James McCool commited on
Commit
95a7eab
·
1 Parent(s): 532dd1b

removed dtype prints

Browse files
Files changed (1) hide show
  1. app.py +0 -6
app.py CHANGED
@@ -190,7 +190,6 @@ with tab1:
190
  salary_file[x] = salary_file['Salary']
191
 
192
  salary_file=salary_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
193
- salary_file.astype('int').dtypes
194
 
195
  salary_file = salary_file.div(1000)
196
 
@@ -198,7 +197,6 @@ with tab1:
198
  overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
199
 
200
  overall_file=overall_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
201
- overall_file.astype('int').dtypes
202
 
203
  players_only = hold_file[['Player']]
204
  raw_lineups_file = players_only
@@ -209,7 +207,6 @@ with tab1:
209
  players_only[x] = raw_lineups_file[x].rank(ascending=False)
210
 
211
  players_only=players_only.drop(['Player'], axis=1)
212
- players_only.astype('int').dtypes
213
 
214
  salary_2x_check = (overall_file - (salary_file*2))
215
  salary_3x_check = (overall_file - (salary_file*3))
@@ -278,7 +275,6 @@ with tab1:
278
  salary_file[x] = salary_file['Salary']
279
 
280
  salary_file=salary_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
281
- salary_file.astype('int').dtypes
282
 
283
  salary_file = salary_file.div(1000)
284
 
@@ -286,7 +282,6 @@ with tab1:
286
  overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
287
 
288
  overall_file=overall_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
289
- overall_file.astype('int').dtypes
290
 
291
  players_only = hold_file[['Player']]
292
  raw_lineups_file = players_only
@@ -297,7 +292,6 @@ with tab1:
297
  players_only[x] = raw_lineups_file[x].rank(ascending=False)
298
 
299
  players_only=players_only.drop(['Player'], axis=1)
300
- players_only.astype('int').dtypes
301
 
302
  salary_2x_check = (overall_file - (salary_file*2))
303
  salary_3x_check = (overall_file - (salary_file*3))
 
190
  salary_file[x] = salary_file['Salary']
191
 
192
  salary_file=salary_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
 
193
 
194
  salary_file = salary_file.div(1000)
195
 
 
197
  overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
198
 
199
  overall_file=overall_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
 
200
 
201
  players_only = hold_file[['Player']]
202
  raw_lineups_file = players_only
 
207
  players_only[x] = raw_lineups_file[x].rank(ascending=False)
208
 
209
  players_only=players_only.drop(['Player'], axis=1)
 
210
 
211
  salary_2x_check = (overall_file - (salary_file*2))
212
  salary_3x_check = (overall_file - (salary_file*3))
 
275
  salary_file[x] = salary_file['Salary']
276
 
277
  salary_file=salary_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
 
278
 
279
  salary_file = salary_file.div(1000)
280
 
 
282
  overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
283
 
284
  overall_file=overall_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
 
285
 
286
  players_only = hold_file[['Player']]
287
  raw_lineups_file = players_only
 
292
  players_only[x] = raw_lineups_file[x].rank(ascending=False)
293
 
294
  players_only=players_only.drop(['Player'], axis=1)
 
295
 
296
  salary_2x_check = (overall_file - (salary_file*2))
297
  salary_3x_check = (overall_file - (salary_file*3))