Spaces:
Sleeping
Sleeping
James McCool
commited on
Commit
·
69f19a9
1
Parent(s):
a3bc4f1
Lots of work to set up transfer from gspread to mongo, added some sidebar action to stacks page for testing
Browse files
app.py
CHANGED
@@ -10,30 +10,51 @@ import numpy as np
|
|
10 |
import pandas as pd
|
11 |
import streamlit as st
|
12 |
import gspread
|
|
|
13 |
from itertools import combinations
|
14 |
|
15 |
@st.cache_resource
|
16 |
def init_conn():
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
game_format = {'Win Percentage': '{:.2%}','First Inning Lead Percentage': '{:.2%}',
|
39 |
'Fifth Inning Lead Percentage': '{:.2%}', '8+ runs': '{:.2%}', 'DK LevX': '{:.2%}', 'FD LevX': '{:.2%}'}
|
@@ -45,52 +66,64 @@ all_dk_player_projections = 'https://docs.google.com/spreadsheets/d/1I_1Ve3F4tft
|
|
45 |
|
46 |
@st.cache_resource(ttl=600)
|
47 |
def player_stat_table():
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
|
|
|
|
|
|
|
|
60 |
dk_roo_raw = load_display.dropna(subset=['Median'])
|
61 |
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
|
|
|
|
|
|
66 |
fd_roo_raw = load_display.dropna(subset=['Median'])
|
67 |
|
68 |
-
|
69 |
-
|
70 |
-
dk_stacks_raw = load_display
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
@st.cache_data
|
79 |
def convert_df_to_csv(df):
|
80 |
return df.to_csv().encode('utf-8')
|
81 |
|
82 |
-
player_stats, dk_stacks_raw, fd_stacks_raw, dk_roo_raw, fd_roo_raw
|
83 |
t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST"
|
84 |
|
85 |
tab1, tab2, tab3, tab4, tab5, tab6 = st.tabs(["Team Stacks Range of Outcomes", "Overall Range of Outcomes", "QB Range of Outcomes", "RB Range of Outcomes", "WR Range of Outcomes", "TE Range of Outcomes"])
|
86 |
|
87 |
with tab1:
|
88 |
-
|
89 |
-
with col1:
|
90 |
st.info(t_stamp)
|
91 |
if st.button("Load/Reset Data", key='reset1'):
|
92 |
st.cache_data.clear()
|
93 |
-
player_stats, dk_stacks_raw, fd_stacks_raw, dk_roo_raw, fd_roo_raw
|
94 |
t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST"
|
95 |
slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate', 'Late Slate', 'Thurs-Mon Slate'), key='slate_var1')
|
96 |
site_var1 = st.radio("What table would you like to display?", ('Draftkings', 'Fanduel'), key='site_var1')
|
@@ -125,185 +158,185 @@ with tab1:
|
|
125 |
team_var1 = raw_baselines.Team.values.tolist()
|
126 |
|
127 |
|
128 |
-
with col2:
|
129 |
-
if custom_var1 == 'No':
|
130 |
-
final_stacks = raw_baselines[raw_baselines['Team'].isin(team_var1)]
|
131 |
-
if view_var1 == 'Simple':
|
132 |
-
final_stacks = final_stacks[['Team', 'QB', 'WR1_TE', 'WR2_TE', 'Salary', 'Median', '60+%', '4x%']]
|
133 |
-
elif view_var1 == 'Advanced':
|
134 |
-
final_stacks = final_stacks[['Team', 'QB', 'WR1_TE', 'WR2_TE', 'Total', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish',
|
135 |
-
'Top_10_finish', '60+%', '2x%', '3x%', '4x%', 'Own', 'LevX']]
|
136 |
-
st.dataframe(final_stacks.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), use_container_width = True)
|
137 |
-
st.download_button(
|
138 |
-
label="Export Tables",
|
139 |
-
data=convert_df_to_csv(final_stacks),
|
140 |
-
file_name='NFL_stacks_export.csv',
|
141 |
-
mime='text/csv',
|
142 |
-
)
|
143 |
-
elif custom_var1 == 'Yes':
|
144 |
-
hold_container = st.empty()
|
145 |
-
if st.button('Create Range of Outcomes for Slate'):
|
146 |
-
with hold_container:
|
147 |
-
if site_var1 == 'Draftkings':
|
148 |
-
working_roo = player_stats
|
149 |
-
working_roo.rename(columns={"name": "Player", "rush_yards": "Rush Yards", "rec": "Receptions", "PPR": "Fantasy"}, inplace = True)
|
150 |
-
working_roo.replace('', 0, inplace=True)
|
151 |
-
if site_var1 == 'Fanduel':
|
152 |
-
working_roo = player_stats
|
153 |
-
working_roo.rename(columns={"name": "Player", "rush_yards": "Rush Yards", "rec": "Receptions", "Half_PPR": "Fantasy"}, inplace = True)
|
154 |
-
working_roo.replace('', 0, inplace=True)
|
155 |
-
working_roo = working_roo[working_roo['Team'].isin(team_var1)]
|
156 |
-
|
157 |
-
total_sims = 1000
|
158 |
-
|
159 |
-
salary_dict = dict(zip(working_roo.name, working_roo.Salary))
|
160 |
-
own_dict = dict(zip(working_roo.name, working_roo.Own))
|
161 |
-
fantasy_dict = dict(zip(working_roo.name, working_roo.Fantasy))
|
162 |
-
|
163 |
-
QB_group = working_roo.loc[working_roo['Position'] == 'QB']
|
164 |
-
stacks_df = pd.DataFrame(columns=['Team','QB', 'WR1', 'WR2_TE'])
|
165 |
-
|
166 |
-
for stack in range(0,len(QB_group)):
|
167 |
-
team_var = QB_group.iat[stack,1]
|
168 |
-
WR_group_1 = working_roo.loc[working_roo['Position'] == 'WR']
|
169 |
-
WR_group_2 = WR_group_1.loc[working_roo['Team'] == team_var]
|
170 |
-
TE_group_1 = working_roo.loc[working_roo['Position'] == 'TE']
|
171 |
-
TE_group_2 = TE_group_1.loc[working_roo['Team'] == team_var]
|
172 |
-
cur_list = []
|
173 |
-
qb_piece = QB_group.iat[stack,0]
|
174 |
-
wr_piece = WR_group_2.iat[0,0]
|
175 |
-
te_piece = TE_group_2.iat[0,0]
|
176 |
-
cur_list.append(team_var)
|
177 |
-
cur_list.append(qb_piece)
|
178 |
-
cur_list.append(wr_piece)
|
179 |
-
cur_list.append(te_piece)
|
180 |
-
stacks_df.loc[len(stacks_df)] = cur_list
|
181 |
-
cur_list = []
|
182 |
-
qb_piece = QB_group.iat[stack,0]
|
183 |
-
wr_piece = WR_group_2.iat[1,0]
|
184 |
-
te_piece = TE_group_2.iat[0,0]
|
185 |
-
cur_list.append(team_var)
|
186 |
-
cur_list.append(qb_piece)
|
187 |
-
cur_list.append(wr_piece)
|
188 |
-
cur_list.append(te_piece)
|
189 |
-
stacks_df.loc[len(stacks_df)] = cur_list
|
190 |
-
cur_list = []
|
191 |
-
qb_piece = QB_group.iat[stack,0]
|
192 |
-
wr_piece = WR_group_2.iat[0,0]
|
193 |
-
te_piece = WR_group_2.iat[1,0]
|
194 |
-
cur_list.append(team_var)
|
195 |
-
cur_list.append(qb_piece)
|
196 |
-
cur_list.append(wr_piece)
|
197 |
-
cur_list.append(te_piece)
|
198 |
-
stacks_df.loc[len(stacks_df)] = cur_list
|
199 |
-
|
200 |
-
stacks_df['Salary'] = sum([stacks_df['QB'].map(salary_dict),
|
201 |
-
stacks_df['WR1'].map(salary_dict),
|
202 |
-
stacks_df['WR2_TE'].map(salary_dict)])
|
203 |
-
|
204 |
-
stacks_df['Fantasy'] = sum([stacks_df['QB'].map(fantasy_dict),
|
205 |
-
stacks_df['WR1'].map(fantasy_dict),
|
206 |
-
stacks_df['WR2_TE'].map(fantasy_dict)])
|
207 |
-
|
208 |
-
stacks_df['Own'] = sum([stacks_df['QB'].map(own_dict),
|
209 |
-
stacks_df['WR1'].map(own_dict),
|
210 |
-
stacks_df['WR2_TE'].map(own_dict)])
|
211 |
-
|
212 |
-
stacks_df['team_combo'] = stacks_df['Team'] + " " + stacks_df['QB'] + " " + stacks_df['WR1'] + " " + stacks_df['WR2_TE']
|
213 |
-
|
214 |
-
own_dict = dict(zip(stacks_df.team_combo, stacks_df.Own))
|
215 |
-
qb_dict = dict(zip(stacks_df.team_combo, stacks_df.QB))
|
216 |
-
wr1_dict = dict(zip(stacks_df.team_combo, stacks_df.WR1))
|
217 |
-
wr2_dict = dict(zip(stacks_df.team_combo, stacks_df.WR2_TE))
|
218 |
-
team_dict = dict(zip(stacks_df.team_combo, stacks_df.Team))
|
219 |
-
|
220 |
-
flex_file = stacks_df[['team_combo', 'Salary', 'Fantasy']]
|
221 |
-
flex_file.rename(columns={"Fantasy": "Median"}, inplace = True)
|
222 |
-
flex_file['Floor'] = flex_file['Median']*.25
|
223 |
-
flex_file['Ceiling'] = flex_file['Median'] + flex_file['Floor']
|
224 |
-
flex_file['STD'] = flex_file['Median']/4
|
225 |
-
flex_file = flex_file[['team_combo', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD']]
|
226 |
-
hold_file = flex_file
|
227 |
-
overall_file = flex_file
|
228 |
-
salary_file = flex_file
|
229 |
-
|
230 |
-
overall_players = overall_file[['team_combo']]
|
231 |
-
|
232 |
-
for x in range(0,total_sims):
|
233 |
-
salary_file[x] = salary_file['Salary']
|
234 |
-
|
235 |
-
salary_file=salary_file.drop(['team_combo', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
236 |
-
salary_file.astype('int').dtypes
|
237 |
-
|
238 |
-
salary_file = salary_file.div(1000)
|
239 |
-
|
240 |
-
for x in range(0,total_sims):
|
241 |
-
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
|
242 |
-
|
243 |
-
overall_file=overall_file.drop(['team_combo', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
244 |
-
overall_file.astype('int').dtypes
|
245 |
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
300 |
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
|
308 |
with tab2:
|
309 |
col1, col2 = st.columns([1, 5])
|
@@ -311,7 +344,7 @@ with tab2:
|
|
311 |
st.info(t_stamp)
|
312 |
if st.button("Load/Reset Data", key='reset2'):
|
313 |
st.cache_data.clear()
|
314 |
-
player_stats, dk_stacks_raw, fd_stacks_raw, dk_roo_raw, fd_roo_raw
|
315 |
t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST"
|
316 |
slate_var2 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate', 'Late Slate', 'Thurs-Mon Slate'), key='slate_var2')
|
317 |
site_var2 = st.radio("What table would you like to display?", ('Draftkings', 'Fanduel'), key='site_var2')
|
@@ -498,7 +531,7 @@ with tab3:
|
|
498 |
st.info(t_stamp)
|
499 |
if st.button("Load/Reset Data", key='reset3'):
|
500 |
st.cache_data.clear()
|
501 |
-
player_stats, dk_stacks_raw, fd_stacks_raw, dk_roo_raw, fd_roo_raw
|
502 |
t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST"
|
503 |
slate_var3 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate', 'Late Slate', 'Thurs-Mon Slate'), key='slate_var3')
|
504 |
site_var3 = st.radio("What table would you like to display?", ('Draftkings', 'Fanduel'), key='site_var3')
|
@@ -689,7 +722,7 @@ with tab4:
|
|
689 |
st.info(t_stamp)
|
690 |
if st.button("Load/Reset Data", key='reset4'):
|
691 |
st.cache_data.clear()
|
692 |
-
player_stats, dk_stacks_raw, fd_stacks_raw, dk_roo_raw, fd_roo_raw
|
693 |
t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST"
|
694 |
slate_var4 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate', 'Late Slate', 'Thurs-Mon Slate'), key='slate_var4')
|
695 |
site_var4 = st.radio("What table would you like to display?", ('Draftkings', 'Fanduel'), key='site_var4')
|
@@ -879,7 +912,7 @@ with tab5:
|
|
879 |
st.info(t_stamp)
|
880 |
if st.button("Load/Reset Data", key='reset5'):
|
881 |
st.cache_data.clear()
|
882 |
-
player_stats, dk_stacks_raw, fd_stacks_raw, dk_roo_raw, fd_roo_raw
|
883 |
t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST"
|
884 |
slate_var5 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate', 'Late Slate', 'Thurs-Mon Slate'), key='slate_var5')
|
885 |
site_var5 = st.radio("What table would you like to display?", ('Draftkings', 'Fanduel'), key='site_var5')
|
@@ -1069,7 +1102,7 @@ with tab6:
|
|
1069 |
st.info(t_stamp)
|
1070 |
if st.button("Load/Reset Data", key='reset6'):
|
1071 |
st.cache_data.clear()
|
1072 |
-
player_stats, dk_stacks_raw, fd_stacks_raw, dk_roo_raw, fd_roo_raw
|
1073 |
t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST"
|
1074 |
slate_var6 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate', 'Late Slate', 'Thurs-Mon Slate'), key='slate_var6')
|
1075 |
site_var6 = st.radio("What table would you like to display?", ('Draftkings', 'Fanduel'), key='site_var6')
|
|
|
10 |
import pandas as pd
|
11 |
import streamlit as st
|
12 |
import gspread
|
13 |
+
import pymongo
|
14 |
from itertools import combinations
|
15 |
|
16 |
@st.cache_resource
|
17 |
def init_conn():
|
18 |
+
scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive']
|
19 |
+
|
20 |
+
credentials = {
|
21 |
+
"type": "service_account",
|
22 |
+
"project_id": "model-sheets-connect",
|
23 |
+
"private_key_id": st.secrets['model_sheets_connect_pk'],
|
24 |
+
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQDiu1v/e6KBKOcK\ncx0KQ23nZK3ZVvADYy8u/RUn/EDI82QKxTd/DizRLIV81JiNQxDJXSzgkbwKYEDm\n48E8zGvupU8+Nk76xNPakrQKy2Y8+VJlq5psBtGchJTuUSHcXU5Mg2JhQsB376PJ\nsCw552K6Pw8fpeMDJDZuxpKSkaJR6k9G5Dhf5q8HDXnC5Rh/PRFuKJ2GGRpX7n+2\nhT/sCax0J8jfdTy/MDGiDfJqfQrOPrMKELtsGHR9Iv6F4vKiDqXpKfqH+02E9ptz\nBk+MNcbZ3m90M8ShfRu28ebebsASfarNMzc3dk7tb3utHOGXKCf4tF8yYKo7x8BZ\noO9X4gSfAgMBAAECggEAU8ByyMpSKlTCF32TJhXnVJi/kS+IhC/Qn5JUDMuk4LXr\naAEWsWO6kV/ZRVXArjmuSzuUVrXumISapM9Ps5Ytbl95CJmGDiLDwRL815nvv6k3\nUyAS8EGKjz74RpoIoH6E7EWCAzxlnUgTn+5oP9Flije97epYk3H+e2f1f5e1Nn1d\nYNe8U+1HqJgILcxA1TAUsARBfoD7+K3z/8DVPHI8IpzAh6kTHqhqC23Rram4XoQ6\nzj/ZdVBjvnKuazETfsD+Vl3jGLQA8cKQVV70xdz3xwLcNeHsbPbpGBpZUoF73c65\nkAXOrjYl0JD5yAk+hmYhXr6H9c6z5AieuZGDrhmlFQKBgQDzV6LRXmjn4854DP/J\nI82oX2GcI4eioDZPRukhiQLzYerMQBmyqZIRC+/LTCAhYQSjNgMa+ZKyvLqv48M0\n/x398op/+n3xTs+8L49SPI48/iV+mnH7k0WI/ycd4OOKh8rrmhl/0EWb9iitwJYe\nMjTV/QxNEpPBEXfR1/mvrN/lVQKBgQDuhomOxUhWVRVH6x03slmyRBn0Oiw4MW+r\nrt1hlNgtVmTc5Mu+4G0USMZwYuOB7F8xG4Foc7rIlwS7Ic83jMJxemtqAelwOLdV\nXRLrLWJfX8+O1z/UE15l2q3SUEnQ4esPHbQnZowHLm0mdL14qSVMl1mu1XfsoZ3z\nJZTQb48CIwKBgEWbzQRtKD8lKDupJEYqSrseRbK/ax43DDITS77/DWwHl33D3FYC\nMblUm8ygwxQpR4VUfwDpYXBlklWcJovzamXpSnsfcYVkkQH47NuOXPXPkXQsw+w+\nDYcJzeu7F/vZqk9I7oBkWHUrrik9zPNoUzrfPvSRGtkAoTDSwibhoc5dAoGBAMHE\nK0T/ANeZQLNuzQps6S7G4eqjwz5W8qeeYxsdZkvWThOgDd/ewt3ijMnJm5X05hOn\ni4XF1euTuvUl7wbqYx76Wv3/1ZojiNNgy7ie4rYlyB/6vlBS97F4ZxJdxMlabbCW\n6b3EMWa4EVVXKoA1sCY7IVDE+yoQ1JYsZmq45YzPAoGBANWWHuVueFGZRDZlkNlK\nh5OmySmA0NdNug3G1upaTthyaTZ+CxGliwBqMHAwpkIRPwxUJpUwBTSEGztGTAxs\nWsUOVWlD2/1JaKSmHE8JbNg6sxLilcG6WEDzxjC5dLL1OrGOXj9WhC9KX3sq6qb6\nF/j9eUXfXjAlb042MphoF3ZC\n-----END PRIVATE KEY-----\n",
|
25 |
+
"client_email": "[email protected]",
|
26 |
+
"client_id": "100369174533302798535",
|
27 |
+
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
|
28 |
+
"token_uri": "https://oauth2.googleapis.com/token",
|
29 |
+
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
|
30 |
+
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40model-sheets-connect.iam.gserviceaccount.com"
|
31 |
+
}
|
32 |
+
|
33 |
+
credentials2 = {
|
34 |
+
"type": "service_account",
|
35 |
+
"project_id": "sheets-api-connect-378620",
|
36 |
+
"private_key_id": st.secrets['sheets_api_connect_pk'],
|
37 |
+
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
|
38 |
+
"client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
|
39 |
+
"client_id": "106625872877651920064",
|
40 |
+
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
|
41 |
+
"token_uri": "https://oauth2.googleapis.com/token",
|
42 |
+
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
|
43 |
+
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
|
44 |
+
}
|
45 |
+
|
46 |
+
uri = st.secrets['mongo_uri']
|
47 |
+
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
|
48 |
+
db = client["NFL_Database"]
|
49 |
+
|
50 |
+
NFL_Data = st.secrets['NFL_Data']
|
51 |
+
|
52 |
+
gc = gspread.service_account_from_dict(credentials)
|
53 |
+
gc2 = gspread.service_account_from_dict(credentials2)
|
54 |
+
|
55 |
+
return gc, gc2, db, NFL_Data
|
56 |
+
|
57 |
+
gcservice_account, gcservice_account2, db, NFL_Data = init_conn()
|
58 |
|
59 |
game_format = {'Win Percentage': '{:.2%}','First Inning Lead Percentage': '{:.2%}',
|
60 |
'Fifth Inning Lead Percentage': '{:.2%}', '8+ runs': '{:.2%}', 'DK LevX': '{:.2%}', 'FD LevX': '{:.2%}'}
|
|
|
66 |
|
67 |
@st.cache_resource(ttl=600)
|
68 |
def player_stat_table():
|
69 |
+
|
70 |
+
collection = db["Player_Stats"]
|
71 |
+
cursor = collection.find()
|
72 |
+
|
73 |
+
raw_display = pd.DataFrame(list(cursor))
|
74 |
+
raw_display = raw_display[['name', 'Team', 'Opp', 'Position', 'Salary', 'team_plays', 'team_pass', 'team_rush', 'team_tds', 'team_pass_tds', 'team_rush_tds', 'dropbacks', 'pass_yards', 'pass_tds',
|
75 |
+
'rush_att', 'rush_yards', 'rush_tds', 'targets', 'rec', 'rec_yards', 'rec_tds', 'PPR', 'Half_PPR', 'Own']]
|
76 |
+
player_stats = raw_display[raw_display['Position'] != 'K']
|
77 |
+
|
78 |
+
collection = db["DK_NFL_ROO"]
|
79 |
+
cursor = collection.find()
|
80 |
+
|
81 |
+
raw_display = pd.DataFrame(list(cursor))
|
82 |
+
raw_display = raw_display[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%',
|
83 |
+
'Own', 'Small_Field_Own', 'Large_Field_Own', 'Cash_Field_Own', 'CPT_Own', 'LevX', 'version', 'slate', 'timestamp', 'player_id', 'site']]
|
84 |
+
load_display = raw_display[raw_display['Position'] != 'K']
|
85 |
dk_roo_raw = load_display.dropna(subset=['Median'])
|
86 |
|
87 |
+
collection = db["FD_NFL_ROO"]
|
88 |
+
cursor = collection.find()
|
89 |
+
|
90 |
+
raw_display = pd.DataFrame(list(cursor))
|
91 |
+
raw_display = raw_display[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%',
|
92 |
+
'Own', 'Small_Field_Own', 'Large_Field_Own', 'Cash_Field_Own', 'CPT_Own', 'LevX', 'version', 'slate', 'timestamp', 'player_id', 'site']]
|
93 |
+
load_display = raw_display[raw_display['Position'] != 'K']
|
94 |
fd_roo_raw = load_display.dropna(subset=['Median'])
|
95 |
|
96 |
+
collection = db["DK_DFS_Stacks"]
|
97 |
+
cursor = collection.find()
|
|
|
98 |
|
99 |
+
raw_display = pd.DataFrame(list(cursor))
|
100 |
+
raw_display = raw_display[['Team', 'QB', 'WR1_TE', 'WR2_TE', 'Total', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '60+%', '2x%', '3x%', '4x%', 'Own', 'LevX', 'slate', 'version']]
|
101 |
+
dk_stacks_raw = raw_display.copy()
|
102 |
|
103 |
+
collection = db["FD_DFS_Stacks"]
|
104 |
+
cursor = collection.find()
|
105 |
+
|
106 |
+
raw_display = pd.DataFrame(list(cursor))
|
107 |
+
raw_display = raw_display[['Team', 'QB', 'WR1_TE', 'WR2_TE', 'Total', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '60+%', '2x%', '3x%', '4x%', 'Own', 'LevX', 'slate', 'version']]
|
108 |
+
fd_stacks_raw = raw_display.copy()
|
109 |
+
|
110 |
+
return player_stats, dk_stacks_raw, fd_stacks_raw, dk_roo_raw, fd_roo_raw
|
111 |
|
112 |
@st.cache_data
|
113 |
def convert_df_to_csv(df):
|
114 |
return df.to_csv().encode('utf-8')
|
115 |
|
116 |
+
player_stats, dk_stacks_raw, fd_stacks_raw, dk_roo_raw, fd_roo_raw = player_stat_table()
|
117 |
t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST"
|
118 |
|
119 |
tab1, tab2, tab3, tab4, tab5, tab6 = st.tabs(["Team Stacks Range of Outcomes", "Overall Range of Outcomes", "QB Range of Outcomes", "RB Range of Outcomes", "WR Range of Outcomes", "TE Range of Outcomes"])
|
120 |
|
121 |
with tab1:
|
122 |
+
with st.sidebar:
|
|
|
123 |
st.info(t_stamp)
|
124 |
if st.button("Load/Reset Data", key='reset1'):
|
125 |
st.cache_data.clear()
|
126 |
+
player_stats, dk_stacks_raw, fd_stacks_raw, dk_roo_raw, fd_roo_raw = player_stat_table()
|
127 |
t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST"
|
128 |
slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate', 'Late Slate', 'Thurs-Mon Slate'), key='slate_var1')
|
129 |
site_var1 = st.radio("What table would you like to display?", ('Draftkings', 'Fanduel'), key='site_var1')
|
|
|
158 |
team_var1 = raw_baselines.Team.values.tolist()
|
159 |
|
160 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
|
162 |
+
if custom_var1 == 'No':
|
163 |
+
final_stacks = raw_baselines[raw_baselines['Team'].isin(team_var1)]
|
164 |
+
if view_var1 == 'Simple':
|
165 |
+
final_stacks = final_stacks[['Team', 'QB', 'WR1_TE', 'WR2_TE', 'Salary', 'Median', '60+%', '4x%']]
|
166 |
+
elif view_var1 == 'Advanced':
|
167 |
+
final_stacks = final_stacks[['Team', 'QB', 'WR1_TE', 'WR2_TE', 'Total', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish',
|
168 |
+
'Top_10_finish', '60+%', '2x%', '3x%', '4x%', 'Own', 'LevX']]
|
169 |
+
st.dataframe(final_stacks.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), use_container_width = True)
|
170 |
+
st.download_button(
|
171 |
+
label="Export Tables",
|
172 |
+
data=convert_df_to_csv(final_stacks),
|
173 |
+
file_name='NFL_stacks_export.csv',
|
174 |
+
mime='text/csv',
|
175 |
+
)
|
176 |
+
elif custom_var1 == 'Yes':
|
177 |
+
hold_container = st.empty()
|
178 |
+
if st.button('Create Range of Outcomes for Slate'):
|
179 |
+
with hold_container:
|
180 |
+
if site_var1 == 'Draftkings':
|
181 |
+
working_roo = player_stats
|
182 |
+
working_roo.rename(columns={"name": "Player", "rush_yards": "Rush Yards", "rec": "Receptions", "PPR": "Fantasy"}, inplace = True)
|
183 |
+
working_roo.replace('', 0, inplace=True)
|
184 |
+
if site_var1 == 'Fanduel':
|
185 |
+
working_roo = player_stats
|
186 |
+
working_roo.rename(columns={"name": "Player", "rush_yards": "Rush Yards", "rec": "Receptions", "Half_PPR": "Fantasy"}, inplace = True)
|
187 |
+
working_roo.replace('', 0, inplace=True)
|
188 |
+
working_roo = working_roo[working_roo['Team'].isin(team_var1)]
|
189 |
+
|
190 |
+
total_sims = 1000
|
191 |
+
|
192 |
+
salary_dict = dict(zip(working_roo.name, working_roo.Salary))
|
193 |
+
own_dict = dict(zip(working_roo.name, working_roo.Own))
|
194 |
+
fantasy_dict = dict(zip(working_roo.name, working_roo.Fantasy))
|
195 |
+
|
196 |
+
QB_group = working_roo.loc[working_roo['Position'] == 'QB']
|
197 |
+
stacks_df = pd.DataFrame(columns=['Team','QB', 'WR1', 'WR2_TE'])
|
198 |
+
|
199 |
+
for stack in range(0,len(QB_group)):
|
200 |
+
team_var = QB_group.iat[stack,1]
|
201 |
+
WR_group_1 = working_roo.loc[working_roo['Position'] == 'WR']
|
202 |
+
WR_group_2 = WR_group_1.loc[working_roo['Team'] == team_var]
|
203 |
+
TE_group_1 = working_roo.loc[working_roo['Position'] == 'TE']
|
204 |
+
TE_group_2 = TE_group_1.loc[working_roo['Team'] == team_var]
|
205 |
+
cur_list = []
|
206 |
+
qb_piece = QB_group.iat[stack,0]
|
207 |
+
wr_piece = WR_group_2.iat[0,0]
|
208 |
+
te_piece = TE_group_2.iat[0,0]
|
209 |
+
cur_list.append(team_var)
|
210 |
+
cur_list.append(qb_piece)
|
211 |
+
cur_list.append(wr_piece)
|
212 |
+
cur_list.append(te_piece)
|
213 |
+
stacks_df.loc[len(stacks_df)] = cur_list
|
214 |
+
cur_list = []
|
215 |
+
qb_piece = QB_group.iat[stack,0]
|
216 |
+
wr_piece = WR_group_2.iat[1,0]
|
217 |
+
te_piece = TE_group_2.iat[0,0]
|
218 |
+
cur_list.append(team_var)
|
219 |
+
cur_list.append(qb_piece)
|
220 |
+
cur_list.append(wr_piece)
|
221 |
+
cur_list.append(te_piece)
|
222 |
+
stacks_df.loc[len(stacks_df)] = cur_list
|
223 |
+
cur_list = []
|
224 |
+
qb_piece = QB_group.iat[stack,0]
|
225 |
+
wr_piece = WR_group_2.iat[0,0]
|
226 |
+
te_piece = WR_group_2.iat[1,0]
|
227 |
+
cur_list.append(team_var)
|
228 |
+
cur_list.append(qb_piece)
|
229 |
+
cur_list.append(wr_piece)
|
230 |
+
cur_list.append(te_piece)
|
231 |
+
stacks_df.loc[len(stacks_df)] = cur_list
|
232 |
+
|
233 |
+
stacks_df['Salary'] = sum([stacks_df['QB'].map(salary_dict),
|
234 |
+
stacks_df['WR1'].map(salary_dict),
|
235 |
+
stacks_df['WR2_TE'].map(salary_dict)])
|
236 |
+
|
237 |
+
stacks_df['Fantasy'] = sum([stacks_df['QB'].map(fantasy_dict),
|
238 |
+
stacks_df['WR1'].map(fantasy_dict),
|
239 |
+
stacks_df['WR2_TE'].map(fantasy_dict)])
|
240 |
+
|
241 |
+
stacks_df['Own'] = sum([stacks_df['QB'].map(own_dict),
|
242 |
+
stacks_df['WR1'].map(own_dict),
|
243 |
+
stacks_df['WR2_TE'].map(own_dict)])
|
244 |
+
|
245 |
+
stacks_df['team_combo'] = stacks_df['Team'] + " " + stacks_df['QB'] + " " + stacks_df['WR1'] + " " + stacks_df['WR2_TE']
|
246 |
+
|
247 |
+
own_dict = dict(zip(stacks_df.team_combo, stacks_df.Own))
|
248 |
+
qb_dict = dict(zip(stacks_df.team_combo, stacks_df.QB))
|
249 |
+
wr1_dict = dict(zip(stacks_df.team_combo, stacks_df.WR1))
|
250 |
+
wr2_dict = dict(zip(stacks_df.team_combo, stacks_df.WR2_TE))
|
251 |
+
team_dict = dict(zip(stacks_df.team_combo, stacks_df.Team))
|
252 |
+
|
253 |
+
flex_file = stacks_df[['team_combo', 'Salary', 'Fantasy']]
|
254 |
+
flex_file.rename(columns={"Fantasy": "Median"}, inplace = True)
|
255 |
+
flex_file['Floor'] = flex_file['Median']*.25
|
256 |
+
flex_file['Ceiling'] = flex_file['Median'] + flex_file['Floor']
|
257 |
+
flex_file['STD'] = flex_file['Median']/4
|
258 |
+
flex_file = flex_file[['team_combo', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD']]
|
259 |
+
hold_file = flex_file
|
260 |
+
overall_file = flex_file
|
261 |
+
salary_file = flex_file
|
262 |
+
|
263 |
+
overall_players = overall_file[['team_combo']]
|
264 |
+
|
265 |
+
for x in range(0,total_sims):
|
266 |
+
salary_file[x] = salary_file['Salary']
|
267 |
+
|
268 |
+
salary_file=salary_file.drop(['team_combo', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
269 |
+
salary_file.astype('int').dtypes
|
270 |
+
|
271 |
+
salary_file = salary_file.div(1000)
|
272 |
+
|
273 |
+
for x in range(0,total_sims):
|
274 |
+
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
|
275 |
+
|
276 |
+
overall_file=overall_file.drop(['team_combo', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
277 |
+
overall_file.astype('int').dtypes
|
278 |
+
|
279 |
+
players_only = hold_file[['team_combo']]
|
280 |
+
raw_lineups_file = players_only
|
281 |
+
|
282 |
+
for x in range(0,total_sims):
|
283 |
+
maps_dict = {'proj_map':dict(zip(hold_file.team_combo,hold_file[x]))}
|
284 |
+
raw_lineups_file[x] = sum([raw_lineups_file['team_combo'].map(maps_dict['proj_map'])])
|
285 |
+
players_only[x] = raw_lineups_file[x].rank(ascending=False)
|
286 |
+
|
287 |
+
players_only=players_only.drop(['team_combo'], axis=1)
|
288 |
+
players_only.astype('int').dtypes
|
289 |
+
|
290 |
+
salary_2x_check = (overall_file - (salary_file*2))
|
291 |
+
salary_3x_check = (overall_file - (salary_file*3))
|
292 |
+
salary_4x_check = (overall_file - (salary_file*4))
|
293 |
+
|
294 |
+
players_only['Average_Rank'] = players_only.mean(axis=1)
|
295 |
+
players_only['Top_finish'] = players_only[players_only == 1].count(axis=1)/total_sims
|
296 |
+
players_only['Top_5_finish'] = players_only[players_only <= 5].count(axis=1)/total_sims
|
297 |
+
players_only['Top_10_finish'] = players_only[players_only <= 10].count(axis=1)/total_sims
|
298 |
+
players_only['60+%'] = overall_file[overall_file >= 60].count(axis=1)/float(total_sims)
|
299 |
+
players_only['2x%'] = salary_2x_check[salary_2x_check >= 1].count(axis=1)/float(total_sims)
|
300 |
+
players_only['3x%'] = salary_3x_check[salary_3x_check >= 1].count(axis=1)/float(total_sims)
|
301 |
+
players_only['4x%'] = salary_4x_check[salary_4x_check >= 1].count(axis=1)/float(total_sims)
|
302 |
+
|
303 |
+
players_only['team_combo'] = hold_file[['team_combo']]
|
304 |
+
|
305 |
+
final_outcomes = players_only[['team_combo', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '60+%', '2x%', '3x%', '4x%']]
|
306 |
+
|
307 |
+
final_stacks = pd.merge(hold_file, final_outcomes, on="team_combo")
|
308 |
+
final_stacks = final_stacks[['team_combo', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '60+%', '2x%', '3x%', '4x%']]
|
309 |
+
final_stacks['Own'] = final_stacks['team_combo'].map(own_dict)
|
310 |
+
final_stacks = final_stacks[['team_combo', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '60+%', '2x%', '3x%', '4x%', 'Own']]
|
311 |
+
final_stacks['Projection Rank'] = final_stacks.Median.rank(pct = True)
|
312 |
+
final_stacks['Own Rank'] = final_stacks.Own.rank(pct = True)
|
313 |
+
final_stacks['LevX'] = final_stacks['Projection Rank'] - final_stacks['Own Rank']
|
314 |
+
final_stacks['Team'] = final_stacks['team_combo'].map(team_dict)
|
315 |
+
final_stacks['QB'] = final_stacks['team_combo'].map(qb_dict)
|
316 |
+
final_stacks['WR1_TE'] = final_stacks['team_combo'].map(wr1_dict)
|
317 |
+
final_stacks['WR2_TE'] = final_stacks['team_combo'].map(wr2_dict)
|
318 |
+
|
319 |
+
final_stacks = final_stacks[['Team', 'QB', 'WR1_TE', 'WR2_TE', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish',
|
320 |
+
'Top_10_finish', '60+%', '2x%', '3x%', '4x%', 'Own', 'LevX']]
|
321 |
+
|
322 |
+
final_stacks = final_stacks.sort_values(by='Median', ascending=False)
|
323 |
+
|
324 |
+
with hold_container:
|
325 |
+
hold_container = st.empty()
|
326 |
+
final_stacks = final_stacks
|
327 |
+
if view_var1 == 'Simple':
|
328 |
+
final_stacks = final_stacks[['Team', 'QB', 'WR1_TE', 'WR2_TE', 'Salary', 'Median', '60+%', '4x%']]
|
329 |
+
elif view_var1 == 'Advanced':
|
330 |
+
final_stacks = final_stacks[['Team', 'QB', 'WR1_TE', 'WR2_TE', 'Total', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish',
|
331 |
+
'Top_10_finish', '60+%', '2x%', '3x%', '4x%', 'Own', 'LevX']]
|
332 |
+
st.dataframe(final_stacks.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), use_container_width = True)
|
333 |
|
334 |
+
st.download_button(
|
335 |
+
label="Export Tables",
|
336 |
+
data=convert_df_to_csv(final_stacks),
|
337 |
+
file_name='Custom_NFL_stacks_export.csv',
|
338 |
+
mime='text/csv',
|
339 |
+
)
|
340 |
|
341 |
with tab2:
|
342 |
col1, col2 = st.columns([1, 5])
|
|
|
344 |
st.info(t_stamp)
|
345 |
if st.button("Load/Reset Data", key='reset2'):
|
346 |
st.cache_data.clear()
|
347 |
+
player_stats, dk_stacks_raw, fd_stacks_raw, dk_roo_raw, fd_roo_raw = player_stat_table()
|
348 |
t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST"
|
349 |
slate_var2 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate', 'Late Slate', 'Thurs-Mon Slate'), key='slate_var2')
|
350 |
site_var2 = st.radio("What table would you like to display?", ('Draftkings', 'Fanduel'), key='site_var2')
|
|
|
531 |
st.info(t_stamp)
|
532 |
if st.button("Load/Reset Data", key='reset3'):
|
533 |
st.cache_data.clear()
|
534 |
+
player_stats, dk_stacks_raw, fd_stacks_raw, dk_roo_raw, fd_roo_raw = player_stat_table()
|
535 |
t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST"
|
536 |
slate_var3 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate', 'Late Slate', 'Thurs-Mon Slate'), key='slate_var3')
|
537 |
site_var3 = st.radio("What table would you like to display?", ('Draftkings', 'Fanduel'), key='site_var3')
|
|
|
722 |
st.info(t_stamp)
|
723 |
if st.button("Load/Reset Data", key='reset4'):
|
724 |
st.cache_data.clear()
|
725 |
+
player_stats, dk_stacks_raw, fd_stacks_raw, dk_roo_raw, fd_roo_raw = player_stat_table()
|
726 |
t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST"
|
727 |
slate_var4 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate', 'Late Slate', 'Thurs-Mon Slate'), key='slate_var4')
|
728 |
site_var4 = st.radio("What table would you like to display?", ('Draftkings', 'Fanduel'), key='site_var4')
|
|
|
912 |
st.info(t_stamp)
|
913 |
if st.button("Load/Reset Data", key='reset5'):
|
914 |
st.cache_data.clear()
|
915 |
+
player_stats, dk_stacks_raw, fd_stacks_raw, dk_roo_raw, fd_roo_raw = player_stat_table()
|
916 |
t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST"
|
917 |
slate_var5 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate', 'Late Slate', 'Thurs-Mon Slate'), key='slate_var5')
|
918 |
site_var5 = st.radio("What table would you like to display?", ('Draftkings', 'Fanduel'), key='site_var5')
|
|
|
1102 |
st.info(t_stamp)
|
1103 |
if st.button("Load/Reset Data", key='reset6'):
|
1104 |
st.cache_data.clear()
|
1105 |
+
player_stats, dk_stacks_raw, fd_stacks_raw, dk_roo_raw, fd_roo_raw = player_stat_table()
|
1106 |
t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST"
|
1107 |
slate_var6 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate', 'Late Slate', 'Thurs-Mon Slate'), key='slate_var6')
|
1108 |
site_var6 = st.radio("What table would you like to display?", ('Draftkings', 'Fanduel'), key='site_var6')
|