File size: 12,720 Bytes
dfb2f96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a2fb86
dfb2f96
 
 
 
 
 
 
 
 
 
 
 
1a2fb86
dfb2f96
 
 
 
 
 
 
 
 
 
 
1a2fb86
 
 
 
 
 
 
 
0573513
1a2fb86
 
 
 
 
 
 
 
 
 
 
 
0573513
1a2fb86
 
 
 
a11d086
 
 
 
8bb268b
a11d086
 
 
 
dfb2f96
 
 
 
 
 
 
 
 
 
 
 
1a2fb86
 
 
 
a11d086
dfb2f96
 
 
ae85aee
a11d086
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import pulp
import numpy as np
import pandas as pd
import streamlit as st
import gspread
import time
import random
import scipy.stats

@st.cache_resource
def init_conn():
          scope = ['https://www.googleapis.com/auth/spreadsheets',
                    "https://www.googleapis.com/auth/drive"]
          
          credentials = {
            "type": "service_account",
            "project_id": "sheets-api-connect-378620",
            "private_key_id": "1005124050c80d085e2c5b344345715978dd9cc9",
            "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
            "client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
            "client_id": "106625872877651920064",
            "auth_uri": "https://accounts.google.com/o/oauth2/auth",
            "token_uri": "https://oauth2.googleapis.com/token",
            "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
            "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
          }

          gc = gspread.service_account_from_dict(credentials)
          return gc

st.set_page_config(layout="wide")

gc = init_conn()

game_format = {'Dropback% Proj': '{:.2%}', 'DesRush%': '{:.2%}', 'Rush%': '{:.2%}'}

rb_util = {'Player Snaps%': '{:.2%}','Rush Att%': '{:.2%}', 'Routes%': '{:.2%}', 'Targets%': '{:.2%}', 'SDD Snaps%': '{:.2%}', 'i5 Rush%': '{:.2%}',
                   'LDD Snaps%': '{:.2%}','2-min%': '{:.2%}'}

wr_te_util = {'Routes%': '{:.2%}','Targets%': '{:.2%}', 'Air Yards%': '{:.2%}', 'Endzone Targets%': '{:.2%}', 'Third/Fourth%': '{:.2%}', 'Third/Fourth Targets%': '{:.2%}',
                   'Play Action Targets%': '{:.2%}','2-min%': '{:.2%}'}

all_dk_player_projections = 'https://docs.google.com/spreadsheets/d/1I_1Ve3F4tftgfLQQoRKOJ351XfEG48s36OxXUKxmgS8/edit#gid=179416653'

@st.cache_resource(ttl = 300)
def rb_util_weekly():
    sh = gc.open_by_url(all_dk_player_projections)
    worksheet = sh.worksheet('RB_Util')
    raw_display = pd.DataFrame(worksheet.get_all_records())
    raw_display = raw_display.replace('', np.nan)      
    raw_display = raw_display[['player_name', 'position', 'week', 'team_season', 'player_snaps_per', 'rush_attempts_per', 'routes_per', 'targets_per',
                               'tprr', 'player_SDD_snaps_per', 'inside_five_rush_per', 'player_LDD_snaps_per', 'two_min_per', 'exPPR', 'ppr_fantasy', 'UR_Rank']]
    raw_display = raw_display.set_axis(['Player', 'Position', 'Week', 'Team-Season', 'Player Snaps%', 'Rush Att%', 'Routes%', 'Targets%',
                               'TPRR', 'SDD Snaps%', 'i5 Rush%', 'LDD Snaps%', '2-min%', 'Expected PPR', 'PPR', 'Utilization Rank'], axis='columns')
    raw_display = raw_display.sort_values(by='Utilization Rank', ascending=True)
    return raw_display

@st.cache_resource(ttl = 300)
def wr_te_util_weekly():
    sh = gc.open_by_url(all_dk_player_projections)
    worksheet = sh.worksheet('WR_TE_Util')
    raw_display = pd.DataFrame(worksheet.get_all_records())
    raw_display = raw_display.replace('', np.nan)      
    raw_display = raw_display[['player_name', 'position', 'week', 'team_season', 'routes_per', 'targets_per', 'tprr' , 'adot', 'air_yards_per',
                               'ayprr', 'endzone_targets_per', 'third_fourth_per', 'third_fourth_target_per', 'play_action_targets_per', 'exPPR', 'ppr_fantasy', 'UR_Rank']]
    raw_display = raw_display.set_axis(['Player', 'Position', 'Week', 'Team-Season', 'Routes%', 'Targets%', 'TPRR' , 'ADOT', 'Air Yards%',
                               'AYPRR', 'Endzone Targets%', 'Third/Fourth%', 'Third/Fourth Targets%', 'Play Action Targets%', 'Expected PPR', 'PPR', 'Utilization Rank'], axis='columns')
    raw_display = raw_display.sort_values(by='Utilization Rank', ascending=True)
    return raw_display

@st.cache_resource(ttl = 300)
def rb_util_season():
    sh = gc.open_by_url(all_dk_player_projections)
    worksheet = sh.worksheet('RB_Util_Season')
    raw_display = pd.DataFrame(worksheet.get_all_records())
    raw_display = raw_display.replace('', np.nan)      
    raw_display = raw_display[['player_name', 'position', 'team_season', 'player_snaps_per', 'rush_attempts_per', 'routes_per', 'targets_per',
                               'tprr', 'player_SDD_snaps_per', 'inside_five_rush_per', 'player_LDD_snaps_per', 'two_min_per', 'exPPR', 'ppr_fantasy', 'UR_Rank']]
    raw_display = raw_display.set_axis(['Player', 'Position', 'Team-Season', 'Player Snaps%', 'Rush Att%', 'Routes%', 'Targets%',
                               'TPRR', 'SDD Snaps%', 'i5 Rush%', 'LDD Snaps%', '2-min%', 'Expected PPR', 'PPR', 'Utilization Rank'], axis='columns')
    raw_display = raw_display.sort_values(by='Utilization Rank', ascending=True)
    return raw_display

@st.cache_resource(ttl = 300)
def wr_te_util_season():
    sh = gc.open_by_url(all_dk_player_projections)
    worksheet = sh.worksheet('WR_TE_Util_Season')
    raw_display = pd.DataFrame(worksheet.get_all_records())
    raw_display = raw_display.replace('', np.nan)      
    raw_display = raw_display[['player_name', 'position', 'team_season', 'routes_per', 'targets_per', 'tprr' , 'adot', 'air_yards_per',
                               'ayprr', 'endzone_targets_per', 'third_fourth_per', 'third_fourth_target_per', 'play_action_targets_per', 'exPPR', 'ppr_fantasy', 'UR_Rank']]
    raw_display = raw_display.set_axis(['Player', 'Position', 'Team-Season', 'Routes%', 'Targets%', 'TPRR' , 'ADOT', 'Air Yards%',
                               'AYPRR', 'Endzone Targets%', 'Third/Fourth%', 'Third/Fourth Targets%', 'Play Action Targets%', 'Expected PPR', 'PPR', 'Utilization Rank'], axis='columns')
    raw_display = raw_display.sort_values(by='Utilization Rank', ascending=True)
    return raw_display

@st.cache_resource(ttl = 300)
def coverage_matchups():
    sh = gc.open_by_url(all_dk_player_projections)
    worksheet = sh.worksheet('Defensive Matchups')
    raw_display = pd.DataFrame(worksheet.get_values())
    raw_display = raw_display.replace('', np.nan)
    
    return raw_display

@st.cache_resource(ttl = 300)
def macro_pull():
    sh = gc.open_by_url(all_dk_player_projections)
    worksheet = sh.worksheet('FL_Macro')
    raw_display = pd.DataFrame(worksheet.get_all_records())
    raw_display = raw_display.sort_values(by='Team Total', ascending=False)      

    return raw_display

@st.cache_data
def convert_df_to_csv(df):
    return df.to_csv().encode('utf-8')
rb_search = rb_util_weekly()
wr_search = wr_te_util_weekly()
rb_season = rb_util_season()
wr_season = wr_te_util_season()
wr_matchups = coverage_matchups()
macro_data = macro_pull()
pos_list = ['RB', 'WR', 'TE']

tab1, tab2 = st.tabs(["Season Long Research", "Slate Specific"])
with tab1:
    col1, col2 = st.columns([1, 8])
    
    with col1:
        if st.button("Load/Reset Data", key='reset1'):
              st.cache_data.clear()
              rb_search = rb_util_season()
              wr_search = wr_te_util_season()
              macro_data = macro_pull()
        stat_type_var1 = st.radio("What table are you loading?", ('Macro Table', 'RB Usage (Weekly)', 'WR/TE Usage (Weekly)', 'RB Usage (Season)', 'WR/TE Usage (Season)'), key='stat_type_var1')
        split_var1 = st.radio("Are you running the the whole league or certain teams?", ('All Teams', 'Specific Teams'), key='split_var1')
        pos_split1 = st.radio("Are you viewing all positions or specific positions?", ('All Positions', 'Specific Positions'), key='pos_split1')      
        if pos_split1 == 'Specific Positions':
            pos_var1 = st.multiselect('What Positions would you like to view?', options = ['RB', 'WR', 'TE'])
        elif pos_split1 == 'All Positions':
            pos_var1 = pos_list 
        if split_var1 == 'Specific Teams':
            team_var1 = st.multiselect('Which teams would you like to include in the Table?', options = rb_search['Team-Season'].unique(), key='team_var1')
        elif split_var1 == 'All Teams':
            team_var1 = rb_search['Team-Season'].unique().tolist()
        if stat_type_var1 == 'Macro Table':
            table_instance = macro_data
            table_instance = table_instance.set_index('team')  
        elif stat_type_var1 == 'RB Usage (Weekly)':
            table_instance = rb_search
            table_instance = table_instance[table_instance['Team-Season'].isin(team_var1)]  
            table_instance = table_instance[table_instance['Position'].isin(pos_var1)]
        elif stat_type_var1 == 'WR/TE Usage (Weekly)':
            table_instance = wr_search    
            table_instance = table_instance[table_instance['Team-Season'].isin(team_var1)]  
            table_instance = table_instance[table_instance['Position'].isin(pos_var1)]
        elif stat_type_var1 == 'RB Usage (Season)':
            table_instance = rb_season
            table_instance = table_instance[table_instance['Team-Season'].isin(team_var1)]  
            table_instance = table_instance[table_instance['Position'].isin(pos_var1)]
        elif stat_type_var1 == 'WR/TE Usage (Season)':
            table_instance = wr_season
            table_instance = table_instance[table_instance['Team-Season'].isin(team_var1)]  
            table_instance = table_instance[table_instance['Position'].isin(pos_var1)]
    
    with col2:
        if stat_type_var1 == 'Macro Table':
            st.dataframe(table_instance.style.background_gradient(axis=0).background_gradient(cmap = 'RdYlGn').format(game_format, precision=2), use_container_width = True)
        elif stat_type_var1 == 'RB Usage (Weekly)':
            st.dataframe(table_instance.style.background_gradient(axis=0).background_gradient(cmap = 'RdYlGn').background_gradient(cmap='RdYlGn_r', subset = 'Utilization Rank').format(rb_util, precision=2), use_container_width = True)
        elif stat_type_var1 == 'WR/TE Usage (Weekly)':
            st.dataframe(table_instance.style.background_gradient(axis=0).background_gradient(cmap = 'RdYlGn').background_gradient(cmap='RdYlGn_r', subset = 'Utilization Rank').format(wr_te_util, precision=2), use_container_width = True)
        elif stat_type_var1 == 'RB Usage (Season)':
            st.dataframe(table_instance.style.background_gradient(axis=0).background_gradient(cmap = 'RdYlGn').background_gradient(cmap='RdYlGn_r', subset = 'Utilization Rank').format(rb_util, precision=2), use_container_width = True)
        elif stat_type_var1 == 'WR/TE Usage (Season)':
            st.dataframe(table_instance.style.background_gradient(axis=0).background_gradient(cmap = 'RdYlGn').background_gradient(cmap='RdYlGn_r', subset = 'Utilization Rank').format(wr_te_util, precision=2), use_container_width = True)
    
        st.download_button(
                        label="Export Tables",
                        data=convert_df_to_csv(table_instance),
                        file_name='NFL_Research_export.csv',
                        mime='text/csv',
        )