Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,339 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
st.set_page_config(layout="wide")
|
3 |
+
|
4 |
+
for name in dir():
|
5 |
+
if not name.startswith('_'):
|
6 |
+
del globals()[name]
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
import pandas as pd
|
10 |
+
import streamlit as st
|
11 |
+
import gspread
|
12 |
+
import random
|
13 |
+
import gc
|
14 |
+
|
15 |
+
tab1, tab2 = st.tabs(['Uploads', 'Manage Portfolio'])
|
16 |
+
|
17 |
+
with tab1:
|
18 |
+
with st.container():
|
19 |
+
col1, col2 = st.columns([3, 3])
|
20 |
+
|
21 |
+
with col1:
|
22 |
+
st.info("The Projections file can have any columns in any order, but must contain columns explicitly named: 'Player', 'Salary', 'Position', 'Team', 'Opp', 'Median', and 'Own'. Upload your projections first to avoid an error message.")
|
23 |
+
proj_file = st.file_uploader("Upload Projections File", key = 'proj_uploader')
|
24 |
+
|
25 |
+
if proj_file is not None:
|
26 |
+
try:
|
27 |
+
proj_dataframe = pd.read_csv(proj_file)
|
28 |
+
proj_dataframe = proj_dataframe.dropna(subset='Median')
|
29 |
+
proj_dataframe['Player'] = proj_dataframe['Player'].str.strip()
|
30 |
+
try:
|
31 |
+
proj_dataframe['Own'] = proj_dataframe['Own'].str.strip('%').astype(float)
|
32 |
+
except:
|
33 |
+
pass
|
34 |
+
|
35 |
+
except:
|
36 |
+
proj_dataframe = pd.read_excel(proj_file)
|
37 |
+
proj_dataframe = proj_dataframe.dropna(subset='Median')
|
38 |
+
proj_dataframe['Player'] = proj_dataframe['Player'].str.strip()
|
39 |
+
try:
|
40 |
+
proj_dataframe['Own'] = proj_dataframe['Own'].str.strip('%').astype(float)
|
41 |
+
except:
|
42 |
+
pass
|
43 |
+
st.table(proj_dataframe.head(10))
|
44 |
+
player_salary_dict = dict(zip(proj_dataframe.Player, proj_dataframe.Salary))
|
45 |
+
player_proj_dict = dict(zip(proj_dataframe.Player, proj_dataframe.Median))
|
46 |
+
player_own_dict = dict(zip(proj_dataframe.Player, proj_dataframe.Own))
|
47 |
+
|
48 |
+
with col2:
|
49 |
+
st.info("The Portfolio file must contain only columns in order and explicitly named: 'PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', and 'UTIL'. Upload your projections first to avoid an error message.")
|
50 |
+
portfolio_file = st.file_uploader("Upload Portfolio File", key = 'portfolio_uploader')
|
51 |
+
|
52 |
+
if portfolio_file is not None:
|
53 |
+
try:
|
54 |
+
portfolio_dataframe = pd.read_csv(portfolio_file)
|
55 |
+
|
56 |
+
except:
|
57 |
+
portfolio_dataframe = pd.read_excel(portfolio_file)
|
58 |
+
|
59 |
+
try:
|
60 |
+
try:
|
61 |
+
portfolio_dataframe.columns=['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'UTIL']
|
62 |
+
split_portfolio = portfolio_dataframe
|
63 |
+
split_portfolio[['PG', 'PG_ID']] = split_portfolio.PG.str.split("(", n=1, expand = True)
|
64 |
+
split_portfolio[['SG', 'SG_ID']] = split_portfolio.SG.str.split("(", n=1, expand = True)
|
65 |
+
split_portfolio[['SF', 'SF_ID']] = split_portfolio.SF.str.split("(", n=1, expand = True)
|
66 |
+
split_portfolio[['PF', 'PF_ID']] = split_portfolio.PF.str.split("(", n=1, expand = True)
|
67 |
+
split_portfolio[['C', 'C_ID']] = split_portfolio.C.str.split("(", n=1, expand = True)
|
68 |
+
split_portfolio[['G', 'G_ID']] = split_portfolio.G.str.split("(", n=1, expand = True)
|
69 |
+
split_portfolio[['F', 'F_ID']] = split_portfolio.F.str.split("(", n=1, expand = True)
|
70 |
+
split_portfolio[['UTIL', 'UTIL_ID']] = split_portfolio.UTIL.str.split("(", n=1, expand = True)
|
71 |
+
|
72 |
+
split_portfolio['PG'] = split_portfolio['PG'].str.strip()
|
73 |
+
split_portfolio['SG'] = split_portfolio['SG'].str.strip()
|
74 |
+
split_portfolio['SF'] = split_portfolio['SF'].str.strip()
|
75 |
+
split_portfolio['PF'] = split_portfolio['PF'].str.strip()
|
76 |
+
split_portfolio['C'] = split_portfolio['C'].str.strip()
|
77 |
+
split_portfolio['G'] = split_portfolio['G'].str.strip()
|
78 |
+
split_portfolio['F'] = split_portfolio['F'].str.strip()
|
79 |
+
split_portfolio['UTIL'] = split_portfolio['UTIL'].str.strip()
|
80 |
+
|
81 |
+
split_portfolio['Salary'] = sum([split_portfolio['PG'].map(player_salary_dict),
|
82 |
+
split_portfolio['SG'].map(player_salary_dict),
|
83 |
+
split_portfolio['SF'].map(player_salary_dict),
|
84 |
+
split_portfolio['PF'].map(player_salary_dict),
|
85 |
+
split_portfolio['C'].map(player_salary_dict),
|
86 |
+
split_portfolio['G'].map(player_salary_dict),
|
87 |
+
split_portfolio['F'].map(player_salary_dict),
|
88 |
+
split_portfolio['UTIL'].map(player_salary_dict)])
|
89 |
+
|
90 |
+
split_portfolio['Projection'] = sum([split_portfolio['PG'].map(player_proj_dict),
|
91 |
+
split_portfolio['SG'].map(player_proj_dict),
|
92 |
+
split_portfolio['SF'].map(player_proj_dict),
|
93 |
+
split_portfolio['PF'].map(player_proj_dict),
|
94 |
+
split_portfolio['C'].map(player_proj_dict),
|
95 |
+
split_portfolio['G'].map(player_proj_dict),
|
96 |
+
split_portfolio['F'].map(player_proj_dict),
|
97 |
+
split_portfolio['UTIL'].map(player_proj_dict)])
|
98 |
+
|
99 |
+
split_portfolio['Ownership'] = sum([split_portfolio['PG'].map(player_own_dict),
|
100 |
+
split_portfolio['SG'].map(player_own_dict),
|
101 |
+
split_portfolio['SF'].map(player_own_dict),
|
102 |
+
split_portfolio['PF'].map(player_own_dict),
|
103 |
+
split_portfolio['C'].map(player_own_dict),
|
104 |
+
split_portfolio['G'].map(player_own_dict),
|
105 |
+
split_portfolio['F'].map(player_own_dict),
|
106 |
+
split_portfolio['UTIL'].map(player_own_dict)])
|
107 |
+
|
108 |
+
st.table(split_portfolio.head(10))
|
109 |
+
|
110 |
+
|
111 |
+
except:
|
112 |
+
portfolio_dataframe.columns=['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'UTIL']
|
113 |
+
|
114 |
+
split_portfolio = portfolio_dataframe
|
115 |
+
split_portfolio[['PG_ID', 'PG']] = split_portfolio.PG.str.split(":", n=1, expand = True)
|
116 |
+
split_portfolio[['SG_ID', 'SG']] = split_portfolio.SG.str.split(":", n=1, expand = True)
|
117 |
+
split_portfolio[['SF_ID', 'SF']] = split_portfolio.SF.str.split(":", n=1, expand = True)
|
118 |
+
split_portfolio[['PF_ID', 'PF']] = split_portfolio.PF.str.split(":", n=1, expand = True)
|
119 |
+
split_portfolio[['C_ID', 'C']] = split_portfolio.C.str.split(":", n=1, expand = True)
|
120 |
+
split_portfolio[['G_ID', 'G']] = split_portfolio.G.str.split(":", n=1, expand = True)
|
121 |
+
split_portfolio[['F_ID', 'F']] = split_portfolio.F.str.split(":", n=1, expand = True)
|
122 |
+
split_portfolio[['UTIL_ID', 'UTIL']] = split_portfolio.UTIL.str.split(":", n=1, expand = True)
|
123 |
+
|
124 |
+
split_portfolio['PG'] = split_portfolio['PG'].str.strip()
|
125 |
+
split_portfolio['SG'] = split_portfolio['SG'].str.strip()
|
126 |
+
split_portfolio['SF'] = split_portfolio['SF'].str.strip()
|
127 |
+
split_portfolio['PF'] = split_portfolio['PF'].str.strip()
|
128 |
+
split_portfolio['C'] = split_portfolio['C'].str.strip()
|
129 |
+
split_portfolio['G'] = split_portfolio['G'].str.strip()
|
130 |
+
split_portfolio['F'] = split_portfolio['F'].str.strip()
|
131 |
+
split_portfolio['UTIL'] = split_portfolio['UTIL'].str.strip()
|
132 |
+
|
133 |
+
split_portfolio['Salary'] = sum([split_portfolio['PG'].map(player_salary_dict),
|
134 |
+
split_portfolio['SG'].map(player_salary_dict),
|
135 |
+
split_portfolio['SF'].map(player_salary_dict),
|
136 |
+
split_portfolio['PF'].map(player_salary_dict),
|
137 |
+
split_portfolio['C'].map(player_salary_dict),
|
138 |
+
split_portfolio['G'].map(player_salary_dict),
|
139 |
+
split_portfolio['F'].map(player_salary_dict),
|
140 |
+
split_portfolio['UTIL'].map(player_salary_dict)])
|
141 |
+
|
142 |
+
split_portfolio['Projection'] = sum([split_portfolio['PG'].map(player_proj_dict),
|
143 |
+
split_portfolio['SG'].map(player_proj_dict),
|
144 |
+
split_portfolio['SF'].map(player_proj_dict),
|
145 |
+
split_portfolio['PF'].map(player_proj_dict),
|
146 |
+
split_portfolio['C'].map(player_proj_dict),
|
147 |
+
split_portfolio['G'].map(player_proj_dict),
|
148 |
+
split_portfolio['F'].map(player_proj_dict),
|
149 |
+
split_portfolio['UTIL'].map(player_proj_dict)])
|
150 |
+
|
151 |
+
|
152 |
+
split_portfolio['Ownership'] = sum([split_portfolio['PG'].map(player_own_dict),
|
153 |
+
split_portfolio['SG'].map(player_own_dict),
|
154 |
+
split_portfolio['SF'].map(player_own_dict),
|
155 |
+
split_portfolio['PF'].map(player_own_dict),
|
156 |
+
split_portfolio['C'].map(player_own_dict),
|
157 |
+
split_portfolio['G'].map(player_own_dict),
|
158 |
+
split_portfolio['F'].map(player_own_dict),
|
159 |
+
split_portfolio['UTIL'].map(player_own_dict)])
|
160 |
+
|
161 |
+
st.table(split_portfolio.head(10))
|
162 |
+
|
163 |
+
except:
|
164 |
+
split_portfolio = portfolio_dataframe
|
165 |
+
|
166 |
+
split_portfolio['Salary'] = sum([split_portfolio['PG'].map(player_salary_dict),
|
167 |
+
split_portfolio['SG'].map(player_salary_dict),
|
168 |
+
split_portfolio['SF'].map(player_salary_dict),
|
169 |
+
split_portfolio['PF'].map(player_salary_dict),
|
170 |
+
split_portfolio['C'].map(player_salary_dict),
|
171 |
+
split_portfolio['G'].map(player_salary_dict),
|
172 |
+
split_portfolio['F'].map(player_salary_dict),
|
173 |
+
split_portfolio['UTIL'].map(player_salary_dict)])
|
174 |
+
|
175 |
+
split_portfolio['Projection'] = sum([split_portfolio['PG'].map(player_proj_dict),
|
176 |
+
split_portfolio['SG'].map(player_proj_dict),
|
177 |
+
split_portfolio['SF'].map(player_proj_dict),
|
178 |
+
split_portfolio['PF'].map(player_proj_dict),
|
179 |
+
split_portfolio['C'].map(player_proj_dict),
|
180 |
+
split_portfolio['G'].map(player_proj_dict),
|
181 |
+
split_portfolio['F'].map(player_proj_dict),
|
182 |
+
split_portfolio['UTIL'].map(player_proj_dict)])
|
183 |
+
|
184 |
+
|
185 |
+
split_portfolio['Ownership'] = sum([split_portfolio['PG'].map(player_own_dict),
|
186 |
+
split_portfolio['SG'].map(player_own_dict),
|
187 |
+
split_portfolio['SF'].map(player_own_dict),
|
188 |
+
split_portfolio['PF'].map(player_own_dict),
|
189 |
+
split_portfolio['C'].map(player_own_dict),
|
190 |
+
split_portfolio['G'].map(player_own_dict),
|
191 |
+
split_portfolio['F'].map(player_own_dict),
|
192 |
+
split_portfolio['UTIL'].map(player_own_dict)])
|
193 |
+
|
194 |
+
display_portfolio = split_portfolio[['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'UTIL', 'Salary', 'Projection', 'Ownership']]
|
195 |
+
st.session_state.display_portfolio = display_portfolio
|
196 |
+
hold_portfolio = display_portfolio.sort_values(by='Projection', ascending=False)
|
197 |
+
|
198 |
+
st.session_state.player_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.display_portfolio.iloc[:,0:8].values, return_counts=True)),
|
199 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
200 |
+
st.session_state.player_freq['Freq'] = st.session_state.player_freq['Freq'] / len(st.session_state.display_portfolio)
|
201 |
+
st.session_state.player_freq = st.session_state.player_freq.set_index('Player')
|
202 |
+
|
203 |
+
gc.collect()
|
204 |
+
|
205 |
+
with tab2:
|
206 |
+
with st.container():
|
207 |
+
hold_container = st.empty()
|
208 |
+
col1, col2, col3 = st.columns([3, 3, 3])
|
209 |
+
with col1:
|
210 |
+
if st.button("Load/Reset Data", key='reset1'):
|
211 |
+
for key in st.session_state.keys():
|
212 |
+
del st.session_state[key]
|
213 |
+
display_portfolio = hold_portfolio
|
214 |
+
st.session_state.display_portfolio = display_portfolio
|
215 |
+
st.session_state.player_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.display_portfolio.iloc[:,0:8].values, return_counts=True)),
|
216 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
217 |
+
st.session_state.player_freq['Freq'] = st.session_state.player_freq['Freq'] / len(st.session_state.display_portfolio)
|
218 |
+
st.session_state.player_freq = st.session_state.player_freq.set_index('Player')
|
219 |
+
with col2:
|
220 |
+
if st.button("Trim Lineups", key='trim1'):
|
221 |
+
max_proj = 10000
|
222 |
+
max_own = display_portfolio['Ownership'].iloc[0]
|
223 |
+
x = 0
|
224 |
+
for index, row in display_portfolio.iterrows():
|
225 |
+
if row['Ownership'] > max_own:
|
226 |
+
display_portfolio.drop(index, inplace=True)
|
227 |
+
elif row['Ownership'] <= max_own:
|
228 |
+
max_own = row['Ownership']
|
229 |
+
st.session_state.display_portfolio = display_portfolio
|
230 |
+
st.session_state.player_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.display_portfolio.iloc[:,0:8].values, return_counts=True)),
|
231 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
232 |
+
st.session_state.player_freq['Freq'] = st.session_state.player_freq['Freq'] / len(st.session_state.display_portfolio)
|
233 |
+
st.session_state.player_freq = st.session_state.player_freq.set_index('Player')
|
234 |
+
with col3:
|
235 |
+
player_check = st.selectbox('Select player to create comps', options = proj_dataframe['Player'].unique(), key='dk_player')
|
236 |
+
if st.button('Simulate appropriate pivots'):
|
237 |
+
with hold_container:
|
238 |
+
|
239 |
+
working_roo = proj_dataframe
|
240 |
+
working_roo.rename(columns={"Minutes Proj": "Minutes_Proj"}, inplace = True)
|
241 |
+
own_dict = dict(zip(working_roo.Player, working_roo.Own))
|
242 |
+
min_dict = dict(zip(working_roo.Player, working_roo.Minutes_Proj))
|
243 |
+
team_dict = dict(zip(working_roo.Player, working_roo.Team))
|
244 |
+
total_sims = 1000
|
245 |
+
|
246 |
+
player_var = working_roo.loc[working_roo['Player'] == player_check]
|
247 |
+
player_var = player_var.reset_index()
|
248 |
+
|
249 |
+
working_roo = working_roo.loc[(working_roo['Salary'] >= player_var['Salary'][0] - 300) & (working_roo['Salary'] <= player_var['Salary'][0] + 300)]
|
250 |
+
working_roo = working_roo.loc[(working_roo['Median'] >= player_var['Median'][0] - 3) & (working_roo['Median'] <= player_var['Median'][0] + 3)]
|
251 |
+
|
252 |
+
flex_file = working_roo[['Player', 'Position', 'Salary', 'Median', 'Minutes_Proj']]
|
253 |
+
flex_file['Floor'] = (flex_file['Median'] * .25) + (flex_file['Minutes_Proj'] * .25)
|
254 |
+
flex_file['Ceiling'] = flex_file['Median'] + 10 + (flex_file['Minutes_Proj'] * .25)
|
255 |
+
flex_file['STD'] = (flex_file['Median']/4)
|
256 |
+
flex_file = flex_file[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD']]
|
257 |
+
hold_file = flex_file
|
258 |
+
overall_file = flex_file
|
259 |
+
salary_file = flex_file
|
260 |
+
|
261 |
+
overall_players = overall_file[['Player']]
|
262 |
+
|
263 |
+
for x in range(0,total_sims):
|
264 |
+
salary_file[x] = salary_file['Salary']
|
265 |
+
|
266 |
+
salary_file=salary_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
267 |
+
salary_file.astype('int').dtypes
|
268 |
+
|
269 |
+
salary_file = salary_file.div(1000)
|
270 |
+
|
271 |
+
for x in range(0,total_sims):
|
272 |
+
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
|
273 |
+
|
274 |
+
overall_file=overall_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
275 |
+
overall_file.astype('int').dtypes
|
276 |
+
|
277 |
+
players_only = hold_file[['Player']]
|
278 |
+
raw_lineups_file = players_only
|
279 |
+
|
280 |
+
for x in range(0,total_sims):
|
281 |
+
maps_dict = {'proj_map':dict(zip(hold_file.Player,hold_file[x]))}
|
282 |
+
raw_lineups_file[x] = sum([raw_lineups_file['Player'].map(maps_dict['proj_map'])])
|
283 |
+
players_only[x] = raw_lineups_file[x].rank(ascending=False)
|
284 |
+
|
285 |
+
players_only=players_only.drop(['Player'], axis=1)
|
286 |
+
players_only.astype('int').dtypes
|
287 |
+
|
288 |
+
salary_2x_check = (overall_file - (salary_file*4))
|
289 |
+
salary_3x_check = (overall_file - (salary_file*5))
|
290 |
+
salary_4x_check = (overall_file - (salary_file*6))
|
291 |
+
gpp_check = (overall_file - ((salary_file*5)+10))
|
292 |
+
|
293 |
+
players_only['Average_Rank'] = players_only.mean(axis=1)
|
294 |
+
players_only['Top_finish'] = players_only[players_only == 1].count(axis=1)/total_sims
|
295 |
+
players_only['Top_5_finish'] = players_only[players_only <= 5].count(axis=1)/total_sims
|
296 |
+
players_only['Top_10_finish'] = players_only[players_only <= 10].count(axis=1)/total_sims
|
297 |
+
players_only['20+%'] = overall_file[overall_file >= 20].count(axis=1)/float(total_sims)
|
298 |
+
players_only['3x%'] = salary_2x_check[salary_2x_check >= 1].count(axis=1)/float(total_sims)
|
299 |
+
players_only['4x%'] = salary_3x_check[salary_3x_check >= 1].count(axis=1)/float(total_sims)
|
300 |
+
players_only['5x%'] = salary_4x_check[salary_4x_check >= 1].count(axis=1)/float(total_sims)
|
301 |
+
players_only['GPP%'] = salary_4x_check[gpp_check >= 1].count(axis=1)/float(total_sims)
|
302 |
+
|
303 |
+
players_only['Player'] = hold_file[['Player']]
|
304 |
+
|
305 |
+
final_outcomes = players_only[['Player', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '3x%', '4x%', '5x%', 'GPP%']]
|
306 |
+
|
307 |
+
final_Proj = pd.merge(hold_file, final_outcomes, on="Player")
|
308 |
+
final_Proj = final_Proj[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '3x%', '4x%', '5x%', 'GPP%']]
|
309 |
+
|
310 |
+
final_Proj['Own'] = final_Proj['Player'].map(own_dict)
|
311 |
+
final_Proj['Minutes Proj'] = final_Proj['Player'].map(min_dict)
|
312 |
+
final_Proj['Team'] = final_Proj['Player'].map(team_dict)
|
313 |
+
final_Proj['Own'] = final_Proj['Own'].astype('float')
|
314 |
+
final_Proj['Projection Rank'] = final_Proj.Top_finish.rank(pct = True)
|
315 |
+
final_Proj['Own Rank'] = final_Proj.Own.rank(pct = True)
|
316 |
+
final_Proj['LevX'] = (final_Proj['Projection Rank'] - final_Proj['Own Rank']) * 100
|
317 |
+
final_Proj['ValX'] = ((final_Proj[['4x%', '5x%']].mean(axis=1))*100) + final_Proj['LevX']
|
318 |
+
final_Proj['ValX'] = np.where(final_Proj['ValX'] > 100, 100, final_Proj['ValX'])
|
319 |
+
final_Proj['ValX'] = np.where(final_Proj['ValX'] < 0, 0, final_Proj['ValX'])
|
320 |
+
|
321 |
+
final_Proj = final_Proj[['Player', 'Minutes Proj', 'Position', 'Team', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '3x%', '4x%', '5x%', 'GPP%', 'Own', 'LevX', 'ValX']]
|
322 |
+
final_Proj = final_Proj.sort_values(by='Median', ascending=False)
|
323 |
+
final_Proj['Player_swap'] = player_check
|
324 |
+
st.session_state.final_Proj = final_Proj
|
325 |
+
|
326 |
+
hold_container = st.empty()
|
327 |
+
with st.container():
|
328 |
+
col1, col2 = st.columns([7, 2])
|
329 |
+
with col1:
|
330 |
+
if 'display_portfolio' in st.session_state:
|
331 |
+
st.dataframe(st.session_state.display_portfolio.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
|
332 |
+
|
333 |
+
# with display_container:
|
334 |
+
# display_container = st.empty()
|
335 |
+
# if 'final_Proj' in st.session_state:
|
336 |
+
# st.dataframe(st.session_state.final_Proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
|
337 |
+
with col2:
|
338 |
+
if 'player_freq' in st.session_state:
|
339 |
+
st.dataframe(st.session_state.player_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
|