Update app.py
Browse files
app.py
CHANGED
@@ -185,12 +185,14 @@ with tab2:
|
|
185 |
ownframe['Own%'] = np.where((ownframe['Position'] != 'QB') & (ownframe['Own'] - ownframe.loc[ownframe['Position'] != 'QB', 'Own'].mean() >= 0), ownframe['Own'] * (5 * (ownframe['Own'] - ownframe.loc[ownframe['Position'] != 'QB', 'Own'].mean())/100) + ownframe.loc[ownframe['Position'] != 'QB', 'Own'].mean(), ownframe['Own%'])
|
186 |
ownframe['Own%'] = np.where(ownframe['Own%'] > 85, 85, ownframe['Own%'])
|
187 |
ownframe['Own'] = ownframe['Own%'] * (600 / ownframe['Own%'].sum())
|
|
|
188 |
elif site_var1 == 'Fanduel':
|
189 |
ownframe = raw_baselines.copy()
|
190 |
ownframe['Own%'] = np.where((ownframe['Position'] == 'QB') & (ownframe['Own'] - ownframe.loc[ownframe['Position'] == 'QB', 'Own'].mean() >= 0), ownframe['Own'] * (5 * (ownframe['Own'] - ownframe.loc[ownframe['Position'] == 'QB', 'Own'].mean())/50) + ownframe.loc[ownframe['Position'] == 'QB', 'Own'].mean(), ownframe['Own'])
|
191 |
ownframe['Own%'] = np.where((ownframe['Position'] != 'QB') & (ownframe['Own'] - ownframe.loc[ownframe['Position'] != 'QB', 'Own'].mean() >= 0), ownframe['Own'] * (5 * (ownframe['Own'] - ownframe.loc[ownframe['Position'] != 'QB', 'Own'].mean())/150) + ownframe.loc[ownframe['Position'] != 'QB', 'Own'].mean(), ownframe['Own%'])
|
192 |
ownframe['Own%'] = np.where(ownframe['Own%'] > 75, 75, ownframe['Own%'])
|
193 |
ownframe['Own'] = ownframe['Own%'] * (500 / ownframe['Own%'].sum())
|
|
|
194 |
elif contest_var1 == 'Large Field GPP':
|
195 |
if site_var1 == 'Draftkings':
|
196 |
ownframe = raw_baselines.copy()
|
@@ -198,12 +200,14 @@ with tab2:
|
|
198 |
ownframe['Own%'] = np.where((ownframe['Position'] != 'QB') & (ownframe['Own'] - ownframe.loc[ownframe['Position'] != 'QB', 'Own'].mean() >= 0), ownframe['Own'] * (2.5 * (ownframe['Own'] - ownframe.loc[ownframe['Position'] != 'QB', 'Own'].mean())/100) + ownframe.loc[ownframe['Position'] != 'QB', 'Own'].mean(), ownframe['Own%'])
|
199 |
ownframe['Own%'] = np.where(ownframe['Own%'] > 75, 75, ownframe['Own%'])
|
200 |
ownframe['Own'] = ownframe['Own%'] * (600 / ownframe['Own%'].sum())
|
|
|
201 |
elif site_var1 == 'Fanduel':
|
202 |
ownframe = raw_baselines.copy()
|
203 |
ownframe['Own%'] = np.where((ownframe['Position'] == 'QB') & (ownframe['Own'] - ownframe.loc[ownframe['Position'] == 'QB', 'Own'].mean() >= 0), ownframe['Own'] * (2.5 * (ownframe['Own'] - ownframe.loc[ownframe['Position'] == 'QB', 'Own'].mean())/50) + ownframe.loc[ownframe['Position'] == 'QB', 'Own'].mean(), ownframe['Own'])
|
204 |
ownframe['Own%'] = np.where((ownframe['Position'] != 'QB') & (ownframe['Own'] - ownframe.loc[ownframe['Position'] != 'QB', 'Own'].mean() >= 0), ownframe['Own'] * (2.5 * (ownframe['Own'] - ownframe.loc[ownframe['Position'] != 'QB', 'Own'].mean())/150) + ownframe.loc[ownframe['Position'] != 'QB', 'Own'].mean(), ownframe['Own%'])
|
205 |
ownframe['Own%'] = np.where(ownframe['Own%'] > 75, 75, ownframe['Own%'])
|
206 |
ownframe['Own'] = ownframe['Own%'] * (500 / ownframe['Own%'].sum())
|
|
|
207 |
elif contest_var1 == 'Cash':
|
208 |
if site_var1 == 'Draftkings':
|
209 |
ownframe = raw_baselines.copy()
|
@@ -211,18 +215,20 @@ with tab2:
|
|
211 |
ownframe['Own%'] = np.where((ownframe['Position'] != 'QB') & (ownframe['Own'] - ownframe.loc[ownframe['Position'] != 'QB', 'Own'].mean() >= 0), ownframe['Own'] * (6 * (ownframe['Own'] - ownframe.loc[ownframe['Position'] != 'QB', 'Own'].mean())/100) + ownframe.loc[ownframe['Position'] != 'QB', 'Own'].mean(), ownframe['Own%'])
|
212 |
ownframe['Own%'] = np.where(ownframe['Own%'] > 90, 90, ownframe['Own%'])
|
213 |
ownframe['Own'] = ownframe['Own%'] * (600 / ownframe['Own%'].sum())
|
|
|
214 |
elif site_var1 == 'Fanduel':
|
215 |
ownframe = raw_baselines.copy()
|
216 |
ownframe['Own%'] = np.where((ownframe['Position'] == 'QB') & (ownframe['Own'] - ownframe.loc[ownframe['Position'] == 'QB', 'Own'].mean() >= 0), ownframe['Own'] * (6 * (ownframe['Own'] - ownframe.loc[ownframe['Position'] == 'QB', 'Own'].mean())/50) + ownframe.loc[ownframe['Position'] == 'QB', 'Own'].mean(), ownframe['Own'])
|
217 |
ownframe['Own%'] = np.where((ownframe['Position'] != 'QB') & (ownframe['Own'] - ownframe.loc[ownframe['Position'] != 'QB', 'Own'].mean() >= 0), ownframe['Own'] * (6 * (ownframe['Own'] - ownframe.loc[ownframe['Position'] != 'QB', 'Own'].mean())/150) + ownframe.loc[ownframe['Position'] != 'QB', 'Own'].mean(), ownframe['Own%'])
|
218 |
ownframe['Own%'] = np.where(ownframe['Own%'] > 75, 75, ownframe['Own%'])
|
|
|
219 |
ownframe['Own'] = ownframe['Own%'] * (500 / ownframe['Own%'].sum())
|
220 |
export_baselines = ownframe[['Player', 'Salary', 'Position', 'Team', 'Opp', 'Median', 'Own']]
|
221 |
export_baselines['CPT_Proj'] = export_baselines['Median'] * 1.5
|
222 |
export_baselines['CPT_Salary'] = export_baselines['Salary'] * 1.5
|
223 |
export_baselines['ID'] = export_baselines['Player'].map(dkid_dict)
|
224 |
display_baselines = ownframe[['Player', 'Salary', 'Position', 'Team', 'Opp', 'Median', 'Own']]
|
225 |
-
display_baselines['CPT Own'] = display_baselines['Own'] /
|
226 |
display_baselines = display_baselines.sort_values(by='Median', ascending=False)
|
227 |
display_baselines['cpt_lock'] = np.where(display_baselines['Player'].isin(lock_var1), 1, 0)
|
228 |
display_baselines['lock'] = np.where(display_baselines['Player'].isin(lock_var2), 1, 0)
|
@@ -265,7 +271,7 @@ with tab2:
|
|
265 |
cpt_proj['Team'] = display_baselines['Team']
|
266 |
cpt_proj['Opp'] = display_baselines['Opp']
|
267 |
cpt_proj['Median'] = display_baselines['Median'] * 1.5
|
268 |
-
cpt_proj['Own'] = display_baselines['CPT Own']
|
269 |
cpt_proj['lock'] = display_baselines['cpt_lock']
|
270 |
cpt_proj['roster'] = 'CPT'
|
271 |
|
|
|
185 |
ownframe['Own%'] = np.where((ownframe['Position'] != 'QB') & (ownframe['Own'] - ownframe.loc[ownframe['Position'] != 'QB', 'Own'].mean() >= 0), ownframe['Own'] * (5 * (ownframe['Own'] - ownframe.loc[ownframe['Position'] != 'QB', 'Own'].mean())/100) + ownframe.loc[ownframe['Position'] != 'QB', 'Own'].mean(), ownframe['Own%'])
|
186 |
ownframe['Own%'] = np.where(ownframe['Own%'] > 85, 85, ownframe['Own%'])
|
187 |
ownframe['Own'] = ownframe['Own%'] * (600 / ownframe['Own%'].sum())
|
188 |
+
cpt_div = 6
|
189 |
elif site_var1 == 'Fanduel':
|
190 |
ownframe = raw_baselines.copy()
|
191 |
ownframe['Own%'] = np.where((ownframe['Position'] == 'QB') & (ownframe['Own'] - ownframe.loc[ownframe['Position'] == 'QB', 'Own'].mean() >= 0), ownframe['Own'] * (5 * (ownframe['Own'] - ownframe.loc[ownframe['Position'] == 'QB', 'Own'].mean())/50) + ownframe.loc[ownframe['Position'] == 'QB', 'Own'].mean(), ownframe['Own'])
|
192 |
ownframe['Own%'] = np.where((ownframe['Position'] != 'QB') & (ownframe['Own'] - ownframe.loc[ownframe['Position'] != 'QB', 'Own'].mean() >= 0), ownframe['Own'] * (5 * (ownframe['Own'] - ownframe.loc[ownframe['Position'] != 'QB', 'Own'].mean())/150) + ownframe.loc[ownframe['Position'] != 'QB', 'Own'].mean(), ownframe['Own%'])
|
193 |
ownframe['Own%'] = np.where(ownframe['Own%'] > 75, 75, ownframe['Own%'])
|
194 |
ownframe['Own'] = ownframe['Own%'] * (500 / ownframe['Own%'].sum())
|
195 |
+
cpt_div = 5
|
196 |
elif contest_var1 == 'Large Field GPP':
|
197 |
if site_var1 == 'Draftkings':
|
198 |
ownframe = raw_baselines.copy()
|
|
|
200 |
ownframe['Own%'] = np.where((ownframe['Position'] != 'QB') & (ownframe['Own'] - ownframe.loc[ownframe['Position'] != 'QB', 'Own'].mean() >= 0), ownframe['Own'] * (2.5 * (ownframe['Own'] - ownframe.loc[ownframe['Position'] != 'QB', 'Own'].mean())/100) + ownframe.loc[ownframe['Position'] != 'QB', 'Own'].mean(), ownframe['Own%'])
|
201 |
ownframe['Own%'] = np.where(ownframe['Own%'] > 75, 75, ownframe['Own%'])
|
202 |
ownframe['Own'] = ownframe['Own%'] * (600 / ownframe['Own%'].sum())
|
203 |
+
cpt_div = 6
|
204 |
elif site_var1 == 'Fanduel':
|
205 |
ownframe = raw_baselines.copy()
|
206 |
ownframe['Own%'] = np.where((ownframe['Position'] == 'QB') & (ownframe['Own'] - ownframe.loc[ownframe['Position'] == 'QB', 'Own'].mean() >= 0), ownframe['Own'] * (2.5 * (ownframe['Own'] - ownframe.loc[ownframe['Position'] == 'QB', 'Own'].mean())/50) + ownframe.loc[ownframe['Position'] == 'QB', 'Own'].mean(), ownframe['Own'])
|
207 |
ownframe['Own%'] = np.where((ownframe['Position'] != 'QB') & (ownframe['Own'] - ownframe.loc[ownframe['Position'] != 'QB', 'Own'].mean() >= 0), ownframe['Own'] * (2.5 * (ownframe['Own'] - ownframe.loc[ownframe['Position'] != 'QB', 'Own'].mean())/150) + ownframe.loc[ownframe['Position'] != 'QB', 'Own'].mean(), ownframe['Own%'])
|
208 |
ownframe['Own%'] = np.where(ownframe['Own%'] > 75, 75, ownframe['Own%'])
|
209 |
ownframe['Own'] = ownframe['Own%'] * (500 / ownframe['Own%'].sum())
|
210 |
+
cpt_div = 5
|
211 |
elif contest_var1 == 'Cash':
|
212 |
if site_var1 == 'Draftkings':
|
213 |
ownframe = raw_baselines.copy()
|
|
|
215 |
ownframe['Own%'] = np.where((ownframe['Position'] != 'QB') & (ownframe['Own'] - ownframe.loc[ownframe['Position'] != 'QB', 'Own'].mean() >= 0), ownframe['Own'] * (6 * (ownframe['Own'] - ownframe.loc[ownframe['Position'] != 'QB', 'Own'].mean())/100) + ownframe.loc[ownframe['Position'] != 'QB', 'Own'].mean(), ownframe['Own%'])
|
216 |
ownframe['Own%'] = np.where(ownframe['Own%'] > 90, 90, ownframe['Own%'])
|
217 |
ownframe['Own'] = ownframe['Own%'] * (600 / ownframe['Own%'].sum())
|
218 |
+
cpt_div = 6
|
219 |
elif site_var1 == 'Fanduel':
|
220 |
ownframe = raw_baselines.copy()
|
221 |
ownframe['Own%'] = np.where((ownframe['Position'] == 'QB') & (ownframe['Own'] - ownframe.loc[ownframe['Position'] == 'QB', 'Own'].mean() >= 0), ownframe['Own'] * (6 * (ownframe['Own'] - ownframe.loc[ownframe['Position'] == 'QB', 'Own'].mean())/50) + ownframe.loc[ownframe['Position'] == 'QB', 'Own'].mean(), ownframe['Own'])
|
222 |
ownframe['Own%'] = np.where((ownframe['Position'] != 'QB') & (ownframe['Own'] - ownframe.loc[ownframe['Position'] != 'QB', 'Own'].mean() >= 0), ownframe['Own'] * (6 * (ownframe['Own'] - ownframe.loc[ownframe['Position'] != 'QB', 'Own'].mean())/150) + ownframe.loc[ownframe['Position'] != 'QB', 'Own'].mean(), ownframe['Own%'])
|
223 |
ownframe['Own%'] = np.where(ownframe['Own%'] > 75, 75, ownframe['Own%'])
|
224 |
+
cpt_div = 5
|
225 |
ownframe['Own'] = ownframe['Own%'] * (500 / ownframe['Own%'].sum())
|
226 |
export_baselines = ownframe[['Player', 'Salary', 'Position', 'Team', 'Opp', 'Median', 'Own']]
|
227 |
export_baselines['CPT_Proj'] = export_baselines['Median'] * 1.5
|
228 |
export_baselines['CPT_Salary'] = export_baselines['Salary'] * 1.5
|
229 |
export_baselines['ID'] = export_baselines['Player'].map(dkid_dict)
|
230 |
display_baselines = ownframe[['Player', 'Salary', 'Position', 'Team', 'Opp', 'Median', 'Own']]
|
231 |
+
display_baselines['CPT Own'] = display_baselines['Own'] / cpt_div
|
232 |
display_baselines = display_baselines.sort_values(by='Median', ascending=False)
|
233 |
display_baselines['cpt_lock'] = np.where(display_baselines['Player'].isin(lock_var1), 1, 0)
|
234 |
display_baselines['lock'] = np.where(display_baselines['Player'].isin(lock_var2), 1, 0)
|
|
|
271 |
cpt_proj['Team'] = display_baselines['Team']
|
272 |
cpt_proj['Opp'] = display_baselines['Opp']
|
273 |
cpt_proj['Median'] = display_baselines['Median'] * 1.5
|
274 |
+
cpt_proj['Own'] = display_baselines['CPT Own'] * .75
|
275 |
cpt_proj['lock'] = display_baselines['cpt_lock']
|
276 |
cpt_proj['roster'] = 'CPT'
|
277 |
|