391856348'
|
41 |
|
42 |
-
@st.
|
43 |
-
def set_slate_teams():
|
44 |
-
sh = gc.open_by_url(all_dk_player_projections)
|
45 |
-
worksheet = sh.worksheet('Site_Info')
|
46 |
-
raw_display = pd.DataFrame(worksheet.get_all_records())
|
47 |
-
|
48 |
-
return raw_display
|
49 |
-
|
50 |
-
@st.cache_data
|
51 |
def player_stat_table():
|
52 |
-
sh =
|
53 |
worksheet = sh.worksheet('Player_Projections')
|
54 |
-
|
55 |
-
|
56 |
-
return raw_display
|
57 |
-
|
58 |
-
@st.cache_data
|
59 |
-
def load_dk_player_projections():
|
60 |
-
sh = gc.open_by_url(all_dk_player_projections)
|
61 |
-
worksheet = sh.worksheet('DK_ROO')
|
62 |
-
load_display = pd.DataFrame(worksheet.get_all_records())
|
63 |
-
load_display.replace('', np.nan, inplace=True)
|
64 |
-
raw_display = load_display.dropna(subset=['Median'])
|
65 |
-
|
66 |
-
return raw_display
|
67 |
-
|
68 |
-
@st.cache_data
|
69 |
-
def load_fd_player_projections():
|
70 |
-
sh = gc.open_by_url(all_dk_player_projections)
|
71 |
-
worksheet = sh.worksheet('FD_ROO')
|
72 |
-
load_display = pd.DataFrame(worksheet.get_all_records())
|
73 |
-
load_display.replace('', np.nan, inplace=True)
|
74 |
-
raw_display = load_display.dropna(subset=['Median'])
|
75 |
-
|
76 |
-
return raw_display
|
77 |
-
|
78 |
-
@st.cache_data
|
79 |
-
def load_dk_stacks():
|
80 |
-
sh = gc.open_by_url(all_dk_player_projections)
|
81 |
worksheet = sh.worksheet('DK_Stacks')
|
82 |
load_display = pd.DataFrame(worksheet.get_all_records())
|
83 |
raw_display = load_display
|
84 |
-
|
85 |
-
|
86 |
-
return raw_display
|
87 |
-
|
88 |
-
@st.cache_data
|
89 |
-
def load_fd_stacks():
|
90 |
-
sh = gc.open_by_url(all_dk_player_projections)
|
91 |
worksheet = sh.worksheet('FD_Stacks')
|
92 |
load_display = pd.DataFrame(worksheet.get_all_records())
|
93 |
raw_display = load_display
|
94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
-
return
|
97 |
|
98 |
@st.cache_data
|
99 |
def convert_df_to_csv(df):
|
100 |
return df.to_csv().encode('utf-8')
|
101 |
|
102 |
-
player_stats = player_stat_table()
|
103 |
-
dk_stacks_raw = load_fd_stacks()
|
104 |
-
fd_stacks_raw = load_fd_stacks()
|
105 |
-
dk_roo_raw = load_dk_player_projections()
|
106 |
-
fd_roo_raw = load_fd_player_projections()
|
107 |
-
t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST"
|
108 |
-
site_slates = set_slate_teams()
|
109 |
opp_dict = dict(zip(dk_roo_raw.Team, dk_roo_raw.Opp))
|
|
|
110 |
|
111 |
tab1, tab2 = st.tabs(['Uploads and Info', 'Pivot Finder'])
|
112 |
|
@@ -132,13 +107,9 @@ with tab2:
|
|
132 |
st.info(t_stamp)
|
133 |
if st.button("Load/Reset Data", key='reset1'):
|
134 |
st.cache_data.clear()
|
135 |
-
player_stats = player_stat_table()
|
136 |
-
|
137 |
-
fd_stacks_raw = load_fd_stacks()
|
138 |
-
dk_roo_raw = load_dk_player_projections()
|
139 |
-
fd_roo_raw = load_fd_player_projections()
|
140 |
t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST"
|
141 |
-
site_slates = set_slate_teams()
|
142 |
data_var1 = st.radio("Which data are you loading?", ('Paydirt', 'User'), key='data_var1')
|
143 |
site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='site_var1')
|
144 |
if site_var1 == 'Draftkings':
|
@@ -193,8 +164,12 @@ with tab2:
|
|
193 |
working_roo = working_roo.loc[(working_roo['Median'] >= player_var['Median'][0] - Median_var) & (working_roo['Median'] <= player_var['Median'][0] + Median_var)]
|
194 |
|
195 |
flex_file = working_roo[['Player', 'Position', 'Salary', 'Median']]
|
196 |
-
flex_file['
|
197 |
-
flex_file['
|
|
|
|
|
|
|
|
|
198 |
flex_file['STD'] = flex_file['Median'] / 4
|
199 |
flex_file = flex_file[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD']]
|
200 |
hold_file = flex_file
|
|
|
5 |
import gspread
|
6 |
from itertools import combinations
|
7 |
|
8 |
+
@st.cache_resource
|
9 |
+
def init_conn():
|
10 |
+
scope = ['https://www.googleapis.com/auth/spreadsheets',
|
11 |
+
"https://www.googleapis.com/auth/drive"]
|
12 |
+
|
13 |
+
credentials = {
|
14 |
+
"type": "service_account",
|
15 |
+
"project_id": "sheets-api-connect-378620",
|
16 |
+
"private_key_id": "1005124050c80d085e2c5b344345715978dd9cc9",
|
17 |
+
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
|
18 |
+
"client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
|
19 |
+
"client_id": "106625872877651920064",
|
20 |
+
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
|
21 |
+
"token_uri": "https://oauth2.googleapis.com/token",
|
22 |
+
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
|
23 |
+
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
|
24 |
+
}
|
25 |
+
|
26 |
+
gc = gspread.service_account_from_dict(credentials)
|
27 |
+
return gc
|
28 |
+
|
29 |
+
gcservice_account = init_conn()
|
30 |
|
31 |
st.set_page_config(layout="wide")
|
32 |
|
|
|
44 |
|
45 |
all_dk_player_projections = 'https://docs.google.com/spreadsheets/d/1I_1Ve3F4tftgfLQQoRKOJ351XfEG48s36OxXUKxmgS8/edit#gid=1391856348'
|
46 |
|
47 |
+
@st.cache_resource(ttl = 600)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
def player_stat_table():
|
49 |
+
sh = gcservice_account.open_by_url(all_dk_player_projections)
|
50 |
worksheet = sh.worksheet('Player_Projections')
|
51 |
+
player_stats = pd.DataFrame(worksheet.get_all_records())
|
52 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
worksheet = sh.worksheet('DK_Stacks')
|
54 |
load_display = pd.DataFrame(worksheet.get_all_records())
|
55 |
raw_display = load_display
|
56 |
+
dk_stacks_raw = raw_display.sort_values(by='Own', ascending=False)
|
57 |
+
|
|
|
|
|
|
|
|
|
|
|
58 |
worksheet = sh.worksheet('FD_Stacks')
|
59 |
load_display = pd.DataFrame(worksheet.get_all_records())
|
60 |
raw_display = load_display
|
61 |
+
fd_stacks_raw = raw_display.sort_values(by='Own', ascending=False)
|
62 |
+
|
63 |
+
worksheet = sh.worksheet('DK_ROO')
|
64 |
+
load_display = pd.DataFrame(worksheet.get_all_records())
|
65 |
+
load_display.replace('', np.nan, inplace=True)
|
66 |
+
dk_roo_raw = load_display.dropna(subset=['Median'])
|
67 |
+
|
68 |
+
worksheet = sh.worksheet('FD_ROO')
|
69 |
+
load_display = pd.DataFrame(worksheet.get_all_records())
|
70 |
+
load_display.replace('', np.nan, inplace=True)
|
71 |
+
fd_roo_raw = load_display.dropna(subset=['Median'])
|
72 |
+
|
73 |
+
worksheet = sh.worksheet('Site_Info')
|
74 |
+
site_slates = pd.DataFrame(worksheet.get_all_records())
|
75 |
|
76 |
+
return player_stats, dk_stacks_raw, fd_stacks_raw, dk_roo_raw, fd_roo_raw, site_slates
|
77 |
|
78 |
@st.cache_data
|
79 |
def convert_df_to_csv(df):
|
80 |
return df.to_csv().encode('utf-8')
|
81 |
|
82 |
+
player_stats, dk_stacks_raw, fd_stacks_raw, dk_roo_raw, fd_roo_raw, site_slates = player_stat_table()
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
opp_dict = dict(zip(dk_roo_raw.Team, dk_roo_raw.Opp))
|
84 |
+
t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST"
|
85 |
|
86 |
tab1, tab2 = st.tabs(['Uploads and Info', 'Pivot Finder'])
|
87 |
|
|
|
107 |
st.info(t_stamp)
|
108 |
if st.button("Load/Reset Data", key='reset1'):
|
109 |
st.cache_data.clear()
|
110 |
+
player_stats, dk_stacks_raw, fd_stacks_raw, dk_roo_raw, fd_roo_raw, site_slates = player_stat_table()
|
111 |
+
opp_dict = dict(zip(dk_roo_raw.Team, dk_roo_raw.Opp))
|
|
|
|
|
|
|
112 |
t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST"
|
|
|
113 |
data_var1 = st.radio("Which data are you loading?", ('Paydirt', 'User'), key='data_var1')
|
114 |
site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='site_var1')
|
115 |
if site_var1 == 'Draftkings':
|
|
|
164 |
working_roo = working_roo.loc[(working_roo['Median'] >= player_var['Median'][0] - Median_var) & (working_roo['Median'] <= player_var['Median'][0] + Median_var)]
|
165 |
|
166 |
flex_file = working_roo[['Player', 'Position', 'Salary', 'Median']]
|
167 |
+
flex_file['Floor_raw'] = flex_file['Median'] * .20
|
168 |
+
flex_file['Ceiling_raw'] = flex_file['Median'] * 1.9
|
169 |
+
flex_file['Floor'] = np.where(flex_file['Position'] == 'QB', (flex_file['Median'] * .33), flex_file['Floor_raw'])
|
170 |
+
flex_file['Floor'] = np.where(flex_file['Position'] == 'RB', (flex_file['Median'] * .15), flex_file['Floor_raw'])
|
171 |
+
flex_file['Ceiling'] = np.where(flex_file['Position'] == 'QB', (flex_file['Median'] * 1.75), flex_file['Ceiling_raw'])
|
172 |
+
flex_file['Ceiling'] = np.where(flex_file['Position'] == 'RB', (flex_file['Median'] * 1.85), flex_file['Ceiling_raw'])
|
173 |
flex_file['STD'] = flex_file['Median'] / 4
|
174 |
flex_file = flex_file[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD']]
|
175 |
hold_file = flex_file
|