Upload streamlit_app.py
Browse files- streamlit_app.py +551 -0
streamlit_app.py
ADDED
@@ -0,0 +1,551 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pulp
|
2 |
+
import numpy as np
|
3 |
+
import pandas as pd
|
4 |
+
import streamlit as st
|
5 |
+
import gspread
|
6 |
+
from itertools import combinations
|
7 |
+
import time
|
8 |
+
|
9 |
+
@st.cache_resource
|
10 |
+
def init_conn():
|
11 |
+
scope = ['https://www.googleapis.com/auth/spreadsheets',
|
12 |
+
"https://www.googleapis.com/auth/drive"]
|
13 |
+
|
14 |
+
credentials = {
|
15 |
+
"type": "service_account",
|
16 |
+
"project_id": "sheets-api-connect-378620",
|
17 |
+
"private_key_id": "1005124050c80d085e2c5b344345715978dd9cc9",
|
18 |
+
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
|
19 |
+
"client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
|
20 |
+
"client_id": "106625872877651920064",
|
21 |
+
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
|
22 |
+
"token_uri": "https://oauth2.googleapis.com/token",
|
23 |
+
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
|
24 |
+
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
|
25 |
+
}
|
26 |
+
|
27 |
+
gc = gspread.service_account_from_dict(credentials)
|
28 |
+
return gc
|
29 |
+
|
30 |
+
st.set_page_config(layout="wide")
|
31 |
+
|
32 |
+
gc = init_conn()
|
33 |
+
|
34 |
+
wrong_acro = ['WSH', 'AZ']
|
35 |
+
right_acro = ['WAS', 'ARI']
|
36 |
+
|
37 |
+
game_format = {'Win Percentage': '{:.2%}','First Inning Lead Percentage': '{:.2%}',
|
38 |
+
'Fifth Inning Lead Percentage': '{:.2%}', '8+ runs': '{:.2%}', 'DK LevX': '{:.2%}', 'FD LevX': '{:.2%}'}
|
39 |
+
|
40 |
+
team_roo_format = {'Top Score%': '{:.2%}','0 Runs': '{:.2%}', '1 Run': '{:.2%}', '2 Runs': '{:.2%}', '3 Runs': '{:.2%}', '4 Runs': '{:.2%}',
|
41 |
+
'5 Runs': '{:.2%}','6 Runs': '{:.2%}', '7 Runs': '{:.2%}', '8 Runs': '{:.2%}', '9 Runs': '{:.2%}', '10 Runs': '{:.2%}'}
|
42 |
+
|
43 |
+
player_roo_format = {'Top_finish': '{:.2%}','Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}', '20+%': '{:.2%}', '2x%': '{:.2%}', '3x%': '{:.2%}',
|
44 |
+
'4x%': '{:.2%}','GPP%': '{:.2%}'}
|
45 |
+
|
46 |
+
all_dk_player_projections = 'https://docs.google.com/spreadsheets/d/1I_1Ve3F4tftgfLQQoRKOJ351XfEG48s36OxXUKxmgS8/edit#gid=1391856348'
|
47 |
+
|
48 |
+
@st.cache_resource(ttl=600)
|
49 |
+
def load_dk_player_projections():
|
50 |
+
sh = gc.open_by_url(all_dk_player_projections)
|
51 |
+
worksheet = sh.worksheet('SD_Projections')
|
52 |
+
load_display = pd.DataFrame(worksheet.get_all_records())
|
53 |
+
load_display.replace('', np.nan, inplace=True)
|
54 |
+
raw_display = load_display.dropna(subset=['PPR'])
|
55 |
+
raw_display.rename(columns={"name": "Player", "PPR": "Median"}, inplace = True)
|
56 |
+
raw_display = raw_display[['Player', 'Salary', 'Position', 'Team', 'Opp', 'Median', 'Own', 'rush_yards', 'rec']]
|
57 |
+
raw_display = raw_display.loc[raw_display['Median'] > 0]
|
58 |
+
|
59 |
+
return raw_display
|
60 |
+
|
61 |
+
@st.cache_resource(ttl=600)
|
62 |
+
def load_fd_player_projections():
|
63 |
+
sh = gc.open_by_url(all_dk_player_projections)
|
64 |
+
worksheet = sh.worksheet('FD_SD_Projections')
|
65 |
+
load_display = pd.DataFrame(worksheet.get_all_records())
|
66 |
+
load_display.replace('', np.nan, inplace=True)
|
67 |
+
raw_display = load_display.dropna(subset=['Half_PPR'])
|
68 |
+
raw_display.rename(columns={"name": "Player", "Half_PPR": "Median"}, inplace = True)
|
69 |
+
raw_display = raw_display[['Player', 'Salary', 'Position', 'Team', 'Opp', 'Median', 'Own', 'rush_yards', 'rec']]
|
70 |
+
raw_display = raw_display.loc[raw_display['Median'] > 0]
|
71 |
+
|
72 |
+
return raw_display
|
73 |
+
|
74 |
+
dk_roo_raw = load_dk_player_projections()
|
75 |
+
fd_roo_raw = load_fd_player_projections()
|
76 |
+
|
77 |
+
@st.cache_data
|
78 |
+
def convert_df_to_csv(df):
|
79 |
+
return df.to_csv().encode('utf-8')
|
80 |
+
|
81 |
+
tab1, tab2, tab3 = st.tabs(['Uploads and Info', 'Range of Outcomes', 'Optimizer'])
|
82 |
+
|
83 |
+
with tab1:
|
84 |
+
st.info("The Projections file can have any columns in any order, but must contain columns explicitly named: 'Player', 'Salary', 'Position', 'Team', 'Opp', 'rush_yards', 'rec', 'Median', and 'Own'. For the purposes of this showdown optimizer, only include FLEX positions, salaries, and medians. The optimizer logic will handle the rest!")
|
85 |
+
col1, col2 = st.columns([1, 5])
|
86 |
+
|
87 |
+
with col1:
|
88 |
+
proj_file = st.file_uploader("Upload Projections File", key = 'proj_uploader')
|
89 |
+
|
90 |
+
if proj_file is not None:
|
91 |
+
try:
|
92 |
+
proj_dataframe = pd.read_csv(proj_file)
|
93 |
+
proj_dataframe = proj_dataframe.loc[proj_dataframe['Median'] > 0]
|
94 |
+
except:
|
95 |
+
proj_dataframe = pd.read_excel(proj_file)
|
96 |
+
proj_dataframe = proj_dataframe.loc[proj_dataframe['Median'] > 0]
|
97 |
+
with col2:
|
98 |
+
if proj_file is not None:
|
99 |
+
st.dataframe(proj_dataframe.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
|
100 |
+
|
101 |
+
with tab2:
|
102 |
+
col1, col2 = st.columns([1, 5])
|
103 |
+
with col1:
|
104 |
+
if st.button("Load/Reset Data", key='reset2'):
|
105 |
+
st.cache_data.clear()
|
106 |
+
dk_roo_raw = load_dk_player_projections()
|
107 |
+
fd_roo_raw = load_fd_player_projections()
|
108 |
+
slate_var2 = st.radio("Which data are you loading?", ('Paydirt', 'User'), key='slate_var2')
|
109 |
+
site_var2 = st.radio("What table would you like to display?", ('Draftkings', 'Fanduel'), key='site_var2')
|
110 |
+
if slate_var2 == 'User':
|
111 |
+
raw_baselines = proj_dataframe
|
112 |
+
elif slate_var2 != 'User':
|
113 |
+
if site_var2 == 'Draftkings':
|
114 |
+
raw_baselines = dk_roo_raw
|
115 |
+
elif site_var2 == 'Fanduel':
|
116 |
+
raw_baselines = fd_roo_raw
|
117 |
+
|
118 |
+
with col2:
|
119 |
+
hold_container = st.empty()
|
120 |
+
if st.button('Create Range of Outcomes for Slate'):
|
121 |
+
with hold_container:
|
122 |
+
working_roo = raw_baselines
|
123 |
+
working_roo = working_roo.loc[working_roo['Median'] > 0]
|
124 |
+
if site_var2 == 'Draftkings':
|
125 |
+
working_roo.rename(columns={"name": "Player", "rush_yards": "Rush Yards", "rec": "Receptions", "Median": "Fantasy"}, inplace = True)
|
126 |
+
elif site_var2 == 'Draftkings':
|
127 |
+
working_roo.rename(columns={"name": "Player", "rush_yards": "Rush Yards", "rec": "Receptions", "Median": "Fantasy"}, inplace = True)
|
128 |
+
working_roo.replace('', 0, inplace=True)
|
129 |
+
own_dict = dict(zip(working_roo.Player, working_roo.Own))
|
130 |
+
team_dict = dict(zip(working_roo.Player, working_roo.Team))
|
131 |
+
opp_dict = dict(zip(working_roo.Player, working_roo.Opp))
|
132 |
+
total_sims = 1000
|
133 |
+
|
134 |
+
flex_file = working_roo[['Player', 'Position', 'Salary', 'Fantasy', 'Rush Yards', 'Receptions']]
|
135 |
+
flex_file.rename(columns={"Fantasy": "Median", "Pos": "Position"}, inplace = True)
|
136 |
+
flex_file['Floor'] = np.where(flex_file['Position'] == 'QB',(flex_file['Median']*.25) + (flex_file['Rush Yards']*.01),flex_file['Median']*.25)
|
137 |
+
flex_file['Ceiling'] = np.where(flex_file['Position'] == 'QB',(flex_file['Median'] + flex_file['Floor']) + (flex_file['Rush Yards']*.01), flex_file['Median'] + flex_file['Floor'] + flex_file['Receptions'])
|
138 |
+
flex_file['Ceiling'] = flex_file['Ceiling'].fillna(15)
|
139 |
+
flex_file['STD'] = np.where(flex_file['Position'] != 'QB', (flex_file['Median']/4) + flex_file['Receptions'], (flex_file['Median']/4))
|
140 |
+
flex_file['STD'] = flex_file['Ceiling'].fillna(5)
|
141 |
+
flex_file = flex_file[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD']]
|
142 |
+
hold_file = flex_file
|
143 |
+
overall_file = flex_file
|
144 |
+
salary_file = flex_file
|
145 |
+
|
146 |
+
overall_players = overall_file[['Player']]
|
147 |
+
|
148 |
+
for x in range(0,total_sims):
|
149 |
+
salary_file[x] = salary_file['Salary']
|
150 |
+
|
151 |
+
salary_file=salary_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
152 |
+
salary_file.astype('int').dtypes
|
153 |
+
|
154 |
+
salary_file = salary_file.div(1000)
|
155 |
+
|
156 |
+
for x in range(0,total_sims):
|
157 |
+
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
|
158 |
+
|
159 |
+
overall_file=overall_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
160 |
+
overall_file.astype('int').dtypes
|
161 |
+
|
162 |
+
players_only = hold_file[['Player']]
|
163 |
+
raw_lineups_file = players_only
|
164 |
+
|
165 |
+
for x in range(0,total_sims):
|
166 |
+
maps_dict = {'proj_map':dict(zip(hold_file.Player,hold_file[x]))}
|
167 |
+
raw_lineups_file[x] = sum([raw_lineups_file['Player'].map(maps_dict['proj_map'])])
|
168 |
+
players_only[x] = raw_lineups_file[x].rank(ascending=False)
|
169 |
+
|
170 |
+
players_only=players_only.drop(['Player'], axis=1)
|
171 |
+
players_only.astype('int').dtypes
|
172 |
+
|
173 |
+
salary_2x_check = (overall_file - (salary_file*2))
|
174 |
+
salary_3x_check = (overall_file - (salary_file*3))
|
175 |
+
salary_4x_check = (overall_file - (salary_file*4))
|
176 |
+
|
177 |
+
players_only['Average_Rank'] = players_only.mean(axis=1)
|
178 |
+
players_only['Top_finish'] = players_only[players_only == 1].count(axis=1)/total_sims
|
179 |
+
players_only['Top_5_finish'] = players_only[players_only <= 5].count(axis=1)/total_sims
|
180 |
+
players_only['Top_10_finish'] = players_only[players_only <= 10].count(axis=1)/total_sims
|
181 |
+
players_only['20+%'] = overall_file[overall_file >= 20].count(axis=1)/float(total_sims)
|
182 |
+
players_only['2x%'] = salary_2x_check[salary_2x_check >= 1].count(axis=1)/float(total_sims)
|
183 |
+
players_only['3x%'] = salary_3x_check[salary_3x_check >= 1].count(axis=1)/float(total_sims)
|
184 |
+
players_only['4x%'] = salary_4x_check[salary_4x_check >= 1].count(axis=1)/float(total_sims)
|
185 |
+
|
186 |
+
players_only['Player'] = hold_file[['Player']]
|
187 |
+
|
188 |
+
final_outcomes = players_only[['Player', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%']]
|
189 |
+
|
190 |
+
final_Proj = pd.merge(hold_file, final_outcomes, on="Player")
|
191 |
+
final_Proj = final_Proj[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%']]
|
192 |
+
final_Proj['Own'] = final_Proj['Player'].map(own_dict)
|
193 |
+
final_Proj['Team'] = final_Proj['Player'].map(team_dict)
|
194 |
+
final_Proj['Opp'] = final_Proj['Player'].map(opp_dict)
|
195 |
+
final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own']]
|
196 |
+
final_Proj['Projection Rank'] = final_Proj.Median.rank(pct = True)
|
197 |
+
final_Proj['Own Rank'] = final_Proj.Own.rank(pct = True)
|
198 |
+
final_Proj['LevX'] = 0
|
199 |
+
final_Proj['LevX'] = final_Proj[['Projection Rank', 'Top_5_finish']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank']
|
200 |
+
final_Proj['CPT_Own'] = final_Proj['Own'] / 4
|
201 |
+
final_Proj['CPT_Proj'] = final_Proj['Median'] * 1.5
|
202 |
+
final_Proj['CPT_Salary'] = final_Proj['Salary'] * 1.5
|
203 |
+
|
204 |
+
display_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own', 'CPT_Own', 'LevX']]
|
205 |
+
display_Proj = display_Proj.set_index('Player')
|
206 |
+
display_Proj = display_Proj.sort_values(by='Median', ascending=False)
|
207 |
+
|
208 |
+
with hold_container:
|
209 |
+
hold_container = st.empty()
|
210 |
+
display_Proj = display_Proj
|
211 |
+
st.dataframe(display_Proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), use_container_width = True)
|
212 |
+
|
213 |
+
st.download_button(
|
214 |
+
label="Export Tables",
|
215 |
+
data=convert_df_to_csv(final_Proj),
|
216 |
+
file_name='Custom_NFL_overall_export.csv',
|
217 |
+
mime='text/csv',
|
218 |
+
)
|
219 |
+
|
220 |
+
with tab3:
|
221 |
+
col1, col2 = st.columns([1, 5])
|
222 |
+
with col1:
|
223 |
+
if st.button("Load/Reset Data", key='reset1'):
|
224 |
+
st.cache_data.clear()
|
225 |
+
dk_roo_raw = load_dk_player_projections()
|
226 |
+
fd_roo_raw = load_fd_player_projections()
|
227 |
+
slate_var1 = st.radio("Which data are you loading?", ('Paydirt', 'User'), key='slate_var1')
|
228 |
+
site_var1 = st.selectbox("What site is the showdown on?", ('Draftkings', 'Fanduel'), key='site_var1')
|
229 |
+
if site_var1 == 'Draftkings':
|
230 |
+
if slate_var1 == 'User':
|
231 |
+
raw_baselines = proj_dataframe
|
232 |
+
elif slate_var1 != 'User':
|
233 |
+
raw_baselines = dk_roo_raw
|
234 |
+
elif site_var1 == 'Fanduel':
|
235 |
+
if slate_var1 == 'User':
|
236 |
+
st.info("Showdown on Fanduel sucks, you should not do that, but I understand degen's gotta degen")
|
237 |
+
raw_baselines = proj_dataframe
|
238 |
+
elif slate_var1 != 'User':
|
239 |
+
st.info("Showdown on Fanduel sucks, you should not do that, but I understand degen's gotta degen")
|
240 |
+
raw_baselines = fd_roo_raw
|
241 |
+
contest_var1 = st.selectbox("What contest type are you optimizing for?", ('Cash', 'Small Field GPP', 'Large Field GPP'), key='contest_var1')
|
242 |
+
lock_var1 = st.multiselect("Are there any players you want to use in all lineups in the CAPTAIN (Lock Button)?", options = raw_baselines['Player'].unique(), key='lock_var1')
|
243 |
+
lock_var2 = st.multiselect("Are there any players you want to use in all lineups in the FLEX (Lock Button)?", options = raw_baselines['Player'].unique(), key='lock_var2')
|
244 |
+
avoid_var1 = st.multiselect("Are there any players you want to remove from the pool (Drop Button)?", options = raw_baselines['Player'].unique(), key='avoid_var1')
|
245 |
+
trim_choice1 = st.selectbox("Allow overowned lineups?", options = ['Yes', 'No'])
|
246 |
+
linenum_var1 = st.number_input("How many lineups would you like to produce?", min_value = 1, max_value = 300, value = 20, step = 1, key='linenum_var1')
|
247 |
+
if trim_choice1 == 'Yes':
|
248 |
+
trim_var1 = 0
|
249 |
+
elif trim_choice1 == 'No':
|
250 |
+
trim_var1 = 1
|
251 |
+
if site_var1 == 'Draftkings':
|
252 |
+
min_sal1 = st.number_input('Min Salary', min_value = 35000, max_value = 49900, value = 49000, step = 100, key='min_sal1')
|
253 |
+
max_sal1 = st.number_input('Max Salary', min_value = 35000, max_value = 50000, value = 50000, step = 100, key='max_sal1')
|
254 |
+
elif site_var1 == 'Fanduel':
|
255 |
+
min_sal1 = st.number_input('Min Salary', min_value = 45000, max_value = 59900, value = 59000, step = 100, key='min_sal1')
|
256 |
+
max_sal1 = st.number_input('Max Salary', min_value = 45000, max_value = 60000, value = 60000, step = 100, key='max_sal1')
|
257 |
+
with col2:
|
258 |
+
if contest_var1 == 'Small Field GPP':
|
259 |
+
if site_var1 == 'Draftkings':
|
260 |
+
ownframe = raw_baselines.copy()
|
261 |
+
ownframe['Own%'] = np.where((ownframe['Position'] == 'QB') & (ownframe['Own'] - ownframe.loc[ownframe['Position'] == 'QB', 'Own'].mean() >= 0), ownframe['Own'] * (5 * (ownframe['Own'] - ownframe.loc[ownframe['Position'] == 'QB', 'Own'].mean())/100) + ownframe.loc[ownframe['Position'] == 'QB', 'Own'].mean(), ownframe['Own'])
|
262 |
+
ownframe['Own%'] = np.where((ownframe['Position'] != 'QB') & (ownframe['Own'] - ownframe.loc[ownframe['Position'] != 'QB', 'Own'].mean() >= 0), ownframe['Own'] * (5 * (ownframe['Own'] - ownframe.loc[ownframe['Position'] != 'QB', 'Own'].mean())/100) + ownframe.loc[ownframe['Position'] != 'QB', 'Own'].mean(), ownframe['Own%'])
|
263 |
+
ownframe['Own%'] = np.where(ownframe['Own%'] > 85, 85, ownframe['Own%'])
|
264 |
+
ownframe['Own'] = ownframe['Own%'] * (500 / ownframe['Own%'].sum())
|
265 |
+
elif site_var1 == 'Fanduel':
|
266 |
+
ownframe = raw_baselines.copy()
|
267 |
+
ownframe['Own%'] = np.where((ownframe['Position'] == 'QB') & (ownframe['Own'] - ownframe.loc[ownframe['Position'] == 'QB', 'Own'].mean() >= 0), ownframe['Own'] * (5 * (ownframe['Own'] - ownframe.loc[ownframe['Position'] == 'QB', 'Own'].mean())/50) + ownframe.loc[ownframe['Position'] == 'QB', 'Own'].mean(), ownframe['Own'])
|
268 |
+
ownframe['Own%'] = np.where((ownframe['Position'] != 'QB') & (ownframe['Own'] - ownframe.loc[ownframe['Position'] != 'QB', 'Own'].mean() >= 0), ownframe['Own'] * (5 * (ownframe['Own'] - ownframe.loc[ownframe['Position'] != 'QB', 'Own'].mean())/150) + ownframe.loc[ownframe['Position'] != 'QB', 'Own'].mean(), ownframe['Own%'])
|
269 |
+
ownframe['Own%'] = np.where(ownframe['Own%'] > 75, 75, ownframe['Own%'])
|
270 |
+
ownframe['Own'] = ownframe['Own%'] * (400 / ownframe['Own%'].sum())
|
271 |
+
elif contest_var1 == 'Large Field GPP':
|
272 |
+
if site_var1 == 'Draftkings':
|
273 |
+
ownframe = raw_baselines.copy()
|
274 |
+
ownframe['Own%'] = np.where((ownframe['Position'] == 'QB') & (ownframe['Own'] - ownframe.loc[ownframe['Position'] == 'QB', 'Own'].mean() >= 0), ownframe['Own'] * (2.5 * (ownframe['Own'] - ownframe.loc[ownframe['Position'] == 'QB', 'Own'].mean())/100) + ownframe.loc[ownframe['Position'] == 'QB', 'Own'].mean(), ownframe['Own'])
|
275 |
+
ownframe['Own%'] = np.where((ownframe['Position'] != 'QB') & (ownframe['Own'] - ownframe.loc[ownframe['Position'] != 'QB', 'Own'].mean() >= 0), ownframe['Own'] * (2.5 * (ownframe['Own'] - ownframe.loc[ownframe['Position'] != 'QB', 'Own'].mean())/100) + ownframe.loc[ownframe['Position'] != 'QB', 'Own'].mean(), ownframe['Own%'])
|
276 |
+
ownframe['Own%'] = np.where(ownframe['Own%'] > 75, 75, ownframe['Own%'])
|
277 |
+
ownframe['Own'] = ownframe['Own%'] * (500 / ownframe['Own%'].sum())
|
278 |
+
elif site_var1 == 'Fanduel':
|
279 |
+
ownframe = raw_baselines.copy()
|
280 |
+
ownframe['Own%'] = np.where((ownframe['Position'] == 'QB') & (ownframe['Own'] - ownframe.loc[ownframe['Position'] == 'QB', 'Own'].mean() >= 0), ownframe['Own'] * (2.5 * (ownframe['Own'] - ownframe.loc[ownframe['Position'] == 'QB', 'Own'].mean())/50) + ownframe.loc[ownframe['Position'] == 'QB', 'Own'].mean(), ownframe['Own'])
|
281 |
+
ownframe['Own%'] = np.where((ownframe['Position'] != 'QB') & (ownframe['Own'] - ownframe.loc[ownframe['Position'] != 'QB', 'Own'].mean() >= 0), ownframe['Own'] * (2.5 * (ownframe['Own'] - ownframe.loc[ownframe['Position'] != 'QB', 'Own'].mean())/150) + ownframe.loc[ownframe['Position'] != 'QB', 'Own'].mean(), ownframe['Own%'])
|
282 |
+
ownframe['Own%'] = np.where(ownframe['Own%'] > 75, 75, ownframe['Own%'])
|
283 |
+
ownframe['Own'] = ownframe['Own%'] * (400 / ownframe['Own%'].sum())
|
284 |
+
elif contest_var1 == 'Cash':
|
285 |
+
if site_var1 == 'Draftkings':
|
286 |
+
ownframe = raw_baselines.copy()
|
287 |
+
ownframe['Own%'] = np.where((ownframe['Position'] == 'QB') & (ownframe['Own'] - ownframe.loc[ownframe['Position'] == 'QB', 'Own'].mean() >= 0), ownframe['Own'] * (6 * (ownframe['Own'] - ownframe.loc[ownframe['Position'] == 'QB', 'Own'].mean())/100) + ownframe.loc[ownframe['Position'] == 'QB', 'Own'].mean(), ownframe['Own'])
|
288 |
+
ownframe['Own%'] = np.where((ownframe['Position'] != 'QB') & (ownframe['Own'] - ownframe.loc[ownframe['Position'] != 'QB', 'Own'].mean() >= 0), ownframe['Own'] * (6 * (ownframe['Own'] - ownframe.loc[ownframe['Position'] != 'QB', 'Own'].mean())/100) + ownframe.loc[ownframe['Position'] != 'QB', 'Own'].mean(), ownframe['Own%'])
|
289 |
+
ownframe['Own%'] = np.where(ownframe['Own%'] > 90, 90, ownframe['Own%'])
|
290 |
+
ownframe['Own'] = ownframe['Own%'] * (500 / ownframe['Own%'].sum())
|
291 |
+
elif site_var1 == 'Fanduel':
|
292 |
+
ownframe = raw_baselines.copy()
|
293 |
+
ownframe['Own%'] = np.where((ownframe['Position'] == 'QB') & (ownframe['Own'] - ownframe.loc[ownframe['Position'] == 'QB', 'Own'].mean() >= 0), ownframe['Own'] * (6 * (ownframe['Own'] - ownframe.loc[ownframe['Position'] == 'QB', 'Own'].mean())/50) + ownframe.loc[ownframe['Position'] == 'QB', 'Own'].mean(), ownframe['Own'])
|
294 |
+
ownframe['Own%'] = np.where((ownframe['Position'] != 'QB') & (ownframe['Own'] - ownframe.loc[ownframe['Position'] != 'QB', 'Own'].mean() >= 0), ownframe['Own'] * (6 * (ownframe['Own'] - ownframe.loc[ownframe['Position'] != 'QB', 'Own'].mean())/150) + ownframe.loc[ownframe['Position'] != 'QB', 'Own'].mean(), ownframe['Own%'])
|
295 |
+
ownframe['Own%'] = np.where(ownframe['Own%'] > 75, 75, ownframe['Own%'])
|
296 |
+
ownframe['Own'] = ownframe['Own%'] * (400 / ownframe['Own%'].sum())
|
297 |
+
export_baselines = ownframe[['Player', 'Salary', 'Position', 'Team', 'Opp', 'Median', 'Own']]
|
298 |
+
export_baselines['CPT_Proj'] = export_baselines['Median'] * 1.5
|
299 |
+
export_baselines['CPT_Salary'] = export_baselines['Salary'] * 1.5
|
300 |
+
display_baselines = ownframe[['Player', 'Salary', 'Position', 'Team', 'Opp', 'Median', 'Own']]
|
301 |
+
display_baselines['CPT Own'] = display_baselines['Own'] / 4
|
302 |
+
display_baselines = display_baselines.sort_values(by='Median', ascending=False)
|
303 |
+
display_baselines['cpt_lock'] = np.where(display_baselines['Player'].isin(lock_var1), 1, 0)
|
304 |
+
display_baselines['lock'] = np.where(display_baselines['Player'].isin(lock_var2), 1, 0)
|
305 |
+
|
306 |
+
|
307 |
+
index_check = pd.DataFrame()
|
308 |
+
flex_proj = pd.DataFrame()
|
309 |
+
cpt_proj = pd.DataFrame()
|
310 |
+
|
311 |
+
if site_var1 == 'Draftkings':
|
312 |
+
cpt_proj['Player'] = display_baselines['Player']
|
313 |
+
cpt_proj['Salary'] = display_baselines['Salary'] * 1.5
|
314 |
+
cpt_proj['Position'] = display_baselines['Position']
|
315 |
+
cpt_proj['Team'] = display_baselines['Team']
|
316 |
+
cpt_proj['Opp'] = display_baselines['Opp']
|
317 |
+
cpt_proj['Median'] = display_baselines['Median'] * 1.5
|
318 |
+
cpt_proj['Own'] = display_baselines['CPT Own']
|
319 |
+
cpt_proj['lock'] = display_baselines['cpt_lock']
|
320 |
+
cpt_proj['roster'] = 'CPT'
|
321 |
+
if len(lock_var1) > 0:
|
322 |
+
cpt_proj = cpt_proj[cpt_proj['lock'] == 1]
|
323 |
+
if len(lock_var2) > 0:
|
324 |
+
cpt_proj = cpt_proj[~cpt_proj['Player'].isin(lock_var2)]
|
325 |
+
|
326 |
+
flex_proj['Player'] = display_baselines['Player']
|
327 |
+
flex_proj['Salary'] = display_baselines['Salary']
|
328 |
+
flex_proj['Position'] = display_baselines['Position']
|
329 |
+
flex_proj['Team'] = display_baselines['Team']
|
330 |
+
flex_proj['Opp'] = display_baselines['Opp']
|
331 |
+
flex_proj['Median'] = display_baselines['Median']
|
332 |
+
flex_proj['Own'] = display_baselines['Own']
|
333 |
+
flex_proj['lock'] = display_baselines['lock']
|
334 |
+
flex_proj['roster'] = 'FLEX'
|
335 |
+
elif site_var1 == 'Fanduel':
|
336 |
+
cpt_proj['Player'] = display_baselines['Player']
|
337 |
+
cpt_proj['Salary'] = display_baselines['Salary']
|
338 |
+
cpt_proj['Position'] = display_baselines['Position']
|
339 |
+
cpt_proj['Team'] = display_baselines['Team']
|
340 |
+
cpt_proj['Opp'] = display_baselines['Opp']
|
341 |
+
cpt_proj['Median'] = display_baselines['Median'] * 1.5
|
342 |
+
cpt_proj['Own'] = display_baselines['CPT Own'] *.75
|
343 |
+
cpt_proj['lock'] = display_baselines['cpt_lock']
|
344 |
+
cpt_proj['roster'] = 'CPT'
|
345 |
+
|
346 |
+
flex_proj['Player'] = display_baselines['Player']
|
347 |
+
flex_proj['Salary'] = display_baselines['Salary']
|
348 |
+
flex_proj['Position'] = display_baselines['Position']
|
349 |
+
flex_proj['Team'] = display_baselines['Team']
|
350 |
+
flex_proj['Opp'] = display_baselines['Opp']
|
351 |
+
flex_proj['Median'] = display_baselines['Median']
|
352 |
+
flex_proj['Own'] = display_baselines['Own']
|
353 |
+
flex_proj['lock'] = display_baselines['lock']
|
354 |
+
flex_proj['roster'] = 'FLEX'
|
355 |
+
|
356 |
+
combo_file = pd.concat([cpt_proj, flex_proj], ignore_index=True)
|
357 |
+
|
358 |
+
st.dataframe(display_baselines.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
|
359 |
+
st.download_button(
|
360 |
+
label="Export Projections",
|
361 |
+
data=convert_df_to_csv(export_baselines),
|
362 |
+
file_name='NFL_proj_export.csv',
|
363 |
+
mime='text/csv',
|
364 |
+
)
|
365 |
+
if st.button('Optimize'):
|
366 |
+
max_proj = 1000
|
367 |
+
max_own = 1000
|
368 |
+
total_proj = 0
|
369 |
+
total_own = 0
|
370 |
+
optimize_container = st.empty()
|
371 |
+
lineup_display = []
|
372 |
+
check_list = []
|
373 |
+
lineups = []
|
374 |
+
portfolio = pd.DataFrame()
|
375 |
+
x = 1
|
376 |
+
|
377 |
+
with st.spinner('Wait for it...'):
|
378 |
+
with optimize_container:
|
379 |
+
|
380 |
+
while x <= linenum_var1:
|
381 |
+
sorted_lineup = []
|
382 |
+
p_used = []
|
383 |
+
|
384 |
+
raw_proj_file = combo_file
|
385 |
+
raw_flex_file = raw_proj_file.dropna(how='all')
|
386 |
+
raw_flex_file = raw_flex_file.loc[raw_flex_file['Median'] > 0]
|
387 |
+
flex_file = raw_flex_file
|
388 |
+
flex_file.rename(columns={"Own": "Proj DK Own%"}, inplace = True)
|
389 |
+
flex_file['name_var'] = flex_file['Player']
|
390 |
+
flex_file['lock'] = np.where(flex_file['Player'].isin(lock_var2), 1, 0)
|
391 |
+
flex_file = flex_file[~flex_file['Player'].isin(avoid_var1)]
|
392 |
+
flex_file['Player'] = np.where(flex_file['roster'] == 'CPT', flex_file['Player'] + ' - CPT', flex_file['Player'] + ' - FLEX')
|
393 |
+
player_ids = flex_file.index
|
394 |
+
|
395 |
+
overall_players = flex_file[['Player']]
|
396 |
+
overall_players['player_var_add'] = flex_file.index
|
397 |
+
overall_players['player_var'] = 'player_vars_' + overall_players['player_var_add'].astype(str)
|
398 |
+
|
399 |
+
player_vars = pulp.LpVariable.dicts("player_vars", flex_file.index, 0, 1, pulp.LpInteger)
|
400 |
+
total_score = pulp.LpProblem("Fantasy_Points_Problem", pulp.LpMaximize)
|
401 |
+
player_match = dict(zip(overall_players['player_var'], overall_players['Player']))
|
402 |
+
player_index_match = dict(zip(overall_players['player_var'], overall_players['player_var_add']))
|
403 |
+
|
404 |
+
player_own = dict(zip(flex_file['Player'], flex_file['Proj DK Own%']))
|
405 |
+
player_team = dict(zip(flex_file['Player'], flex_file['Team']))
|
406 |
+
player_pos = dict(zip(flex_file['Player'], flex_file['Position']))
|
407 |
+
player_sal = dict(zip(flex_file['Player'], flex_file['Salary']))
|
408 |
+
player_proj = dict(zip(flex_file['Player'], flex_file['Median']))
|
409 |
+
|
410 |
+
obj_points = {idx: (flex_file['Median'][idx]) for idx in flex_file.index}
|
411 |
+
total_score += sum([player_vars[idx]*obj_points[idx] for idx in flex_file.index])
|
412 |
+
|
413 |
+
obj_points_max = {idx: (flex_file['Median'][idx]) for idx in flex_file.index}
|
414 |
+
obj_own_max = {idx: (flex_file['Proj DK Own%'][idx]) for idx in flex_file.index}
|
415 |
+
|
416 |
+
obj_salary = {idx: (flex_file['Salary'][idx]) for idx in flex_file.index}
|
417 |
+
total_score += pulp.lpSum([player_vars[idx]*obj_salary[idx] for idx in flex_file.index]) <= max_sal1
|
418 |
+
total_score += pulp.lpSum([player_vars[idx]*obj_salary[idx] for idx in flex_file.index]) >= min_sal1
|
419 |
+
|
420 |
+
if site_var1 == 'Draftkings':
|
421 |
+
|
422 |
+
for flex in flex_file['lock'].unique():
|
423 |
+
sub_idx = flex_file[flex_file['lock'] == 1].index
|
424 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == len(lock_var2)
|
425 |
+
|
426 |
+
for flex in flex_file['roster'].unique():
|
427 |
+
sub_idx = flex_file[flex_file['roster'] == "CPT"].index
|
428 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 1
|
429 |
+
|
430 |
+
for flex in flex_file['roster'].unique():
|
431 |
+
sub_idx = flex_file[flex_file['roster'] == "FLEX"].index
|
432 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 5
|
433 |
+
|
434 |
+
for playerid in player_ids:
|
435 |
+
total_score += pulp.lpSum([player_vars[i] for i in player_ids if
|
436 |
+
(flex_file['name_var'][i] == flex_file['name_var'][playerid])]) <= 1
|
437 |
+
|
438 |
+
elif site_var1 == 'Fanduel':
|
439 |
+
|
440 |
+
for flex in flex_file['lock'].unique():
|
441 |
+
sub_idx = flex_file[flex_file['lock'] == 1].index
|
442 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == len(lock_var2)
|
443 |
+
|
444 |
+
for flex in flex_file['Position'].unique():
|
445 |
+
sub_idx = flex_file[flex_file['Position'] != "Var"].index
|
446 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 5
|
447 |
+
|
448 |
+
for flex in flex_file['roster'].unique():
|
449 |
+
sub_idx = flex_file[flex_file['roster'] == "CPT"].index
|
450 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 1
|
451 |
+
|
452 |
+
for playerid in player_ids:
|
453 |
+
total_score += pulp.lpSum([player_vars[i] for i in player_ids if
|
454 |
+
(flex_file['name_var'][i] == flex_file['name_var'][playerid])]) <= 1
|
455 |
+
|
456 |
+
player_count = []
|
457 |
+
player_trim = []
|
458 |
+
lineup_list = []
|
459 |
+
|
460 |
+
if contest_var1 == 'Cash':
|
461 |
+
obj_points = {idx: (flex_file['Proj DK Own%'][idx]) for idx in flex_file.index}
|
462 |
+
total_score += sum([player_vars[idx]*obj_points[idx] for idx in flex_file.index])
|
463 |
+
total_score += pulp.lpSum([player_vars[idx]*obj_points[idx] for idx in flex_file.index]) <= max_own - .001
|
464 |
+
elif contest_var1 != 'Cash':
|
465 |
+
obj_points = {idx: (flex_file['Median'][idx]) for idx in flex_file.index}
|
466 |
+
total_score += sum([player_vars[idx]*obj_points[idx] for idx in flex_file.index])
|
467 |
+
total_score += pulp.lpSum([player_vars[idx]*obj_points[idx] for idx in flex_file.index]) <= max_proj - .01
|
468 |
+
if trim_var1 == 1:
|
469 |
+
total_score += pulp.lpSum([player_vars[idx]*obj_own_max[idx] for idx in flex_file.index]) <= max_own - .001
|
470 |
+
|
471 |
+
total_score.solve()
|
472 |
+
for v in total_score.variables():
|
473 |
+
if v.varValue > 0:
|
474 |
+
lineup_list.append(v.name)
|
475 |
+
df = pd.DataFrame(lineup_list)
|
476 |
+
df['Names'] = df[0].map(player_match)
|
477 |
+
df['Cost'] = df['Names'].map(player_sal)
|
478 |
+
df['Proj'] = df['Names'].map(player_proj)
|
479 |
+
df['Own'] = df['Names'].map(player_own)
|
480 |
+
total_cost = sum(df['Cost'])
|
481 |
+
total_own = sum(df['Own'])
|
482 |
+
total_proj = sum(df['Proj'])
|
483 |
+
lineup_raw = pd.DataFrame(lineup_list)
|
484 |
+
lineup_raw['Names'] = lineup_raw[0].map(player_match)
|
485 |
+
lineup_raw['value'] = lineup_raw[0].map(player_index_match)
|
486 |
+
lineup_final = lineup_raw.sort_values(by=['value'])
|
487 |
+
del lineup_final[lineup_final.columns[0]]
|
488 |
+
del lineup_final[lineup_final.columns[1]]
|
489 |
+
lineup_final['Team'] = lineup_final['Names'].map(player_team)
|
490 |
+
lineup_final['Position'] = lineup_final['Names'].map(player_pos)
|
491 |
+
lineup_final['Salary'] = lineup_final['Names'].map(player_sal)
|
492 |
+
lineup_final['Proj'] = lineup_final['Names'].map(player_proj)
|
493 |
+
lineup_final['Own'] = lineup_final['Names'].map(player_own)
|
494 |
+
lineup_final.loc['Column_Total'] = lineup_final.sum(numeric_only=True, axis=0)
|
495 |
+
lineup_final = lineup_final.reset_index(drop=True)
|
496 |
+
# lineup_final = lineup_final.set_index('Names')
|
497 |
+
|
498 |
+
with col2:
|
499 |
+
with st.container():
|
500 |
+
st.table(lineup_final)
|
501 |
+
|
502 |
+
max_proj = total_proj
|
503 |
+
max_own = total_own
|
504 |
+
|
505 |
+
if site_var1 == 'Draftkings':
|
506 |
+
if len(lineup_final) == 7:
|
507 |
+
port_display = pd.DataFrame(lineup_final['Names'][:-1].values.reshape(1, -1))
|
508 |
+
|
509 |
+
port_display['Cost'] = total_cost
|
510 |
+
port_display['Proj'] = total_proj
|
511 |
+
port_display['Own'] = total_own
|
512 |
+
st.table(port_display)
|
513 |
+
|
514 |
+
portfolio = pd.concat([portfolio, port_display], ignore_index = True)
|
515 |
+
elif site_var1 == 'Fanduel':
|
516 |
+
if len(lineup_final) == 6:
|
517 |
+
port_display = pd.DataFrame(lineup_final['Names'][:-1].values.reshape(1, -1))
|
518 |
+
|
519 |
+
port_display['Cost'] = total_cost
|
520 |
+
port_display['Proj'] = total_proj
|
521 |
+
port_display['Own'] = total_own
|
522 |
+
st.table(port_display)
|
523 |
+
|
524 |
+
portfolio = pd.concat([portfolio, port_display], ignore_index = True)
|
525 |
+
|
526 |
+
x += 1
|
527 |
+
|
528 |
+
if site_var1 == 'Draftkings':
|
529 |
+
portfolio.rename(columns={0: "CPT", 1: "FLEX1", 2: "FLEX2", 3: "FLEX3", 4: "FLEX4", 5: "FLEX5"}, inplace = True)
|
530 |
+
elif site_var1 == 'Fanduel':
|
531 |
+
portfolio.rename(columns={0: "MVP", 1: "FLEX1", 2: "FLEX2", 3: "FLEX3", 4: "FLEX4"}, inplace = True)
|
532 |
+
portfolio = portfolio.dropna()
|
533 |
+
portfolio = portfolio.reset_index()
|
534 |
+
portfolio['Lineup_num'] = portfolio['index'] + 1
|
535 |
+
portfolio.rename(columns={'Lineup_num': "Lineup"}, inplace = True)
|
536 |
+
portfolio = portfolio.set_index('Lineup')
|
537 |
+
portfolio = portfolio.drop(columns=['index'])
|
538 |
+
portfolio = portfolio.drop_duplicates()
|
539 |
+
|
540 |
+
final_outcomes = portfolio
|
541 |
+
|
542 |
+
with optimize_container:
|
543 |
+
optimize_container = st.empty()
|
544 |
+
st.dataframe(portfolio.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
|
545 |
+
|
546 |
+
st.download_button(
|
547 |
+
label="Export Tables",
|
548 |
+
data=convert_df_to_csv(final_outcomes),
|
549 |
+
file_name='MLB_optimals_export.csv',
|
550 |
+
mime='text/csv',
|
551 |
+
)
|