File size: 13,507 Bytes
5775817
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a57d13
5775817
 
 
 
c4aa78e
5775817
 
 
 
 
 
 
 
e4dc4ec
5775817
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4aa78e
5775817
 
 
 
 
 
 
 
 
 
 
 
 
 
b0e122b
5775817
 
 
 
 
 
 
 
 
 
 
 
 
bed23ec
5775817
1ecb8af
 
 
5775817
4ebe0a9
5775817
 
 
 
bed23ec
5775817
1ecb8af
 
 
 
5775817
4ebe0a9
5775817
 
 
 
bed23ec
5775817
1ecb8af
 
 
 
 
5775817
4ebe0a9
5775817
 
 
 
bed23ec
5775817
1ecb8af
 
 
 
 
 
 
4ebe0a9
5775817
 
 
a76d311
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5775817
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import numpy as np
import pandas as pd
import streamlit as st
import gspread
import plotly.figure_factory as ff
from itertools import combinations

scope = ['https://www.googleapis.com/auth/spreadsheets',
          "https://www.googleapis.com/auth/drive"]

credentials = {
  "type": "service_account",
  "project_id": "sheets-api-connect-378620",
  "private_key_id": "1005124050c80d085e2c5b344345715978dd9cc9",
  "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
  "client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
  "client_id": "106625872877651920064",
  "auth_uri": "https://accounts.google.com/o/oauth2/auth",
  "token_uri": "https://oauth2.googleapis.com/token",
  "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
  "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
}

gc = gspread.service_account_from_dict(credentials)

st.set_page_config(layout="wide")

master_hold = 'https://docs.google.com/spreadsheets/d/15flX6E7lPxu_HC7IOHpB3VEg2Am1AmtxTo9c2y_I-Mw/edit?gid=676575006#gid=676575006'

@st.cache_resource(ttl = 301)
def init_baselines():
          sh = gc.open_by_url(master_hold)
          worksheet = sh.worksheet('ADPs (model)')
          adp_hold = pd.DataFrame(worksheet.get_all_records())
          adp_hold = adp_hold[['Player', 'Team', 'Bye', 'Position', 'Position Rank', 'Underdog', 'MFL10', 'RTSPORTS', 'AVG', 'Projection', 'Proj ADP', 'Diff']]
          adp_table = adp_hold.drop_duplicates(subset='Player')
          
          worksheet = sh.worksheet('Stacks (model)')
          stacks_hold = pd.DataFrame(worksheet.get_all_records())
          stacks_table = stacks_hold.drop_duplicates(subset='Team')
          
          worksheet = sh.worksheet('Player Level Projections')
          proj_hold = pd.DataFrame(worksheet.get_all_records())
          proj_table = proj_hold[['Player', 'Team', 'Pos', 'Pass Yards', 'PassTD', 'Rush Yards', 'RushTD', 'Receptions', 'Rec Yards', 'RecTD', 'Proj']]
          
          return adp_table, stacks_table, proj_table

adp_table, stacks_table, proj_table = init_baselines()

# tab1, tab2, tab3 = st.tabs(["ADPs and Ranks", "Team Projections", "Stack Tool", "Player Prop Simulations", "Stat Specific Simulations", "Bet Sheet"])

def convert_df_to_csv(df):
    return df.to_csv().encode('utf-8')

col1, col2 = st.columns([1, 5])

with col1:
    if st.button("Load/Reset Data", key='reset4'):
          st.cache_data.clear()
          adp_table, stacks_table, proj_table = init_baselines()
    site_var2 = st.radio("What site are you playing?", ('Underdog', 'MFL10'), key='site_var2')
    split_var2 = st.radio("Would you like to run stack analysis for the full slate or individual teams?", ('All Teams', 'Specific Teams'), key='split_var2')
    if split_var2 == 'Specific Teams':
        team_var2 = st.multiselect('Which teams would you like to include in the analysis?', options = adp_table['Team'].unique(), key='team_var2')
    elif split_var2 == 'All Teams':
        team_var2 = adp_table.Team.unique().tolist()
    pos_split2 = st.radio("Are you viewing all positions, specific groups, or specific positions?", ('All Positions', 'Specific Positions'), key='pos_split2')
    if pos_split2 == 'Specific Positions':
        pos_var2 = st.multiselect('What Positions would you like to view?', options = ['QB', 'RB', 'WR', 'TE'])
    elif pos_split2 == 'All Positions':
        pos_var2 = 'All'
    if site_var2 == 'Underdog':
        adp_dict = dict(zip(adp_table.Player, adp_table.Underdog))
    elif site_var2 == 'MFL10':
       adp_dict = dict(zip(adp_table.Player, adp_table.MFL10))
    size_var2 = st.number_input('What size of stacks are you analyzing?', min_value = 3, max_value = 6, step=1)
    stack_size = size_var2

    team_dict = dict(zip(adp_table.Player, adp_table.Team))
    proj_dict = dict(zip(adp_table.Player, adp_table.Projection))
    diff_dict = dict(zip(adp_table.Player, adp_table.Diff))

with col2:
    stack_hold_container = st.empty()
    if st.button('Run stack analysis'):
        comb_list = []
        if pos_split2 == 'All Positions':
            slate_teams = adp_table['Team'].values.tolist()
            raw_baselines = adp_table.copy()
        elif pos_split2 != 'All Positions':
            slate_teams = adp_table['Team'].values.tolist()
            raw_baselines = adp_table[adp_table['Position'].str.contains('|'.join(pos_var2))]

        for cur_team in team_var2:
            working_baselines = raw_baselines.copy()
            working_baselines = working_baselines[working_baselines['Team'] == cur_team]
            order_list = working_baselines['Player']

            comb = combinations(order_list, stack_size)

            for i in list(comb):
                comb_list.append(i)

        comb_DF = pd.DataFrame(comb_list)

        if stack_size == 3:
            comb_DF['Team'] = comb_DF[0].map(team_dict)

            comb_DF['Proj'] = comb_DF.apply(lambda row: pd.Series([proj_dict.get(row[i], None) for i in range(3)]).sum(), axis=1)

            comb_DF['ADP_1'] = comb_DF[0].map(adp_dict)
            comb_DF['ADP_2'] = comb_DF[1].map(adp_dict)
            comb_DF['ADP_3'] = comb_DF[2].map(adp_dict)

            comb_DF['Value'] = comb_DF.apply(lambda row: pd.Series([diff_dict.get(row[i], None) for i in range(3)]).mean(), axis=1)
            
        elif stack_size == 4:
            comb_DF['Team'] = comb_DF[0].map(team_dict)

            comb_DF['Proj'] = comb_DF.apply(lambda row: pd.Series([proj_dict.get(row[i], None) for i in range(4)]).sum(), axis=1)

            comb_DF['ADP_1'] = comb_DF[0].map(adp_dict)
            comb_DF['ADP_2'] = comb_DF[1].map(adp_dict)
            comb_DF['ADP_3'] = comb_DF[2].map(adp_dict)
            comb_DF['ADP_4'] = comb_DF[3].map(adp_dict)

            comb_DF['Value'] = comb_DF.apply(lambda row: pd.Series([diff_dict.get(row[i], None) for i in range(4)]).mean(), axis=1)
            
        elif stack_size == 5:
            comb_DF['Team'] = comb_DF[0].map(team_dict)

            comb_DF['Proj'] = comb_DF.apply(lambda row: pd.Series([proj_dict.get(row[i], None) for i in range(5)]).sum(), axis=1)

            comb_DF['ADP_1'] = comb_DF[0].map(adp_dict)
            comb_DF['ADP_2'] = comb_DF[1].map(adp_dict)
            comb_DF['ADP_3'] = comb_DF[2].map(adp_dict)
            comb_DF['ADP_4'] = comb_DF[3].map(adp_dict)
            comb_DF['ADP_5'] = comb_DF[4].map(adp_dict)

            comb_DF['Value'] = comb_DF.apply(lambda row: pd.Series([diff_dict.get(row[i], None) for i in range(5)]).mean(), axis=1)
        
        elif stack_size == 6:
            comb_DF['Team'] = comb_DF[0].map(team_dict)

            comb_DF['Proj'] = comb_DF.apply(lambda row: pd.Series([proj_dict.get(row[i], None) for i in range(6)]).sum(), axis=1)

            comb_DF['ADP_1'] = comb_DF[0].map(adp_dict)
            comb_DF['ADP_2'] = comb_DF[1].map(adp_dict)
            comb_DF['ADP_3'] = comb_DF[2].map(adp_dict)
            comb_DF['ADP_4'] = comb_DF[3].map(adp_dict)
            comb_DF['ADP_5'] = comb_DF[4].map(adp_dict)
            comb_DF['ADP_6'] = comb_DF[5].map(adp_dict)
            
            comb_DF['Value'] = comb_DF.apply(lambda row: pd.Series([diff_dict.get(row[i], None) for i in range(6)]).mean(), axis=1)

        comb_DF = comb_DF.sort_values(by='Proj', ascending=False)

        cut_var = 0

        if stack_size == 3:
            while cut_var <= int(len(comb_DF)):
                try:
                    if int(cut_var) == 0:
                        cur_proj = float(comb_DF.iat[cut_var,4])
                        cur_own = float(comb_DF.iat[cut_var,8])
                    elif int(cut_var) >= 1:
                        check_own = float(comb_DF.iat[cut_var,8])
                        if check_own < cur_own:
                            comb_DF = comb_DF.drop([cut_var])
                            cur_own = cur_own
                            cut_var = cut_var - 1
                            comb_DF = comb_DF.reset_index()
                            comb_DF = comb_DF.drop(['index'], axis=1)
                        elif check_own >= cur_own:
                            cur_own = float(comb_DF.iat[cut_var,8])
                            cut_var = cut_var
                    cut_var += 1
                except:
                    cut_var += 1
                    
        elif stack_size == 4:
            while cut_var <= int(len(comb_DF)):
                try:
                    if int(cut_var) == 0:
                        cur_proj = float(comb_DF.iat[cut_var,5])
                        cur_own = float(comb_DF.iat[cut_var,10])
                    elif int(cut_var) >= 1:
                        check_own = float(comb_DF.iat[cut_var,10])
                        if check_own < cur_own:
                            comb_DF = comb_DF.drop([cut_var])
                            cur_own = cur_own
                            cut_var = cut_var - 1
                            comb_DF = comb_DF.reset_index()
                            comb_DF = comb_DF.drop(['index'], axis=1)
                        elif check_own >= cur_own:
                            cur_own = float(comb_DF.iat[cut_var,10])
                            cut_var = cut_var
                    cut_var += 1
                except:
                    cut_var += 1
        elif stack_size == 5:
            while cut_var <= int(len(comb_DF)):
                try:
                    if int(cut_var) == 0:
                        cur_proj = float(comb_DF.iat[cut_var,6])
                        cur_own = float(comb_DF.iat[cut_var,12])
                    elif int(cut_var) >= 1:
                        check_own = float(comb_DF.iat[cut_var,12])
                        if check_own < cur_own:
                            comb_DF = comb_DF.drop([cut_var])
                            cur_own = cur_own
                            cut_var = cut_var - 1
                            comb_DF = comb_DF.reset_index()
                            comb_DF = comb_DF.drop(['index'], axis=1)
                        elif check_own >= cur_own:
                            cur_own = float(comb_DF.iat[cut_var,12])
                            cut_var = cut_var
                    cut_var += 1
                except:
                    cut_var += 1
        elif stack_size == 6:
            while cut_var <= int(len(comb_DF)):
                try:
                    if int(cut_var) == 0:
                        cur_proj = float(comb_DF.iat[cut_var,7])
                        cur_own = float(comb_DF.iat[cut_var,14])
                    elif int(cut_var) >= 1:
                        check_own = float(comb_DF.iat[cut_var,14])
                        if check_own < cur_own:
                            comb_DF = comb_DF.drop([cut_var])
                            cur_own = cur_own
                            cut_var = cut_var - 1
                            comb_DF = comb_DF.reset_index()
                            comb_DF = comb_DF.drop(['index'], axis=1)
                        elif check_own >= cur_own:
                            cur_own = float(comb_DF.iat[cut_var,14])
                            cut_var = cut_var
                    cut_var += 1
                except:
                    cut_var += 1

        with stack_hold_container:
            stack_hold_container = st.empty()
            st.dataframe(comb_DF.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
        st.download_button(
                label="Export Tables",
                data=convert_df_to_csv(comb_DF),
                file_name='NFL_Stack_Options_export.csv',
                mime='text/csv',
        )