Multichem's picture
Update app.py
2532b19 verified
raw
history blame
51.8 kB
import pulp
import numpy as np
import pandas as pd
import streamlit as st
import gspread
from itertools import combinations
import time
@st.cache_resource
def init_conn():
scope = ['https://www.googleapis.com/auth/spreadsheets',
"https://www.googleapis.com/auth/drive"]
credentials = {
"type": "service_account",
"project_id": "sheets-api-connect-378620",
"private_key_id": "1005124050c80d085e2c5b344345715978dd9cc9",
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
"client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
"client_id": "106625872877651920064",
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
"token_uri": "https://oauth2.googleapis.com/token",
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
}
gc = gspread.service_account_from_dict(credentials)
return gc
st.set_page_config(layout="wide")
gc = init_conn()
wrong_acro = ['WSH', 'AZ']
right_acro = ['WAS', 'ARI']
game_format = {'Win Percentage': '{:.2%}','First Inning Lead Percentage': '{:.2%}',
'Fifth Inning Lead Percentage': '{:.2%}', '8+ runs': '{:.2%}', 'DK LevX': '{:.2%}', 'FD LevX': '{:.2%}'}
team_roo_format = {'Top Score%': '{:.2%}','0 Runs': '{:.2%}', '1 Run': '{:.2%}', '2 Runs': '{:.2%}', '3 Runs': '{:.2%}', '4 Runs': '{:.2%}',
'5 Runs': '{:.2%}','6 Runs': '{:.2%}', '7 Runs': '{:.2%}', '8 Runs': '{:.2%}', '9 Runs': '{:.2%}', '10 Runs': '{:.2%}'}
player_roo_format = {'Top_finish': '{:.2%}','Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}', '20+%': '{:.2%}', '2x%': '{:.2%}', '3x%': '{:.2%}',
'4x%': '{:.2%}','GPP%': '{:.2%}'}
expose_format = {'Proj Own': '{:.2%}','Exposure': '{:.2%}'}
all_dk_player_projections = 'https://docs.google.com/spreadsheets/d/1I_1Ve3F4tftgfLQQoRKOJ351XfEG48s36OxXUKxmgS8/edit#gid=1391856348'
@st.cache_resource(ttl=299)
def init_baselines():
sh = gc.open_by_url(all_dk_player_projections)
worksheet = sh.worksheet('SD_Projections')
load_display = pd.DataFrame(worksheet.get_all_records())
load_display.replace('', np.nan, inplace=True)
raw_display = load_display.dropna(subset=['PPR'])
raw_display.rename(columns={"name": "Player", "PPR": "Median"}, inplace = True)
raw_display = raw_display[['Player', 'Salary', 'Position', 'Team', 'Opp', 'Median', 'Own', 'rush_yards', 'rec']]
dk_roo_raw = raw_display.loc[raw_display['Median'] > 0]
worksheet = sh.worksheet('FD_SD_Projections')
load_display = pd.DataFrame(worksheet.get_all_records())
load_display.replace('', np.nan, inplace=True)
raw_display = load_display.dropna(subset=['Half_PPR'])
raw_display.rename(columns={"name": "Player", "Half_PPR": "Median"}, inplace = True)
raw_display = raw_display[['Player', 'Salary', 'Position', 'Team', 'Opp', 'Median', 'Own', 'rush_yards', 'rec']]
fd_roo_raw = raw_display.loc[raw_display['Median'] > 0]
worksheet = sh.worksheet('SD_Projections_2')
load_display = pd.DataFrame(worksheet.get_all_records())
load_display.replace('', np.nan, inplace=True)
raw_display = load_display.dropna(subset=['PPR'])
raw_display.rename(columns={"name": "Player", "PPR": "Median"}, inplace = True)
raw_display = raw_display[['Player', 'Salary', 'Position', 'Team', 'Opp', 'Median', 'Own', 'rush_yards', 'rec']]
dk_roo_raw_2 = raw_display.loc[raw_display['Median'] > 0]
worksheet = sh.worksheet('FD_SD_Projections_2')
load_display = pd.DataFrame(worksheet.get_all_records())
load_display.replace('', np.nan, inplace=True)
raw_display = load_display.dropna(subset=['Half_PPR'])
raw_display.rename(columns={"name": "Player", "Half_PPR": "Median"}, inplace = True)
raw_display = raw_display[['Player', 'Salary', 'Position', 'Team', 'Opp', 'Median', 'Own', 'rush_yards', 'rec']]
fd_roo_raw_2 = raw_display.loc[raw_display['Median'] > 0]
worksheet = sh.worksheet('SD_Projections_3')
load_display = pd.DataFrame(worksheet.get_all_records())
load_display.replace('', np.nan, inplace=True)
raw_display = load_display.dropna(subset=['PPR'])
raw_display.rename(columns={"name": "Player", "PPR": "Median"}, inplace = True)
raw_display = raw_display[['Player', 'Salary', 'Position', 'Team', 'Opp', 'Median', 'Own', 'rush_yards', 'rec']]
dk_roo_raw_3 = raw_display.loc[raw_display['Median'] > 0]
worksheet = sh.worksheet('FD_SD_Projections_3')
load_display = pd.DataFrame(worksheet.get_all_records())
load_display.replace('', np.nan, inplace=True)
raw_display = load_display.dropna(subset=['Half_PPR'])
raw_display.rename(columns={"name": "Player", "Half_PPR": "Median"}, inplace = True)
raw_display = raw_display[['Player', 'Salary', 'Position', 'Team', 'Opp', 'Median', 'Own', 'rush_yards', 'rec']]
fd_roo_raw_3 = raw_display.loc[raw_display['Median'] > 0]
worksheet = sh.worksheet('SD_Projections')
load_display = pd.DataFrame(worksheet.get_all_records())
load_display.replace('', np.nan, inplace=True)
load_display.rename(columns={"PPR": "Median", "name": "Player"}, inplace = True)
raw_display = load_display.dropna(subset=['Median'])
dk_ids = dict(zip(raw_display['Player'], raw_display['player_id']))
worksheet = sh.worksheet('FD_SD_Projections')
load_display = pd.DataFrame(worksheet.get_all_records())
load_display.replace('', np.nan, inplace=True)
load_display.rename(columns={"Half_PPR": "Median", "name": "Player"}, inplace = True)
raw_display = load_display.dropna(subset=['Median'])
fd_ids = dict(zip(raw_display['Player'], raw_display['player_id']))
return dk_roo_raw, dk_roo_raw_2, dk_roo_raw_3, fd_roo_raw, fd_roo_raw_2, fd_roo_raw_3, dk_ids, fd_ids
dk_roo_raw, dk_roo_raw_2, dk_roo_raw_3, fd_roo_raw, fd_roo_raw_2, fd_roo_raw_3, dkid_dict, fdid_dict = init_baselines()
@st.cache_data
def convert_df_to_csv(df):
return df.to_csv().encode('utf-8')
tab1, tab2, tab3 = st.tabs(['Uploads and Info', 'Range of Outcomes', 'Optimizer'])
with tab1:
st.info("The Projections file can have any columns in any order, but must contain columns explicitly named: 'Player', 'Salary', 'Position', 'Team', 'Opp', 'rush_yards', 'rec', 'Median', and 'Own'. For the purposes of this showdown optimizer, only include FLEX positions, salaries, and medians. The optimizer logic will handle the rest!")
col1, col2 = st.columns([1, 5])
with col1:
proj_file = st.file_uploader("Upload Projections File", key = 'proj_uploader')
if proj_file is not None:
try:
proj_dataframe = pd.read_csv(proj_file)
proj_dataframe = proj_dataframe.loc[proj_dataframe['Median'] > 0]
try:
proj_dataframe['Own'] = proj_dataframe['Own'].str.replace('%', '').astype(float)
except:
pass
except:
proj_dataframe = pd.read_excel(proj_file)
proj_dataframe = proj_dataframe.loc[proj_dataframe['Median'] > 0]
try:
proj_dataframe['Own'] = proj_dataframe['Own'].str.replace('%', '').astype(float)
except:
pass
with col2:
if proj_file is not None:
st.dataframe(proj_dataframe.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
with tab2:
col1, col2 = st.columns([1, 5])
with col1:
if st.button("Load/Reset Data", key='reset2'):
st.cache_data.clear()
dk_roo_raw, dk_roo_raw_2, dk_roo_raw_3, fd_roo_raw, fd_roo_raw_2, fd_roo_raw_3, dkid_dict, fdid_dict = init_baselines()
slate_var2 = st.radio("Which data are you loading?", ('Paydirt (Main)', 'Paydirt (Secondary)', 'Paydirt (Third)', 'User'), key='slate_var2')
site_var2 = st.radio("What table would you like to display?", ('Draftkings', 'Fanduel'), key='site_var2')
if slate_var2 == 'User':
raw_baselines = proj_dataframe
elif slate_var2 != 'User':
if site_var2 == 'Draftkings':
if slate_var2 == 'Paydirt (Main)':
raw_baselines = dk_roo_raw
elif slate_var2 == 'Paydirt (Secondary)':
raw_baselines = dk_roo_raw_2
elif slate_var2 == 'Paydirt (Third)':
raw_baselines = dk_roo_raw_3
elif site_var2 == 'Fanduel':
if slate_var2 == 'Paydirt (Main)':
raw_baselines = fd_roo_raw
elif slate_var2 == 'Paydirt (Secondary)':
raw_baselines = fd_roo_raw_2
elif slate_var2 == 'Paydirt (Third)':
raw_baselines = fd_roo_raw_3
with col2:
hold_container = st.empty()
if st.button('Create Range of Outcomes for Slate'):
with hold_container:
working_roo = raw_baselines
working_roo = working_roo.loc[working_roo['Median'] > 0]
if site_var2 == 'Draftkings':
working_roo.rename(columns={"name": "Player", "rush_yards": "Rush Yards", "rec": "Receptions", "Median": "Fantasy"}, inplace = True)
elif site_var2 == 'Fanduel':
working_roo.rename(columns={"name": "Player", "rush_yards": "Rush Yards", "rec": "Receptions", "Median": "Fantasy"}, inplace = True)
working_roo.replace('', 0, inplace=True)
own_dict = dict(zip(working_roo.Player, working_roo.Own))
team_dict = dict(zip(working_roo.Player, working_roo.Team))
opp_dict = dict(zip(working_roo.Player, working_roo.Opp))
total_sims = 1000
flex_file = working_roo[['Player', 'Position', 'Salary', 'Fantasy', 'Rush Yards', 'Receptions']]
flex_file.rename(columns={"Fantasy": "Median", "Pos": "Position"}, inplace = True)
flex_file['Floor'] = np.where(flex_file['Position'] == 'QB',(flex_file['Median']*.25) + (flex_file['Rush Yards']*.01),flex_file['Median']*.25)
flex_file['Ceiling'] = np.where(flex_file['Position'] == 'QB',(flex_file['Median'] + flex_file['Floor']) + (flex_file['Rush Yards']*.01), flex_file['Median'] + flex_file['Floor'] + flex_file['Receptions'])
flex_file['Ceiling'] = flex_file['Ceiling'].fillna(15)
flex_file['STD'] = np.where(flex_file['Position'] != 'QB', (flex_file['Median']/4) + flex_file['Receptions'], (flex_file['Median']/4))
flex_file['STD'] = flex_file['Ceiling'].fillna(5)
flex_file = flex_file[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD']]
hold_file = flex_file
overall_file = flex_file
salary_file = flex_file
overall_players = overall_file[['Player']]
for x in range(0,total_sims):
salary_file[x] = salary_file['Salary']
salary_file=salary_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
salary_file.astype('int').dtypes
salary_file = salary_file.div(1000)
for x in range(0,total_sims):
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
overall_file=overall_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
overall_file.astype('int').dtypes
players_only = hold_file[['Player']]
raw_lineups_file = players_only
for x in range(0,total_sims):
maps_dict = {'proj_map':dict(zip(hold_file.Player,hold_file[x]))}
raw_lineups_file[x] = sum([raw_lineups_file['Player'].map(maps_dict['proj_map'])])
players_only[x] = raw_lineups_file[x].rank(ascending=False)
players_only=players_only.drop(['Player'], axis=1)
players_only.astype('int').dtypes
salary_2x_check = (overall_file - (salary_file*2))
salary_3x_check = (overall_file - (salary_file*3))
salary_4x_check = (overall_file - (salary_file*4))
players_only['Average_Rank'] = players_only.mean(axis=1)
players_only['Top_finish'] = players_only[players_only == 1].count(axis=1)/total_sims
players_only['Top_5_finish'] = players_only[players_only <= 5].count(axis=1)/total_sims
players_only['Top_10_finish'] = players_only[players_only <= 10].count(axis=1)/total_sims
players_only['20+%'] = overall_file[overall_file >= 20].count(axis=1)/float(total_sims)
players_only['2x%'] = salary_2x_check[salary_2x_check >= 1].count(axis=1)/float(total_sims)
players_only['3x%'] = salary_3x_check[salary_3x_check >= 1].count(axis=1)/float(total_sims)
players_only['4x%'] = salary_4x_check[salary_4x_check >= 1].count(axis=1)/float(total_sims)
players_only['Player'] = hold_file[['Player']]
final_outcomes = players_only[['Player', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%']]
final_Proj = pd.merge(hold_file, final_outcomes, on="Player")
final_Proj = final_Proj[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%']]
final_Proj['Own'] = final_Proj['Player'].map(own_dict)
final_Proj['Team'] = final_Proj['Player'].map(team_dict)
final_Proj['Opp'] = final_Proj['Player'].map(opp_dict)
final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own']]
final_Proj['Projection Rank'] = final_Proj.Median.rank(pct = True)
final_Proj['Own Rank'] = final_Proj.Own.rank(pct = True)
final_Proj['LevX'] = 0
final_Proj['LevX'] = final_Proj[['Projection Rank', 'Top_5_finish']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank']
final_Proj['CPT_Own'] = final_Proj['Own'] / 4
final_Proj['CPT_Proj'] = final_Proj['Median'] * 1.5
final_Proj['CPT_Salary'] = final_Proj['Salary'] * 1.5
export_final_proj = final_Proj
export_final_proj['ID'] = export_final_proj['Player'].map(dkid_dict)
display_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own', 'CPT_Own', 'LevX']]
display_Proj = display_Proj.set_index('Player')
display_Proj = display_Proj.sort_values(by='Median', ascending=False)
with hold_container:
hold_container = st.empty()
display_Proj = display_Proj
st.dataframe(display_Proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), use_container_width = True)
st.download_button(
label="Export Tables",
data=convert_df_to_csv(export_final_proj),
file_name='Custom_NFL_overall_export.csv',
mime='text/csv',
)
with tab3:
col1, col2 = st.columns([1, 5])
with col1:
if st.button("Load/Reset Data", key='reset1'):
st.cache_data.clear()
dk_roo_raw, dk_roo_raw_2, dk_roo_raw_3, fd_roo_raw, fd_roo_raw_2, fd_roo_raw_3, dkid_dict, fdid_dict = init_baselines()
for key in st.session_state.keys():
del st.session_state[key]
slate_var1 = st.radio("Which data are you loading?", ('Paydirt (Main)', 'Paydirt (Secondary)', 'Paydirt (Third)', 'User'), key='slate_var1')
site_var1 = st.selectbox("What site is the showdown on?", ('Draftkings', 'Fanduel'), key='site_var1')
if site_var1 == 'Draftkings':
if slate_var1 == 'User':
raw_baselines = proj_dataframe
elif slate_var1 == 'Paydirt (Main)':
raw_baselines = dk_roo_raw
elif slate_var1 == 'Paydirt (Secondary)':
raw_baselines = dk_roo_raw_2
elif slate_var1 == 'Paydirt (Third)':
raw_baselines = dk_roo_raw_3
elif site_var1 == 'Fanduel':
if slate_var1 == 'User':
st.info("Showdown on Fanduel sucks, you should not do that, but I understand degen's gotta degen")
raw_baselines = proj_dataframe
elif slate_var1 == 'Paydirt (Main)':
st.info("Showdown on Fanduel sucks, you should not do that, but I understand degen's gotta degen")
raw_baselines = fd_roo_raw
elif slate_var1 == 'Paydirt (Secondary)':
st.info("Showdown on Fanduel sucks, you should not do that, but I understand degen's gotta degen")
raw_baselines = fd_roo_raw_2
elif slate_var1 == 'Paydirt (Third)':
st.info("Showdown on Fanduel sucks, you should not do that, but I understand degen's gotta degen")
raw_baselines = fd_roo_raw_3
contest_var1 = st.selectbox("What contest type are you optimizing for?", ('Cash', 'Small Field GPP', 'Large Field GPP'), key='contest_var1')
lock_var1 = st.multiselect("Are there any players you want to use in all lineups in the CAPTAIN (Lock Button)?", options = raw_baselines['Player'].unique(), key='lock_var1')
lock_var2 = st.multiselect("Are there any players you want to use in all lineups in the FLEX (Lock Button)?", options = raw_baselines['Player'].unique(), key='lock_var2')
avoid_var1 = st.multiselect("Are there any players you want to remove from the pool (Drop Button)?", options = raw_baselines['Player'].unique(), key='avoid_var1')
trim_choice1 = st.selectbox("Allow overowned lineups?", options = ['Yes', 'No'])
linenum_var1 = st.number_input("How many lineups would you like to produce?", min_value = 1, max_value = 300, value = 20, step = 1, key='linenum_var1')
if trim_choice1 == 'Yes':
trim_var1 = 0
elif trim_choice1 == 'No':
trim_var1 = 1
if site_var1 == 'Draftkings':
min_sal1 = st.number_input('Min Salary', min_value = 35000, max_value = 49900, value = 49000, step = 100, key='min_sal1')
max_sal1 = st.number_input('Max Salary', min_value = 35000, max_value = 50000, value = 50000, step = 100, key='max_sal1')
elif site_var1 == 'Fanduel':
min_sal1 = st.number_input('Min Salary', min_value = 45000, max_value = 59900, value = 59000, step = 100, key='min_sal1')
max_sal1 = st.number_input('Max Salary', min_value = 45000, max_value = 60000, value = 60000, step = 100, key='max_sal1')
if contest_var1 == 'Small Field GPP':
if site_var1 == 'Draftkings':
ownframe = raw_baselines.copy()
ownframe['Own%'] = np.where((ownframe['Position'] == 'QB') & (ownframe['Own'] - ownframe.loc[ownframe['Position'] == 'QB', 'Own'].mean() >= 0), ownframe['Own'] * (5 * (ownframe['Own'] - ownframe.loc[ownframe['Position'] == 'QB', 'Own'].mean())/100) + ownframe.loc[ownframe['Position'] == 'QB', 'Own'].mean(), ownframe['Own'])
ownframe['Own%'] = np.where((ownframe['Position'] != 'QB') & (ownframe['Own'] - ownframe.loc[ownframe['Position'] != 'QB', 'Own'].mean() >= 0), ownframe['Own'] * (5 * (ownframe['Own'] - ownframe.loc[ownframe['Position'] != 'QB', 'Own'].mean())/100) + ownframe.loc[ownframe['Position'] != 'QB', 'Own'].mean(), ownframe['Own%'])
ownframe['Own%'] = np.where(ownframe['Own%'] > 85, 85, ownframe['Own%'])
ownframe['Own'] = ownframe['Own%'] * (500 / ownframe['Own%'].sum())
elif site_var1 == 'Fanduel':
ownframe = raw_baselines.copy()
ownframe['Own%'] = np.where((ownframe['Position'] == 'QB') & (ownframe['Own'] - ownframe.loc[ownframe['Position'] == 'QB', 'Own'].mean() >= 0), ownframe['Own'] * (5 * (ownframe['Own'] - ownframe.loc[ownframe['Position'] == 'QB', 'Own'].mean())/50) + ownframe.loc[ownframe['Position'] == 'QB', 'Own'].mean(), ownframe['Own'])
ownframe['Own%'] = np.where((ownframe['Position'] != 'QB') & (ownframe['Own'] - ownframe.loc[ownframe['Position'] != 'QB', 'Own'].mean() >= 0), ownframe['Own'] * (5 * (ownframe['Own'] - ownframe.loc[ownframe['Position'] != 'QB', 'Own'].mean())/150) + ownframe.loc[ownframe['Position'] != 'QB', 'Own'].mean(), ownframe['Own%'])
ownframe['Own%'] = np.where(ownframe['Own%'] > 75, 75, ownframe['Own%'])
ownframe['Own'] = ownframe['Own%'] * (400 / ownframe['Own%'].sum())
elif contest_var1 == 'Large Field GPP':
if site_var1 == 'Draftkings':
ownframe = raw_baselines.copy()
ownframe['Own%'] = np.where((ownframe['Position'] == 'QB') & (ownframe['Own'] - ownframe.loc[ownframe['Position'] == 'QB', 'Own'].mean() >= 0), ownframe['Own'] * (2.5 * (ownframe['Own'] - ownframe.loc[ownframe['Position'] == 'QB', 'Own'].mean())/100) + ownframe.loc[ownframe['Position'] == 'QB', 'Own'].mean(), ownframe['Own'])
ownframe['Own%'] = np.where((ownframe['Position'] != 'QB') & (ownframe['Own'] - ownframe.loc[ownframe['Position'] != 'QB', 'Own'].mean() >= 0), ownframe['Own'] * (2.5 * (ownframe['Own'] - ownframe.loc[ownframe['Position'] != 'QB', 'Own'].mean())/100) + ownframe.loc[ownframe['Position'] != 'QB', 'Own'].mean(), ownframe['Own%'])
ownframe['Own%'] = np.where(ownframe['Own%'] > 75, 75, ownframe['Own%'])
ownframe['Own'] = ownframe['Own%'] * (500 / ownframe['Own%'].sum())
elif site_var1 == 'Fanduel':
ownframe = raw_baselines.copy()
ownframe['Own%'] = np.where((ownframe['Position'] == 'QB') & (ownframe['Own'] - ownframe.loc[ownframe['Position'] == 'QB', 'Own'].mean() >= 0), ownframe['Own'] * (2.5 * (ownframe['Own'] - ownframe.loc[ownframe['Position'] == 'QB', 'Own'].mean())/50) + ownframe.loc[ownframe['Position'] == 'QB', 'Own'].mean(), ownframe['Own'])
ownframe['Own%'] = np.where((ownframe['Position'] != 'QB') & (ownframe['Own'] - ownframe.loc[ownframe['Position'] != 'QB', 'Own'].mean() >= 0), ownframe['Own'] * (2.5 * (ownframe['Own'] - ownframe.loc[ownframe['Position'] != 'QB', 'Own'].mean())/150) + ownframe.loc[ownframe['Position'] != 'QB', 'Own'].mean(), ownframe['Own%'])
ownframe['Own%'] = np.where(ownframe['Own%'] > 75, 75, ownframe['Own%'])
ownframe['Own'] = ownframe['Own%'] * (400 / ownframe['Own%'].sum())
elif contest_var1 == 'Cash':
if site_var1 == 'Draftkings':
ownframe = raw_baselines.copy()
ownframe['Own%'] = np.where((ownframe['Position'] == 'QB') & (ownframe['Own'] - ownframe.loc[ownframe['Position'] == 'QB', 'Own'].mean() >= 0), ownframe['Own'] * (6 * (ownframe['Own'] - ownframe.loc[ownframe['Position'] == 'QB', 'Own'].mean())/100) + ownframe.loc[ownframe['Position'] == 'QB', 'Own'].mean(), ownframe['Own'])
ownframe['Own%'] = np.where((ownframe['Position'] != 'QB') & (ownframe['Own'] - ownframe.loc[ownframe['Position'] != 'QB', 'Own'].mean() >= 0), ownframe['Own'] * (6 * (ownframe['Own'] - ownframe.loc[ownframe['Position'] != 'QB', 'Own'].mean())/100) + ownframe.loc[ownframe['Position'] != 'QB', 'Own'].mean(), ownframe['Own%'])
ownframe['Own%'] = np.where(ownframe['Own%'] > 90, 90, ownframe['Own%'])
ownframe['Own'] = ownframe['Own%'] * (500 / ownframe['Own%'].sum())
elif site_var1 == 'Fanduel':
ownframe = raw_baselines.copy()
ownframe['Own%'] = np.where((ownframe['Position'] == 'QB') & (ownframe['Own'] - ownframe.loc[ownframe['Position'] == 'QB', 'Own'].mean() >= 0), ownframe['Own'] * (6 * (ownframe['Own'] - ownframe.loc[ownframe['Position'] == 'QB', 'Own'].mean())/50) + ownframe.loc[ownframe['Position'] == 'QB', 'Own'].mean(), ownframe['Own'])
ownframe['Own%'] = np.where((ownframe['Position'] != 'QB') & (ownframe['Own'] - ownframe.loc[ownframe['Position'] != 'QB', 'Own'].mean() >= 0), ownframe['Own'] * (6 * (ownframe['Own'] - ownframe.loc[ownframe['Position'] != 'QB', 'Own'].mean())/150) + ownframe.loc[ownframe['Position'] != 'QB', 'Own'].mean(), ownframe['Own%'])
ownframe['Own%'] = np.where(ownframe['Own%'] > 75, 75, ownframe['Own%'])
ownframe['Own'] = ownframe['Own%'] * (400 / ownframe['Own%'].sum())
export_baselines = ownframe[['Player', 'Salary', 'Position', 'Team', 'Opp', 'Median', 'Own']]
export_baselines['CPT_Proj'] = export_baselines['Median'] * 1.5
export_baselines['CPT_Salary'] = export_baselines['Salary'] * 1.5
export_baselines['ID'] = export_baselines['Player'].map(dkid_dict)
display_baselines = ownframe[['Player', 'Salary', 'Position', 'Team', 'Opp', 'Median', 'Own']]
display_baselines['CPT Own'] = display_baselines['Own'] / 4
display_baselines = display_baselines.sort_values(by='Median', ascending=False)
display_baselines['cpt_lock'] = np.where(display_baselines['Player'].isin(lock_var1), 1, 0)
display_baselines['lock'] = np.where(display_baselines['Player'].isin(lock_var2), 1, 0)
st.session_state.display_baselines = display_baselines.copy()
st.session_state.export_baselines = export_baselines.copy()
index_check = pd.DataFrame()
flex_proj = pd.DataFrame()
cpt_proj = pd.DataFrame()
if site_var1 == 'Draftkings':
cpt_proj['Player'] = display_baselines['Player']
cpt_proj['Salary'] = display_baselines['Salary'] * 1.5
cpt_proj['Position'] = display_baselines['Position']
cpt_proj['Team'] = display_baselines['Team']
cpt_proj['Opp'] = display_baselines['Opp']
cpt_proj['Median'] = display_baselines['Median'] * 1.5
cpt_proj['Own'] = display_baselines['CPT Own']
cpt_proj['lock'] = display_baselines['cpt_lock']
cpt_proj['roster'] = 'CPT'
if len(lock_var1) > 0:
cpt_proj = cpt_proj[cpt_proj['lock'] == 1]
if len(lock_var2) > 0:
cpt_proj = cpt_proj[~cpt_proj['Player'].isin(lock_var2)]
flex_proj['Player'] = display_baselines['Player']
flex_proj['Salary'] = display_baselines['Salary']
flex_proj['Position'] = display_baselines['Position']
flex_proj['Team'] = display_baselines['Team']
flex_proj['Opp'] = display_baselines['Opp']
flex_proj['Median'] = display_baselines['Median']
flex_proj['Own'] = display_baselines['Own']
flex_proj['lock'] = display_baselines['lock']
flex_proj['roster'] = 'FLEX'
elif site_var1 == 'Fanduel':
cpt_proj['Player'] = display_baselines['Player']
cpt_proj['Salary'] = display_baselines['Salary']
cpt_proj['Position'] = display_baselines['Position']
cpt_proj['Team'] = display_baselines['Team']
cpt_proj['Opp'] = display_baselines['Opp']
cpt_proj['Median'] = display_baselines['Median'] * 1.5
cpt_proj['Own'] = display_baselines['CPT Own'] *.75
cpt_proj['lock'] = display_baselines['cpt_lock']
cpt_proj['roster'] = 'CPT'
flex_proj['Player'] = display_baselines['Player']
flex_proj['Salary'] = display_baselines['Salary']
flex_proj['Position'] = display_baselines['Position']
flex_proj['Team'] = display_baselines['Team']
flex_proj['Opp'] = display_baselines['Opp']
flex_proj['Median'] = display_baselines['Median']
flex_proj['Own'] = display_baselines['Own']
flex_proj['lock'] = display_baselines['lock']
flex_proj['roster'] = 'FLEX'
combo_file = pd.concat([cpt_proj, flex_proj], ignore_index=True)
with col2:
display_container = st.empty()
display_dl_container = st.empty()
optimize_container = st.empty()
download_container = st.empty()
freq_container = st.empty()
if st.button('Optimize'):
for key in st.session_state.keys():
del st.session_state[key]
max_proj = 1000
max_own = 1000
total_proj = 0
total_own = 0
display_container = st.empty()
display_dl_container = st.empty()
optimize_container = st.empty()
download_container = st.empty()
freq_container = st.empty()
lineup_display = []
check_list = []
lineups = []
portfolio = pd.DataFrame()
x = 1
with st.spinner('Wait for it...'):
with optimize_container:
while x <= linenum_var1:
sorted_lineup = []
p_used = []
raw_proj_file = combo_file
raw_flex_file = raw_proj_file.dropna(how='all')
raw_flex_file = raw_flex_file.loc[raw_flex_file['Median'] > 0]
flex_file = raw_flex_file
flex_file.rename(columns={"Own": "Proj DK Own%"}, inplace = True)
flex_file['name_var'] = flex_file['Player']
flex_file['lock'] = np.where(flex_file['Player'].isin(lock_var2), 1, 0)
flex_file = flex_file[~flex_file['Player'].isin(avoid_var1)]
flex_file['Player'] = np.where(flex_file['roster'] == 'CPT', flex_file['Player'] + ' - CPT', flex_file['Player'] + ' - FLEX')
player_ids = flex_file.index
overall_players = flex_file[['Player']]
overall_players['player_var_add'] = flex_file.index
overall_players['player_var'] = 'player_vars_' + overall_players['player_var_add'].astype(str)
player_vars = pulp.LpVariable.dicts("player_vars", flex_file.index, 0, 1, pulp.LpInteger)
total_score = pulp.LpProblem("Fantasy_Points_Problem", pulp.LpMaximize)
player_match = dict(zip(overall_players['player_var'], overall_players['Player']))
player_index_match = dict(zip(overall_players['player_var'], overall_players['player_var_add']))
player_own = dict(zip(flex_file['Player'], flex_file['Proj DK Own%']))
player_team = dict(zip(flex_file['Player'], flex_file['Team']))
player_pos = dict(zip(flex_file['Player'], flex_file['Position']))
player_sal = dict(zip(flex_file['Player'], flex_file['Salary']))
player_proj = dict(zip(flex_file['Player'], flex_file['Median']))
obj_points = {idx: (flex_file['Median'][idx]) for idx in flex_file.index}
total_score += sum([player_vars[idx]*obj_points[idx] for idx in flex_file.index])
obj_points_max = {idx: (flex_file['Median'][idx]) for idx in flex_file.index}
obj_own_max = {idx: (flex_file['Proj DK Own%'][idx]) for idx in flex_file.index}
obj_salary = {idx: (flex_file['Salary'][idx]) for idx in flex_file.index}
total_score += pulp.lpSum([player_vars[idx]*obj_salary[idx] for idx in flex_file.index]) <= max_sal1
total_score += pulp.lpSum([player_vars[idx]*obj_salary[idx] for idx in flex_file.index]) >= min_sal1
if site_var1 == 'Draftkings':
for flex in flex_file['lock'].unique():
sub_idx = flex_file[flex_file['lock'] == 1].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == len(lock_var2)
for flex in flex_file['roster'].unique():
sub_idx = flex_file[flex_file['roster'] == "CPT"].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 1
for flex in flex_file['roster'].unique():
sub_idx = flex_file[flex_file['roster'] == "FLEX"].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 5
for playerid in player_ids:
total_score += pulp.lpSum([player_vars[i] for i in player_ids if
(flex_file['name_var'][i] == flex_file['name_var'][playerid])]) <= 1
elif site_var1 == 'Fanduel':
for flex in flex_file['lock'].unique():
sub_idx = flex_file[flex_file['lock'] == 1].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == len(lock_var2)
for flex in flex_file['Position'].unique():
sub_idx = flex_file[flex_file['Position'] != "Var"].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 5
for flex in flex_file['roster'].unique():
sub_idx = flex_file[flex_file['roster'] == "CPT"].index
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 1
for playerid in player_ids:
total_score += pulp.lpSum([player_vars[i] for i in player_ids if
(flex_file['name_var'][i] == flex_file['name_var'][playerid])]) <= 1
player_count = []
player_trim = []
lineup_list = []
if contest_var1 == 'Cash':
obj_points = {idx: (flex_file['Proj DK Own%'][idx]) for idx in flex_file.index}
total_score += sum([player_vars[idx]*obj_points[idx] for idx in flex_file.index])
total_score += pulp.lpSum([player_vars[idx]*obj_points[idx] for idx in flex_file.index]) <= max_own - .001
elif contest_var1 != 'Cash':
obj_points = {idx: (flex_file['Median'][idx]) for idx in flex_file.index}
total_score += sum([player_vars[idx]*obj_points[idx] for idx in flex_file.index])
total_score += pulp.lpSum([player_vars[idx]*obj_points[idx] for idx in flex_file.index]) <= max_proj - .01
if trim_var1 == 1:
total_score += pulp.lpSum([player_vars[idx]*obj_own_max[idx] for idx in flex_file.index]) <= max_own - .001
total_score.solve()
for v in total_score.variables():
if v.varValue > 0:
lineup_list.append(v.name)
df = pd.DataFrame(lineup_list)
df['Names'] = df[0].map(player_match)
df['Cost'] = df['Names'].map(player_sal)
df['Proj'] = df['Names'].map(player_proj)
df['Own'] = df['Names'].map(player_own)
total_cost = sum(df['Cost'])
total_own = sum(df['Own'])
total_proj = sum(df['Proj'])
lineup_raw = pd.DataFrame(lineup_list)
lineup_raw['Names'] = lineup_raw[0].map(player_match)
lineup_raw['value'] = lineup_raw[0].map(player_index_match)
lineup_final = lineup_raw.sort_values(by=['value'])
del lineup_final[lineup_final.columns[0]]
del lineup_final[lineup_final.columns[1]]
lineup_final['Team'] = lineup_final['Names'].map(player_team)
lineup_final['Position'] = lineup_final['Names'].map(player_pos)
lineup_final['Salary'] = lineup_final['Names'].map(player_sal)
lineup_final['Proj'] = lineup_final['Names'].map(player_proj)
lineup_final['Own'] = lineup_final['Names'].map(player_own)
lineup_final.loc['Column_Total'] = lineup_final.sum(numeric_only=True, axis=0)
lineup_final = lineup_final.reset_index(drop=True)
max_proj = total_proj
max_own = total_own
if site_var1 == 'Draftkings':
if len(lineup_final) == 7:
port_display = pd.DataFrame(lineup_final['Names'][:-1].values.reshape(1, -1))
port_display['Cost'] = total_cost
port_display['Proj'] = total_proj
port_display['Own'] = total_own
st.table(port_display)
portfolio = pd.concat([portfolio, port_display], ignore_index = True)
elif site_var1 == 'Fanduel':
if len(lineup_final) == 6:
port_display = pd.DataFrame(lineup_final['Names'][:-1].values.reshape(1, -1))
port_display['Cost'] = total_cost
port_display['Proj'] = total_proj
port_display['Own'] = total_own
st.table(port_display)
portfolio = pd.concat([portfolio, port_display], ignore_index = True)
x += 1
if site_var1 == 'Draftkings':
portfolio.rename(columns={0: "CPT", 1: "FLEX1", 2: "FLEX2", 3: "FLEX3", 4: "FLEX4", 5: "FLEX5"}, inplace = True)
elif site_var1 == 'Fanduel':
portfolio.rename(columns={0: "MVP", 1: "FLEX1", 2: "FLEX2", 3: "FLEX3", 4: "FLEX4"}, inplace = True)
portfolio = portfolio.dropna()
portfolio = portfolio.reset_index()
portfolio['Lineup_num'] = portfolio['index'] + 1
portfolio.rename(columns={'Lineup_num': "Lineup"}, inplace = True)
portfolio = portfolio.set_index('Lineup')
portfolio = portfolio.drop(columns=['index'])
st.session_state.portfolio = portfolio.drop_duplicates()
final_outcomes = portfolio
st.session_state.final_outcomes = portfolio
player_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.portfolio.iloc[:,0:5].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
player_freq['Freq'] = player_freq['Freq'].astype(int)
player_freq['Position'] = player_freq['Player'].map(player_pos)
player_freq['Salary'] = player_freq['Player'].map(player_sal)
player_freq['Proj Own'] = player_freq['Player'].map(player_own) / 100
player_freq['Exposure'] = player_freq['Freq']/(linenum_var1)
player_freq['Team'] = player_freq['Player'].map(player_team)
final_outcomes_export = pd.DataFrame()
split_portfolio = pd.DataFrame()
if site_var1 == 'Draftkings':
split_portfolio[['CPT', 'CPT_ID']] = final_outcomes.CPT.str.split("-", n=1, expand = True)
split_portfolio[['FLEX1', 'FLEX1_ID']] = final_outcomes.FLEX1.str.split("-", n=1, expand = True)
split_portfolio[['FLEX2', 'FLEX2_ID']] = final_outcomes.FLEX2.str.split("-", n=1, expand = True)
split_portfolio[['FLEX3', 'FLEX3_ID']] = final_outcomes.FLEX3.str.split("-", n=1, expand = True)
split_portfolio[['FLEX4', 'FLEX4_ID']] = final_outcomes.FLEX4.str.split("-", n=1, expand = True)
split_portfolio[['FLEX5', 'FLEX5_ID']] = final_outcomes.FLEX5.str.split("-", n=1, expand = True)
split_portfolio['CPT'] = split_portfolio['CPT'].str.strip()
split_portfolio['FLEX1'] = split_portfolio['FLEX1'].str.strip()
split_portfolio['FLEX2'] = split_portfolio['FLEX2'].str.strip()
split_portfolio['FLEX3'] = split_portfolio['FLEX3'].str.strip()
split_portfolio['FLEX4'] = split_portfolio['FLEX4'].str.strip()
split_portfolio['FLEX5'] = split_portfolio['FLEX5'].str.strip()
final_outcomes_export['CPT'] = split_portfolio['CPT']
final_outcomes_export['FLEX1'] = split_portfolio['FLEX1']
final_outcomes_export['FLEX2'] = split_portfolio['FLEX2']
final_outcomes_export['FLEX3'] = split_portfolio['FLEX3']
final_outcomes_export['FLEX4'] = split_portfolio['FLEX4']
final_outcomes_export['FLEX5'] = split_portfolio['FLEX5']
final_outcomes_export['CPT'].replace(dkid_dict, inplace=True)
final_outcomes_export['FLEX1'].replace(dkid_dict, inplace=True)
final_outcomes_export['FLEX2'].replace(dkid_dict, inplace=True)
final_outcomes_export['FLEX3'].replace(dkid_dict, inplace=True)
final_outcomes_export['FLEX4'].replace(dkid_dict, inplace=True)
final_outcomes_export['FLEX5'].replace(dkid_dict, inplace=True)
final_outcomes_export['Salary'] = final_outcomes['Cost']
final_outcomes_export['Own'] = final_outcomes['Own']
final_outcomes_export['Proj'] = final_outcomes['Proj']
st.session_state.final_outcomes_export = final_outcomes_export.copy()
elif site_var1 == 'Fanduel':
split_portfolio[['MVP', 'CPT_ID']] = final_outcomes.MVP.str.split("-", n=1, expand = True)
split_portfolio[['FLEX1', 'FLEX1_ID']] = final_outcomes.FLEX1.str.split("-", n=1, expand = True)
split_portfolio[['FLEX2', 'FLEX2_ID']] = final_outcomes.FLEX2.str.split("-", n=1, expand = True)
split_portfolio[['FLEX3', 'FLEX3_ID']] = final_outcomes.FLEX3.str.split("-", n=1, expand = True)
split_portfolio[['FLEX4', 'FLEX4_ID']] = final_outcomes.FLEX4.str.split("-", n=1, expand = True)
split_portfolio['MVP'] = split_portfolio['MVP'].str.strip()
split_portfolio['FLEX1'] = split_portfolio['FLEX1'].str.strip()
split_portfolio['FLEX2'] = split_portfolio['FLEX2'].str.strip()
split_portfolio['FLEX3'] = split_portfolio['FLEX3'].str.strip()
split_portfolio['FLEX4'] = split_portfolio['FLEX4'].str.strip()
final_outcomes_export['MVP'] = split_portfolio['MVP']
final_outcomes_export['FLEX1'] = split_portfolio['FLEX1']
final_outcomes_export['FLEX2'] = split_portfolio['FLEX2']
final_outcomes_export['FLEX3'] = split_portfolio['FLEX3']
final_outcomes_export['FLEX4'] = split_portfolio['FLEX4']
final_outcomes_export['MVP'].replace(fdid_dict, inplace=True)
final_outcomes_export['FLEX1'].replace(fdid_dict, inplace=True)
final_outcomes_export['FLEX2'].replace(fdid_dict, inplace=True)
final_outcomes_export['FLEX3'].replace(fdid_dict, inplace=True)
final_outcomes_export['FLEX4'].replace(fdid_dict, inplace=True)
final_outcomes_export['Salary'] = final_outcomes['Cost']
final_outcomes_export['Own'] = final_outcomes['Own']
final_outcomes_export['Proj'] = final_outcomes['Proj']
st.session_state.FD_final_outcomes_export = final_outcomes_export.copy()
st.session_state.player_freq = player_freq[['Player', 'Position', 'Team', 'Salary', 'Proj Own', 'Exposure']]
with display_container:
display_container = st.empty()
if 'display_baselines' in st.session_state:
st.dataframe(st.session_state.display_baselines.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
with display_dl_container:
display_dl_container = st.empty()
if 'export_baselines' in st.session_state:
st.download_button(
label="Export Projections",
data=convert_df_to_csv(st.session_state.export_baselines),
file_name='showdown_proj_export.csv',
mime='text/csv',
)
with optimize_container:
optimize_container = st.empty()
if 'final_outcomes' in st.session_state:
st.dataframe(st.session_state.final_outcomes.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
with download_container:
download_container = st.empty()
if site_var1 == 'Draftkings':
if 'final_outcomes_export' in st.session_state:
st.download_button(
label="Export Optimals",
data=convert_df_to_csv(st.session_state.final_outcomes_export),
file_name='NFL_optimals_export.csv',
mime='text/csv',
)
elif site_var1 == 'Fanduel':
if 'FD_final_outcomes_export' in st.session_state:
st.download_button(
label="Export Optimals",
data=convert_df_to_csv(st.session_state.FD_final_outcomes_export),
file_name='FD_NFL_optimals_export.csv',
mime='text/csv',
)
with freq_container:
freq_container = st.empty()
if 'player_freq' in st.session_state:
st.dataframe(st.session_state.player_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(expose_format, precision=2), use_container_width = True)