James McCool
commited on
Commit
·
94323a4
1
Parent(s):
f290cdf
Refactor app.py to ensure unique player entries across multiple DataFrames. Removed duplicate player entries in nfl_dk_sd_raw, nfl_fd_sd_raw, display_Proj, and display_baselines DataFrames by implementing drop_duplicates method for 'Player'. This enhancement improves data integrity and consistency in player projections.
Browse files
app.py
CHANGED
@@ -60,7 +60,6 @@ def init_baselines():
|
|
60 |
raw_display = raw_display.loc[raw_display['Median'] > 0]
|
61 |
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
|
62 |
nfl_dk_sd_raw = raw_display.sort_values(by='Median', ascending=False)
|
63 |
-
nfl_dk_sd_raw = nfl_dk_sd_raw.drop_duplicates(subset=['Player'])
|
64 |
|
65 |
collection = nfl_db["FD_SD_NFL_ROO"]
|
66 |
cursor = collection.find()
|
@@ -71,7 +70,6 @@ def init_baselines():
|
|
71 |
raw_display = raw_display.loc[raw_display['Median'] > 0]
|
72 |
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
|
73 |
nfl_fd_sd_raw = raw_display.sort_values(by='Median', ascending=False)
|
74 |
-
nfl_fd_sd_raw = nfl_fd_sd_raw.drop_duplicates(subset=['Player'])
|
75 |
try:
|
76 |
nba_timestamp = nba_dk_sd_raw['timestamp'].values[0]
|
77 |
except:
|
@@ -145,7 +143,8 @@ with tab1:
|
|
145 |
|
146 |
with hold_container:
|
147 |
hold_container = st.empty()
|
148 |
-
display_Proj = display_Proj
|
|
|
149 |
if sport_var2 == 'NBA':
|
150 |
st.dataframe(display_Proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(nba_player_roo_format, precision=2), height=1000, use_container_width = True)
|
151 |
elif sport_var2 == 'NFL':
|
@@ -245,7 +244,8 @@ with tab2:
|
|
245 |
display_baselines = display_baselines.sort_values(by='Median', ascending=False)
|
246 |
display_baselines['cpt_lock'] = np.where(display_baselines['Player'].isin(lock_var1), 1, 0)
|
247 |
display_baselines['lock'] = np.where(display_baselines['Player'].isin(lock_var2), 1, 0)
|
248 |
-
|
|
|
249 |
st.session_state.display_baselines = display_baselines.copy()
|
250 |
st.session_state.export_baselines = export_baselines.copy()
|
251 |
|
|
|
60 |
raw_display = raw_display.loc[raw_display['Median'] > 0]
|
61 |
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
|
62 |
nfl_dk_sd_raw = raw_display.sort_values(by='Median', ascending=False)
|
|
|
63 |
|
64 |
collection = nfl_db["FD_SD_NFL_ROO"]
|
65 |
cursor = collection.find()
|
|
|
70 |
raw_display = raw_display.loc[raw_display['Median'] > 0]
|
71 |
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
|
72 |
nfl_fd_sd_raw = raw_display.sort_values(by='Median', ascending=False)
|
|
|
73 |
try:
|
74 |
nba_timestamp = nba_dk_sd_raw['timestamp'].values[0]
|
75 |
except:
|
|
|
143 |
|
144 |
with hold_container:
|
145 |
hold_container = st.empty()
|
146 |
+
display_Proj = display_Proj.drop_duplicates(subset=['Player'])
|
147 |
+
|
148 |
if sport_var2 == 'NBA':
|
149 |
st.dataframe(display_Proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(nba_player_roo_format, precision=2), height=1000, use_container_width = True)
|
150 |
elif sport_var2 == 'NFL':
|
|
|
244 |
display_baselines = display_baselines.sort_values(by='Median', ascending=False)
|
245 |
display_baselines['cpt_lock'] = np.where(display_baselines['Player'].isin(lock_var1), 1, 0)
|
246 |
display_baselines['lock'] = np.where(display_baselines['Player'].isin(lock_var2), 1, 0)
|
247 |
+
display_baselines = display_baselines.drop_duplicates(subset=['Player'])
|
248 |
+
|
249 |
st.session_state.display_baselines = display_baselines.copy()
|
250 |
st.session_state.export_baselines = export_baselines.copy()
|
251 |
|