Spaces:
Sleeping
Sleeping
James McCool
commited on
Commit
·
3feca2c
1
Parent(s):
1194fb6
Added loop for top 10 owned players
Browse files
app.py
CHANGED
@@ -78,12 +78,12 @@ def player_stat_table():
|
|
78 |
worksheet = sh.worksheet('DK_ROO')
|
79 |
load_display = pd.DataFrame(worksheet.get_all_records())
|
80 |
load_display.replace('', np.nan, inplace=True)
|
81 |
-
dk_roo_raw = load_display.dropna(subset=['
|
82 |
|
83 |
worksheet = sh.worksheet('FD_ROO')
|
84 |
load_display = pd.DataFrame(worksheet.get_all_records())
|
85 |
load_display.replace('', np.nan, inplace=True)
|
86 |
-
fd_roo_raw = load_display.dropna(subset=['
|
87 |
|
88 |
worksheet = sh.worksheet('Site_Info')
|
89 |
site_slates = pd.DataFrame(worksheet.get_all_records())
|
@@ -123,7 +123,11 @@ with tab1:
|
|
123 |
elif data_var1 != 'User':
|
124 |
raw_baselines = fd_roo_raw[fd_roo_raw['slate'] == 'Main Slate']
|
125 |
raw_baselines = raw_baselines[raw_baselines['version'] == 'overall']
|
126 |
-
|
|
|
|
|
|
|
|
|
127 |
Salary_var = st.number_input('Acceptable +/- Salary range', min_value = 0, max_value = 1000, value = 300, step = 100)
|
128 |
Median_var = st.number_input('Acceptable +/- Median range', min_value = 0, max_value = 10, value = 3, step = 1)
|
129 |
pos_var1 = st.radio("Compare to all positions or specific positions?", ('All Positions', 'Specific Positions'), key='pos_var1')
|
@@ -153,90 +157,183 @@ with tab1:
|
|
153 |
team_dict = dict(zip(working_roo.Player, working_roo.Team))
|
154 |
opp_dict = dict(zip(working_roo.Player, working_roo.Opp))
|
155 |
total_sims = 1000
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
working_roo = working_roo[working_roo['Team'].isin(team_var1)]
|
162 |
-
working_roo = working_roo.loc[(working_roo['Salary'] >= player_var['Salary'][0] - Salary_var) & (working_roo['Salary'] <= player_var['Salary'][0] + Salary_var)]
|
163 |
-
working_roo = working_roo.loc[(working_roo['Median'] >= player_var['Median'][0] - Median_var) & (working_roo['Median'] <= player_var['Median'][0] + Median_var)]
|
164 |
-
|
165 |
-
flex_file = working_roo[['Player', 'Position', 'Salary', 'Median']]
|
166 |
-
flex_file['Floor_raw'] = flex_file['Median'] * .20
|
167 |
-
flex_file['Ceiling_raw'] = flex_file['Median'] * 1.9
|
168 |
-
flex_file['Floor'] = np.where(flex_file['Position'] == 'QB', (flex_file['Median'] * .33), flex_file['Floor_raw'])
|
169 |
-
flex_file['Floor'] = np.where(flex_file['Position'] == 'RB', (flex_file['Median'] * .15), flex_file['Floor_raw'])
|
170 |
-
flex_file['Ceiling'] = np.where(flex_file['Position'] == 'QB', (flex_file['Median'] * 1.75), flex_file['Ceiling_raw'])
|
171 |
-
flex_file['Ceiling'] = np.where(flex_file['Position'] == 'RB', (flex_file['Median'] * 1.85), flex_file['Ceiling_raw'])
|
172 |
-
flex_file['STD'] = flex_file['Median'] / 4
|
173 |
-
flex_file = flex_file[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD']]
|
174 |
-
hold_file = flex_file
|
175 |
-
overall_file = flex_file
|
176 |
-
salary_file = flex_file
|
177 |
-
|
178 |
-
overall_players = overall_file[['Player']]
|
179 |
-
|
180 |
-
for x in range(0,total_sims):
|
181 |
-
salary_file[x] = salary_file['Salary']
|
182 |
-
|
183 |
-
salary_file=salary_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
184 |
-
salary_file.astype('int').dtypes
|
185 |
-
|
186 |
-
salary_file = salary_file.div(1000)
|
187 |
-
|
188 |
-
for x in range(0,total_sims):
|
189 |
-
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
|
190 |
-
|
191 |
-
overall_file=overall_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
192 |
-
overall_file.astype('int').dtypes
|
193 |
-
|
194 |
-
players_only = hold_file[['Player']]
|
195 |
-
raw_lineups_file = players_only
|
196 |
-
|
197 |
-
for x in range(0,total_sims):
|
198 |
-
maps_dict = {'proj_map':dict(zip(hold_file.Player,hold_file[x]))}
|
199 |
-
raw_lineups_file[x] = sum([raw_lineups_file['Player'].map(maps_dict['proj_map'])])
|
200 |
-
players_only[x] = raw_lineups_file[x].rank(ascending=False)
|
201 |
-
|
202 |
-
players_only=players_only.drop(['Player'], axis=1)
|
203 |
-
players_only.astype('int').dtypes
|
204 |
-
|
205 |
-
salary_2x_check = (overall_file - (salary_file*2))
|
206 |
-
salary_3x_check = (overall_file - (salary_file*3))
|
207 |
-
salary_4x_check = (overall_file - (salary_file*4))
|
208 |
-
|
209 |
-
players_only['Average_Rank'] = players_only.mean(axis=1)
|
210 |
-
players_only['Top_finish'] = players_only[players_only == 1].count(axis=1)/total_sims
|
211 |
-
players_only['Top_5_finish'] = players_only[players_only <= 5].count(axis=1)/total_sims
|
212 |
-
players_only['Top_10_finish'] = players_only[players_only <= 10].count(axis=1)/total_sims
|
213 |
-
players_only['20+%'] = overall_file[overall_file >= 20].count(axis=1)/float(total_sims)
|
214 |
-
players_only['2x%'] = salary_2x_check[salary_2x_check >= 1].count(axis=1)/float(total_sims)
|
215 |
-
players_only['3x%'] = salary_3x_check[salary_3x_check >= 1].count(axis=1)/float(total_sims)
|
216 |
-
players_only['4x%'] = salary_4x_check[salary_4x_check >= 1].count(axis=1)/float(total_sims)
|
217 |
-
|
218 |
-
players_only['Player'] = hold_file[['Player']]
|
219 |
-
|
220 |
-
final_outcomes = players_only[['Player', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%']]
|
221 |
-
|
222 |
-
final_Proj = pd.merge(hold_file, final_outcomes, on="Player")
|
223 |
-
final_Proj = final_Proj[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%']]
|
224 |
-
final_Proj['Own'] = final_Proj['Player'].map(own_dict)
|
225 |
-
final_Proj['Team'] = final_Proj['Player'].map(team_dict)
|
226 |
-
final_Proj['Opp'] = final_Proj['Player'].map(opp_dict)
|
227 |
-
final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own']]
|
228 |
-
final_Proj['Projection Rank'] = final_Proj.Median.rank(pct = True)
|
229 |
-
final_Proj['Own Rank'] = final_Proj.Own.rank(pct = True)
|
230 |
-
final_Proj['LevX'] = 0
|
231 |
-
final_Proj['LevX'] = np.where(final_Proj['Position'] == 'QB', final_Proj[['Projection Rank', 'Top_5_finish']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX'])
|
232 |
-
final_Proj['LevX'] = np.where(final_Proj['Position'] == 'TE', final_Proj[['Projection Rank', '2x%']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX'])
|
233 |
-
final_Proj['LevX'] = np.where(final_Proj['Position'] == 'RB', final_Proj[['Projection Rank', 'Top_5_finish']].mean(axis=1) + final_Proj['20+%'] - final_Proj['Own Rank'], final_Proj['LevX'])
|
234 |
-
final_Proj['LevX'] = np.where(final_Proj['Position'] == 'WR', final_Proj[['Projection Rank', 'Top_10_finish']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX'])
|
235 |
-
final_Proj['CPT_Own'] = final_Proj['Own'] / 4
|
236 |
-
|
237 |
-
final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own', 'LevX']]
|
238 |
-
final_Proj = final_Proj.set_index('Player')
|
239 |
-
final_Proj = final_Proj.sort_values(by='Top_finish', ascending=False)
|
240 |
|
241 |
with hold_container:
|
242 |
hold_container = st.empty()
|
@@ -249,7 +346,7 @@ with tab1:
|
|
249 |
file_name='NFL_pivot_export.csv',
|
250 |
mime='text/csv',
|
251 |
)
|
252 |
-
|
253 |
with tab2:
|
254 |
st.info("The Projections file can have any columns in any order, but must contain columns explicitly named: 'Player', 'Salary', 'Position', 'Team', 'Opp', 'Median', and 'Own'.")
|
255 |
col1, col2 = st.columns([1, 5])
|
|
|
78 |
worksheet = sh.worksheet('DK_ROO')
|
79 |
load_display = pd.DataFrame(worksheet.get_all_records())
|
80 |
load_display.replace('', np.nan, inplace=True)
|
81 |
+
dk_roo_raw = load_display.dropna(subset=['Own'])
|
82 |
|
83 |
worksheet = sh.worksheet('FD_ROO')
|
84 |
load_display = pd.DataFrame(worksheet.get_all_records())
|
85 |
load_display.replace('', np.nan, inplace=True)
|
86 |
+
fd_roo_raw = load_display.dropna(subset=['Own'])
|
87 |
|
88 |
worksheet = sh.worksheet('Site_Info')
|
89 |
site_slates = pd.DataFrame(worksheet.get_all_records())
|
|
|
123 |
elif data_var1 != 'User':
|
124 |
raw_baselines = fd_roo_raw[fd_roo_raw['slate'] == 'Main Slate']
|
125 |
raw_baselines = raw_baselines[raw_baselines['version'] == 'overall']
|
126 |
+
check_seq = st.radio("Do you want to check a single player or the top 10 in ownership?", ('Single Player', 'Top 10 Owned'), key='check_seq')
|
127 |
+
if check_seq == 'Single Player':
|
128 |
+
player_check = st.selectbox('Select player to create comps', options = raw_baselines['Player'].unique(), key='dk_player')
|
129 |
+
elif check_seq == 'Top 10 Owned':
|
130 |
+
player_check = raw_baselines['Player'].head(10).tolist()
|
131 |
Salary_var = st.number_input('Acceptable +/- Salary range', min_value = 0, max_value = 1000, value = 300, step = 100)
|
132 |
Median_var = st.number_input('Acceptable +/- Median range', min_value = 0, max_value = 10, value = 3, step = 1)
|
133 |
pos_var1 = st.radio("Compare to all positions or specific positions?", ('All Positions', 'Specific Positions'), key='pos_var1')
|
|
|
157 |
team_dict = dict(zip(working_roo.Player, working_roo.Team))
|
158 |
opp_dict = dict(zip(working_roo.Player, working_roo.Opp))
|
159 |
total_sims = 1000
|
160 |
+
if check_seq == 'Single Player':
|
161 |
+
player_var = working_roo.loc[working_roo['Player'] == player_check]
|
162 |
+
player_var = player_var.reset_index()
|
163 |
+
|
164 |
+
working_roo = working_roo[working_roo['Position'].isin(pos_var_list)]
|
165 |
+
working_roo = working_roo[working_roo['Team'].isin(team_var1)]
|
166 |
+
working_roo = working_roo.loc[(working_roo['Salary'] >= player_var['Salary'][0] - Salary_var) & (working_roo['Salary'] <= player_var['Salary'][0] + Salary_var)]
|
167 |
+
working_roo = working_roo.loc[(working_roo['Median'] >= player_var['Median'][0] - Median_var) & (working_roo['Median'] <= player_var['Median'][0] + Median_var)]
|
168 |
+
|
169 |
+
flex_file = working_roo[['Player', 'Position', 'Salary', 'Median']]
|
170 |
+
flex_file['Floor_raw'] = flex_file['Median'] * .25
|
171 |
+
flex_file['Ceiling_raw'] = flex_file['Median'] * 1.75
|
172 |
+
flex_file['Floor'] = np.where(flex_file['Position'] == 'QB', (flex_file['Median'] * .33), flex_file['Floor_raw'])
|
173 |
+
flex_file['Floor'] = np.where(flex_file['Position'] == 'WR', (flex_file['Median'] * .15), flex_file['Floor_raw'])
|
174 |
+
flex_file['Ceiling'] = np.where(flex_file['Position'] == 'QB', (flex_file['Median'] * 1.75), flex_file['Ceiling_raw'])
|
175 |
+
flex_file['Ceiling'] = np.where(flex_file['Position'] == 'WR', (flex_file['Median'] * 1.85), flex_file['Ceiling_raw'])
|
176 |
+
flex_file['STD'] = flex_file['Median'] / 4
|
177 |
+
flex_file = flex_file[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD']]
|
178 |
+
hold_file = flex_file.copy()
|
179 |
+
overall_file = flex_file.copy()
|
180 |
+
salary_file = flex_file.copy()
|
181 |
+
|
182 |
+
overall_players = overall_file[['Player']]
|
183 |
+
|
184 |
+
for x in range(0,total_sims):
|
185 |
+
salary_file[x] = salary_file['Salary']
|
186 |
+
|
187 |
+
salary_file=salary_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
188 |
+
salary_file.astype('int').dtypes
|
189 |
+
|
190 |
+
salary_file = salary_file.div(1000)
|
191 |
+
|
192 |
+
for x in range(0,total_sims):
|
193 |
+
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
|
194 |
+
|
195 |
+
overall_file=overall_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
196 |
+
overall_file.astype('int').dtypes
|
197 |
+
|
198 |
+
players_only = hold_file[['Player']]
|
199 |
+
raw_lineups_file = players_only
|
200 |
+
|
201 |
+
for x in range(0,total_sims):
|
202 |
+
maps_dict = {'proj_map':dict(zip(hold_file.Player,hold_file[x]))}
|
203 |
+
raw_lineups_file[x] = sum([raw_lineups_file['Player'].map(maps_dict['proj_map'])])
|
204 |
+
players_only[x] = raw_lineups_file[x].rank(ascending=False)
|
205 |
+
|
206 |
+
players_only=players_only.drop(['Player'], axis=1)
|
207 |
+
players_only.astype('int').dtypes
|
208 |
+
|
209 |
+
salary_2x_check = (overall_file - (salary_file*2))
|
210 |
+
salary_3x_check = (overall_file - (salary_file*3))
|
211 |
+
salary_4x_check = (overall_file - (salary_file*4))
|
212 |
+
|
213 |
+
players_only['Average_Rank'] = players_only.mean(axis=1)
|
214 |
+
players_only['Top_finish'] = players_only[players_only == 1].count(axis=1)/total_sims
|
215 |
+
players_only['Top_5_finish'] = players_only[players_only <= 5].count(axis=1)/total_sims
|
216 |
+
players_only['Top_10_finish'] = players_only[players_only <= 10].count(axis=1)/total_sims
|
217 |
+
players_only['20+%'] = overall_file[overall_file >= 20].count(axis=1)/float(total_sims)
|
218 |
+
players_only['2x%'] = salary_2x_check[salary_2x_check >= 1].count(axis=1)/float(total_sims)
|
219 |
+
players_only['3x%'] = salary_3x_check[salary_3x_check >= 1].count(axis=1)/float(total_sims)
|
220 |
+
players_only['4x%'] = salary_4x_check[salary_4x_check >= 1].count(axis=1)/float(total_sims)
|
221 |
+
|
222 |
+
players_only['Player'] = hold_file[['Player']]
|
223 |
+
|
224 |
+
final_outcomes = players_only[['Player', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%']]
|
225 |
+
|
226 |
+
final_Proj = pd.merge(hold_file, final_outcomes, on="Player")
|
227 |
+
final_Proj = final_Proj[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%']]
|
228 |
+
final_Proj['Own'] = final_Proj['Player'].map(own_dict)
|
229 |
+
final_Proj['Team'] = final_Proj['Player'].map(team_dict)
|
230 |
+
final_Proj['Opp'] = final_Proj['Player'].map(opp_dict)
|
231 |
+
final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own']]
|
232 |
+
final_Proj['Projection Rank'] = final_Proj.Median.rank(pct = True)
|
233 |
+
final_Proj['Own Rank'] = final_Proj.Own.rank(pct = True)
|
234 |
+
final_Proj['LevX'] = 0
|
235 |
+
final_Proj['LevX'] = np.where(final_Proj['Position'] == 'QB', final_Proj[['Projection Rank', 'Top_5_finish']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX'])
|
236 |
+
final_Proj['LevX'] = np.where(final_Proj['Position'] == 'TE', final_Proj[['Projection Rank', '2x%']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX'])
|
237 |
+
final_Proj['LevX'] = np.where(final_Proj['Position'] == 'RB', final_Proj[['Projection Rank', 'Top_5_finish']].mean(axis=1) + final_Proj['20+%'] - final_Proj['Own Rank'], final_Proj['LevX'])
|
238 |
+
final_Proj['LevX'] = np.where(final_Proj['Position'] == 'WR', final_Proj[['Projection Rank', 'Top_10_finish']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX'])
|
239 |
+
final_Proj['CPT_Own'] = final_Proj['Own'] / 4
|
240 |
+
|
241 |
+
final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own', 'LevX']]
|
242 |
+
final_Proj = final_Proj.set_index('Player')
|
243 |
+
final_Proj = final_Proj.sort_values(by='Top_finish', ascending=False)
|
244 |
+
elif check_seq == 'Top 10 Owned':
|
245 |
+
final_proj_list = []
|
246 |
+
for players in player_check:
|
247 |
+
player_var = working_roo.loc[working_roo['Player'] == players]
|
248 |
+
player_var = player_var.reset_index()
|
249 |
+
|
250 |
+
working_roo_temp = working_roo[working_roo['Position'].isin(pos_var_list)]
|
251 |
+
working_roo_temp = working_roo_temp[working_roo_temp['Team'].isin(team_var1)]
|
252 |
+
working_roo_temp = working_roo_temp.loc[(working_roo_temp['Salary'] >= player_var['Salary'][0] - Salary_var) & (working_roo_temp['Salary'] <= player_var['Salary'][0] + Salary_var)]
|
253 |
+
working_roo_temp = working_roo_temp.loc[(working_roo_temp['Median'] >= player_var['Median'][0] - Median_var) & (working_roo_temp['Median'] <= player_var['Median'][0] + Median_var)]
|
254 |
+
|
255 |
+
flex_file = working_roo_temp[['Player', 'Position', 'Salary', 'Median']]
|
256 |
+
flex_file['Floor_raw'] = flex_file['Median'] * .25
|
257 |
+
flex_file['Ceiling_raw'] = flex_file['Median'] * 1.75
|
258 |
+
flex_file['Floor'] = np.where(flex_file['Position'] == 'QB', (flex_file['Median'] * .33), flex_file['Floor_raw'])
|
259 |
+
flex_file['Floor'] = np.where(flex_file['Position'] == 'WR', (flex_file['Median'] * .15), flex_file['Floor_raw'])
|
260 |
+
flex_file['Ceiling'] = np.where(flex_file['Position'] == 'QB', (flex_file['Median'] * 1.75), flex_file['Ceiling_raw'])
|
261 |
+
flex_file['Ceiling'] = np.where(flex_file['Position'] == 'WR', (flex_file['Median'] * 1.85), flex_file['Ceiling_raw'])
|
262 |
+
flex_file['STD'] = flex_file['Median'] / 4
|
263 |
+
flex_file = flex_file[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD']]
|
264 |
+
hold_file = flex_file.copy()
|
265 |
+
overall_file = flex_file.copy()
|
266 |
+
salary_file = flex_file.copy()
|
267 |
+
|
268 |
+
overall_players = overall_file[['Player']]
|
269 |
+
|
270 |
+
for x in range(0,total_sims):
|
271 |
+
salary_file[x] = salary_file['Salary']
|
272 |
+
|
273 |
+
salary_file=salary_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
274 |
+
salary_file.astype('int').dtypes
|
275 |
+
|
276 |
+
salary_file = salary_file.div(1000)
|
277 |
+
|
278 |
+
for x in range(0,total_sims):
|
279 |
+
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
|
280 |
+
|
281 |
+
overall_file=overall_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
282 |
+
overall_file.astype('int').dtypes
|
283 |
+
|
284 |
+
players_only = hold_file[['Player']]
|
285 |
+
raw_lineups_file = players_only
|
286 |
+
|
287 |
+
for x in range(0,total_sims):
|
288 |
+
maps_dict = {'proj_map':dict(zip(hold_file.Player,hold_file[x]))}
|
289 |
+
raw_lineups_file[x] = sum([raw_lineups_file['Player'].map(maps_dict['proj_map'])])
|
290 |
+
players_only[x] = raw_lineups_file[x].rank(ascending=False)
|
291 |
+
|
292 |
+
players_only=players_only.drop(['Player'], axis=1)
|
293 |
+
players_only.astype('int').dtypes
|
294 |
+
|
295 |
+
salary_2x_check = (overall_file - (salary_file*2))
|
296 |
+
salary_3x_check = (overall_file - (salary_file*3))
|
297 |
+
salary_4x_check = (overall_file - (salary_file*4))
|
298 |
+
|
299 |
+
players_only['Average_Rank'] = players_only.mean(axis=1)
|
300 |
+
players_only['Top_finish'] = players_only[players_only == 1].count(axis=1)/total_sims
|
301 |
+
players_only['Top_5_finish'] = players_only[players_only <= 5].count(axis=1)/total_sims
|
302 |
+
players_only['Top_10_finish'] = players_only[players_only <= 10].count(axis=1)/total_sims
|
303 |
+
players_only['20+%'] = overall_file[overall_file >= 20].count(axis=1)/float(total_sims)
|
304 |
+
players_only['2x%'] = salary_2x_check[salary_2x_check >= 1].count(axis=1)/float(total_sims)
|
305 |
+
players_only['3x%'] = salary_3x_check[salary_3x_check >= 1].count(axis=1)/float(total_sims)
|
306 |
+
players_only['4x%'] = salary_4x_check[salary_4x_check >= 1].count(axis=1)/float(total_sims)
|
307 |
+
|
308 |
+
players_only['Player'] = hold_file[['Player']]
|
309 |
+
|
310 |
+
final_outcomes = players_only[['Player', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%']]
|
311 |
+
|
312 |
+
final_Proj = pd.merge(hold_file, final_outcomes, on="Player")
|
313 |
+
final_Proj = final_Proj[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%']]
|
314 |
+
final_Proj['Own'] = final_Proj['Player'].map(own_dict)
|
315 |
+
final_Proj['Team'] = final_Proj['Player'].map(team_dict)
|
316 |
+
final_Proj['Opp'] = final_Proj['Player'].map(opp_dict)
|
317 |
+
final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own']]
|
318 |
+
final_Proj['Projection Rank'] = final_Proj.Median.rank(pct = True)
|
319 |
+
final_Proj['Own Rank'] = final_Proj.Own.rank(pct = True)
|
320 |
+
final_Proj['LevX'] = 0
|
321 |
+
final_Proj['LevX'] = np.where(final_Proj['Position'] == 'QB', final_Proj[['Projection Rank', 'Top_5_finish']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX'])
|
322 |
+
final_Proj['LevX'] = np.where(final_Proj['Position'] == 'TE', final_Proj[['Projection Rank', '2x%']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX'])
|
323 |
+
final_Proj['LevX'] = np.where(final_Proj['Position'] == 'RB', final_Proj[['Projection Rank', 'Top_5_finish']].mean(axis=1) + final_Proj['20+%'] - final_Proj['Own Rank'], final_Proj['LevX'])
|
324 |
+
final_Proj['LevX'] = np.where(final_Proj['Position'] == 'WR', final_Proj[['Projection Rank', 'Top_10_finish']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX'])
|
325 |
+
final_Proj['CPT_Own'] = final_Proj['Own'] / 4
|
326 |
+
|
327 |
+
final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own', 'LevX']]
|
328 |
+
|
329 |
+
final_Proj = final_Proj.set_index('Player')
|
330 |
+
final_Proj = final_Proj.sort_values(by='Top_finish', ascending=False)
|
331 |
+
final_proj_list.append(final_Proj)
|
332 |
|
333 |
+
# Concatenate all the final_Proj dataframes
|
334 |
+
final_Proj_combined = pd.concat(final_proj_list)
|
335 |
+
final_Proj_combined = final_Proj_combined.sort_values(by='Top_finish', ascending=False)
|
336 |
+
final_Proj = final_Proj_combined # Assign the combined dataframe back to final_Proj
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
337 |
|
338 |
with hold_container:
|
339 |
hold_container = st.empty()
|
|
|
346 |
file_name='NFL_pivot_export.csv',
|
347 |
mime='text/csv',
|
348 |
)
|
349 |
+
|
350 |
with tab2:
|
351 |
st.info("The Projections file can have any columns in any order, but must contain columns explicitly named: 'Player', 'Salary', 'Position', 'Team', 'Opp', 'Median', and 'Own'.")
|
352 |
col1, col2 = st.columns([1, 5])
|