Update app.py
Browse files
app.py
CHANGED
@@ -105,14 +105,12 @@ def set_export_ids():
|
|
105 |
worksheet = sh.worksheet('SD_Projections')
|
106 |
load_display = pd.DataFrame(worksheet.get_all_records())
|
107 |
load_display.replace('', np.nan, inplace=True)
|
108 |
-
load_display.rename(columns={"name": "Player", "PPR": "Median"}, inplace = True)
|
109 |
raw_display = load_display.dropna(subset=['Median'])
|
110 |
dk_ids = dict(zip(raw_display['Player'], raw_display['player_id']))
|
111 |
|
112 |
worksheet = sh.worksheet('FD_SD_Projections')
|
113 |
load_display = pd.DataFrame(worksheet.get_all_records())
|
114 |
load_display.replace('', np.nan, inplace=True)
|
115 |
-
load_display.rename(columns={"name": "Player", "PPR": "Median"}, inplace = True)
|
116 |
raw_display = load_display.dropna(subset=['Median'])
|
117 |
fd_ids = dict(zip(raw_display['Player'], raw_display['player_id']))
|
118 |
|
@@ -613,7 +611,7 @@ with tab3:
|
|
613 |
|
614 |
final_outcomes = portfolio
|
615 |
|
616 |
-
player_freq = pd.DataFrame(np.column_stack(np.unique(portfolio.iloc[:,0:
|
617 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
618 |
player_freq['Freq'] = player_freq['Freq'].astype(int)
|
619 |
player_freq['Position'] = player_freq['Player'].map(player_pos)
|
|
|
105 |
worksheet = sh.worksheet('SD_Projections')
|
106 |
load_display = pd.DataFrame(worksheet.get_all_records())
|
107 |
load_display.replace('', np.nan, inplace=True)
|
|
|
108 |
raw_display = load_display.dropna(subset=['Median'])
|
109 |
dk_ids = dict(zip(raw_display['Player'], raw_display['player_id']))
|
110 |
|
111 |
worksheet = sh.worksheet('FD_SD_Projections')
|
112 |
load_display = pd.DataFrame(worksheet.get_all_records())
|
113 |
load_display.replace('', np.nan, inplace=True)
|
|
|
114 |
raw_display = load_display.dropna(subset=['Median'])
|
115 |
fd_ids = dict(zip(raw_display['Player'], raw_display['player_id']))
|
116 |
|
|
|
611 |
|
612 |
final_outcomes = portfolio
|
613 |
|
614 |
+
player_freq = pd.DataFrame(np.column_stack(np.unique(portfolio.iloc[:,0:5].values, return_counts=True)),
|
615 |
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
616 |
player_freq['Freq'] = player_freq['Freq'].astype(int)
|
617 |
player_freq['Position'] = player_freq['Player'].map(player_pos)
|