Update app.py
Browse files
app.py
CHANGED
@@ -331,8 +331,7 @@ with tab3:
|
|
331 |
elif site_var1 == 'Fanduel':
|
332 |
min_sal1 = st.number_input('Min Salary', min_value = 45000, max_value = 59900, value = 59000, step = 100, key='min_sal1')
|
333 |
max_sal1 = st.number_input('Max Salary', min_value = 45000, max_value = 60000, value = 60000, step = 100, key='max_sal1')
|
334 |
-
|
335 |
-
|
336 |
if contest_var1 == 'Small Field GPP':
|
337 |
if site_var1 == 'Draftkings':
|
338 |
ownframe = raw_baselines.copy()
|
@@ -432,14 +431,17 @@ with tab3:
|
|
432 |
flex_proj['roster'] = 'FLEX'
|
433 |
|
434 |
combo_file = pd.concat([cpt_proj, flex_proj], ignore_index=True)
|
|
|
|
|
435 |
|
436 |
-
st.
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
|
|
|
443 |
|
444 |
with st.container():
|
445 |
if 'portfolio' in st.session_state:
|
@@ -471,7 +473,7 @@ with tab3:
|
|
471 |
x = 1
|
472 |
|
473 |
with st.spinner('Wait for it...'):
|
474 |
-
with
|
475 |
|
476 |
while x <= linenum_var1:
|
477 |
sorted_lineup = []
|
@@ -589,11 +591,6 @@ with tab3:
|
|
589 |
lineup_final['Own'] = lineup_final['Names'].map(player_own)
|
590 |
lineup_final.loc['Column_Total'] = lineup_final.sum(numeric_only=True, axis=0)
|
591 |
lineup_final = lineup_final.reset_index(drop=True)
|
592 |
-
# lineup_final = lineup_final.set_index('Names')
|
593 |
-
|
594 |
-
with col2:
|
595 |
-
with st.container():
|
596 |
-
st.table(lineup_final)
|
597 |
|
598 |
max_proj = total_proj
|
599 |
max_own = total_own
|
@@ -635,7 +632,7 @@ with tab3:
|
|
635 |
|
636 |
final_outcomes = portfolio
|
637 |
|
638 |
-
player_freq = pd.DataFrame(np.column_stack(np.unique(portfolio.iloc[:,0:5].values, return_counts=True)),
|
639 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
640 |
player_freq['Freq'] = player_freq['Freq'].astype(int)
|
641 |
player_freq['Position'] = player_freq['Player'].map(player_pos)
|
@@ -713,6 +710,4 @@ with tab3:
|
|
713 |
|
714 |
st.session_state.final_outcomes_export = final_outcomes_export.copy()
|
715 |
|
716 |
-
st.session_state.player_freq = player_freq[['Player', 'Position', 'Team', 'Salary', 'Proj Own', 'Exposure']]
|
717 |
-
|
718 |
-
|
|
|
331 |
elif site_var1 == 'Fanduel':
|
332 |
min_sal1 = st.number_input('Min Salary', min_value = 45000, max_value = 59900, value = 59000, step = 100, key='min_sal1')
|
333 |
max_sal1 = st.number_input('Max Salary', min_value = 45000, max_value = 60000, value = 60000, step = 100, key='max_sal1')
|
334 |
+
|
|
|
335 |
if contest_var1 == 'Small Field GPP':
|
336 |
if site_var1 == 'Draftkings':
|
337 |
ownframe = raw_baselines.copy()
|
|
|
431 |
flex_proj['roster'] = 'FLEX'
|
432 |
|
433 |
combo_file = pd.concat([cpt_proj, flex_proj], ignore_index=True)
|
434 |
+
|
435 |
+
with col2:
|
436 |
|
437 |
+
with st.container():
|
438 |
+
st.dataframe(display_baselines.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
|
439 |
+
st.download_button(
|
440 |
+
label="Export Projections",
|
441 |
+
data=convert_df_to_csv(export_baselines),
|
442 |
+
file_name='NFL_proj_export.csv',
|
443 |
+
mime='text/csv',
|
444 |
+
)
|
445 |
|
446 |
with st.container():
|
447 |
if 'portfolio' in st.session_state:
|
|
|
473 |
x = 1
|
474 |
|
475 |
with st.spinner('Wait for it...'):
|
476 |
+
with st.container():
|
477 |
|
478 |
while x <= linenum_var1:
|
479 |
sorted_lineup = []
|
|
|
591 |
lineup_final['Own'] = lineup_final['Names'].map(player_own)
|
592 |
lineup_final.loc['Column_Total'] = lineup_final.sum(numeric_only=True, axis=0)
|
593 |
lineup_final = lineup_final.reset_index(drop=True)
|
|
|
|
|
|
|
|
|
|
|
594 |
|
595 |
max_proj = total_proj
|
596 |
max_own = total_own
|
|
|
632 |
|
633 |
final_outcomes = portfolio
|
634 |
|
635 |
+
player_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.portfolio.iloc[:,0:5].values, return_counts=True)),
|
636 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
637 |
player_freq['Freq'] = player_freq['Freq'].astype(int)
|
638 |
player_freq['Position'] = player_freq['Player'].map(player_pos)
|
|
|
710 |
|
711 |
st.session_state.final_outcomes_export = final_outcomes_export.copy()
|
712 |
|
713 |
+
st.session_state.player_freq = player_freq[['Player', 'Position', 'Team', 'Salary', 'Proj Own', 'Exposure']]
|
|
|
|