Multichem commited on
Commit
c569ef8
·
verified ·
1 Parent(s): 45d7395

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +40 -65
app.py CHANGED
@@ -1,29 +1,39 @@
1
- import pulp
 
2
  import numpy as np
3
  import pandas as pd
4
- import streamlit as st
5
  import gspread
 
 
6
  from itertools import combinations
7
 
8
- scope = ['https://www.googleapis.com/auth/spreadsheets',
9
- "https://www.googleapis.com/auth/drive"]
 
10
 
11
- credentials = {
12
- "type": "service_account",
13
- "project_id": "sheets-api-connect-378620",
14
- "private_key_id": "1005124050c80d085e2c5b344345715978dd9cc9",
15
- "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
16
- "client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
17
- "client_id": "106625872877651920064",
18
- "auth_uri": "https://accounts.google.com/o/oauth2/auth",
19
- "token_uri": "https://oauth2.googleapis.com/token",
20
- "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
21
- "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
22
- }
 
 
 
 
 
23
 
24
- gc = gspread.service_account_from_dict(credentials)
25
 
26
- st.set_page_config(layout="wide")
 
 
27
 
28
  game_format = {'Win Percentage': '{:.2%}','First Inning Lead Percentage': '{:.2%}',
29
  'Fifth Inning Lead Percentage': '{:.2%}', '8+ runs': '{:.2%}', 'DK LevX': '{:.2%}', 'FD LevX': '{:.2%}'}
@@ -33,69 +43,37 @@ player_roo_format = {'Top_finish': '{:.2%}','Top_5_finish': '{:.2%}', 'Top_10_fi
33
 
34
  all_dk_player_projections = 'https://docs.google.com/spreadsheets/d/1I_1Ve3F4tftgfLQQoRKOJ351XfEG48s36OxXUKxmgS8/edit#gid=1391856348'
35
 
36
- @st.cache_data
37
- def set_slate_teams():
38
  sh = gc.open_by_url(all_dk_player_projections)
39
  worksheet = sh.worksheet('Site_Info')
40
  raw_display = pd.DataFrame(worksheet.get_all_records())
41
-
42
- return raw_display
43
-
44
- @st.cache_data
45
- def player_stat_table():
46
- sh = gc.open_by_url(all_dk_player_projections)
47
  worksheet = sh.worksheet('Player_Projections')
48
  raw_display = pd.DataFrame(worksheet.get_all_records())
49
-
50
- return raw_display
51
-
52
- @st.cache_data
53
- def load_dk_player_projections():
54
- sh = gc.open_by_url(all_dk_player_projections)
55
  worksheet = sh.worksheet('DK_ROO')
56
  load_display = pd.DataFrame(worksheet.get_all_records())
57
  load_display.replace('', np.nan, inplace=True)
58
  raw_display = load_display.dropna(subset=['Median'])
59
-
60
- return raw_display
61
-
62
- @st.cache_data
63
- def load_fd_player_projections():
64
- sh = gc.open_by_url(all_dk_player_projections)
65
  worksheet = sh.worksheet('FD_ROO')
66
  load_display = pd.DataFrame(worksheet.get_all_records())
67
  load_display.replace('', np.nan, inplace=True)
68
  raw_display = load_display.dropna(subset=['Median'])
 
69
 
70
- return raw_display
71
-
72
- @st.cache_data
73
- def load_dk_stacks():
74
- sh = gc.open_by_url(all_dk_player_projections)
75
- worksheet = sh.worksheet('DK_Stacks')
76
- load_display = pd.DataFrame(worksheet.get_all_records())
77
- raw_display = load_display
78
-
79
- return raw_display
80
-
81
- @st.cache_data
82
- def load_fd_stacks():
83
- sh = gc.open_by_url(all_dk_player_projections)
84
- worksheet = sh.worksheet('FD_Stacks')
85
- load_display = pd.DataFrame(worksheet.get_all_records())
86
- raw_display = load_display
87
-
88
- return raw_display
89
 
90
  @st.cache_data
91
  def convert_df_to_csv(df):
92
  return df.to_csv().encode('utf-8')
93
 
94
- player_stats = player_stat_table()
95
- dk_roo_raw = load_dk_player_projections()
96
- fd_roo_raw = load_fd_player_projections()
97
  t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST"
98
- site_slates = set_slate_teams()
99
  col1, col2 = st.columns([1, 5])
100
 
101
  tab1, tab2 = st.tabs(['Uploads and Info', 'Stack Finder'])
@@ -123,11 +101,8 @@ with tab2:
123
  st.info(t_stamp)
124
  if st.button("Load/Reset Data", key='reset1'):
125
  st.cache_data.clear()
126
- player_stats = player_stat_table()
127
- dk_roo_raw = load_dk_player_projections()
128
- fd_roo_raw = load_fd_player_projections()
129
  t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST"
130
- site_slates = set_slate_teams()
131
  slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate', 'Thurs-Mon Slate', 'User'), key='slate_var1')
132
  site_var1 = st.radio("What site are you playing?", ('Draftkings', 'Fanduel'), key='site_var1')
133
 
 
1
+ import streamlit as st
2
+ st.set_page_config(layout="wide")
3
  import numpy as np
4
  import pandas as pd
 
5
  import gspread
6
+ import pymongo
7
+ import streamlit as st
8
  from itertools import combinations
9
 
10
+ @st.cache_resource
11
+ def init_conn():
12
+ scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive']
13
 
14
+ credentials = {
15
+ "type": "service_account",
16
+ "project_id": "model-sheets-connect",
17
+ "private_key_id": "0e0bc2fdef04e771172fe5807392b9d6639d945e",
18
+ "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQDiu1v/e6KBKOcK\ncx0KQ23nZK3ZVvADYy8u/RUn/EDI82QKxTd/DizRLIV81JiNQxDJXSzgkbwKYEDm\n48E8zGvupU8+Nk76xNPakrQKy2Y8+VJlq5psBtGchJTuUSHcXU5Mg2JhQsB376PJ\nsCw552K6Pw8fpeMDJDZuxpKSkaJR6k9G5Dhf5q8HDXnC5Rh/PRFuKJ2GGRpX7n+2\nhT/sCax0J8jfdTy/MDGiDfJqfQrOPrMKELtsGHR9Iv6F4vKiDqXpKfqH+02E9ptz\nBk+MNcbZ3m90M8ShfRu28ebebsASfarNMzc3dk7tb3utHOGXKCf4tF8yYKo7x8BZ\noO9X4gSfAgMBAAECggEAU8ByyMpSKlTCF32TJhXnVJi/kS+IhC/Qn5JUDMuk4LXr\naAEWsWO6kV/ZRVXArjmuSzuUVrXumISapM9Ps5Ytbl95CJmGDiLDwRL815nvv6k3\nUyAS8EGKjz74RpoIoH6E7EWCAzxlnUgTn+5oP9Flije97epYk3H+e2f1f5e1Nn1d\nYNe8U+1HqJgILcxA1TAUsARBfoD7+K3z/8DVPHI8IpzAh6kTHqhqC23Rram4XoQ6\nzj/ZdVBjvnKuazETfsD+Vl3jGLQA8cKQVV70xdz3xwLcNeHsbPbpGBpZUoF73c65\nkAXOrjYl0JD5yAk+hmYhXr6H9c6z5AieuZGDrhmlFQKBgQDzV6LRXmjn4854DP/J\nI82oX2GcI4eioDZPRukhiQLzYerMQBmyqZIRC+/LTCAhYQSjNgMa+ZKyvLqv48M0\n/x398op/+n3xTs+8L49SPI48/iV+mnH7k0WI/ycd4OOKh8rrmhl/0EWb9iitwJYe\nMjTV/QxNEpPBEXfR1/mvrN/lVQKBgQDuhomOxUhWVRVH6x03slmyRBn0Oiw4MW+r\nrt1hlNgtVmTc5Mu+4G0USMZwYuOB7F8xG4Foc7rIlwS7Ic83jMJxemtqAelwOLdV\nXRLrLWJfX8+O1z/UE15l2q3SUEnQ4esPHbQnZowHLm0mdL14qSVMl1mu1XfsoZ3z\nJZTQb48CIwKBgEWbzQRtKD8lKDupJEYqSrseRbK/ax43DDITS77/DWwHl33D3FYC\nMblUm8ygwxQpR4VUfwDpYXBlklWcJovzamXpSnsfcYVkkQH47NuOXPXPkXQsw+w+\nDYcJzeu7F/vZqk9I7oBkWHUrrik9zPNoUzrfPvSRGtkAoTDSwibhoc5dAoGBAMHE\nK0T/ANeZQLNuzQps6S7G4eqjwz5W8qeeYxsdZkvWThOgDd/ewt3ijMnJm5X05hOn\ni4XF1euTuvUl7wbqYx76Wv3/1ZojiNNgy7ie4rYlyB/6vlBS97F4ZxJdxMlabbCW\n6b3EMWa4EVVXKoA1sCY7IVDE+yoQ1JYsZmq45YzPAoGBANWWHuVueFGZRDZlkNlK\nh5OmySmA0NdNug3G1upaTthyaTZ+CxGliwBqMHAwpkIRPwxUJpUwBTSEGztGTAxs\nWsUOVWlD2/1JaKSmHE8JbNg6sxLilcG6WEDzxjC5dLL1OrGOXj9WhC9KX3sq6qb6\nF/j9eUXfXjAlb042MphoF3ZC\n-----END PRIVATE KEY-----\n",
19
+ "client_email": "gspread-connection@model-sheets-connect.iam.gserviceaccount.com",
20
+ "client_id": "100369174533302798535",
21
+ "auth_uri": "https://accounts.google.com/o/oauth2/auth",
22
+ "token_uri": "https://oauth2.googleapis.com/token",
23
+ "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
24
+ "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40model-sheets-connect.iam.gserviceaccount.com"
25
+ }
26
+ uri = "mongodb+srv://multichem:[email protected]/?retryWrites=true&w=majority&appName=TestCluster"
27
+ client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
28
+ db = client["testing_db"]
29
+
30
+ MLB_Data = 'https://docs.google.com/spreadsheets/d/1f42Ergav8K1VsOLOK9MUn7DM_MLMvv4GR2Fy7EfnZTc/edit#gid=340831852'
31
 
32
+ gc_con = gspread.service_account_from_dict(credentials, scope)
33
 
34
+ return gc_con, db, MLB_Data
35
+
36
+ gc, db, MLB_Data = init_conn()
37
 
38
  game_format = {'Win Percentage': '{:.2%}','First Inning Lead Percentage': '{:.2%}',
39
  'Fifth Inning Lead Percentage': '{:.2%}', '8+ runs': '{:.2%}', 'DK LevX': '{:.2%}', 'FD LevX': '{:.2%}'}
 
43
 
44
  all_dk_player_projections = 'https://docs.google.com/spreadsheets/d/1I_1Ve3F4tftgfLQQoRKOJ351XfEG48s36OxXUKxmgS8/edit#gid=1391856348'
45
 
46
+ @st.cache_data(ttl = 599)
47
+ def init_baselines():
48
  sh = gc.open_by_url(all_dk_player_projections)
49
  worksheet = sh.worksheet('Site_Info')
50
  raw_display = pd.DataFrame(worksheet.get_all_records())
51
+ site_slates = raw_display
52
+
 
 
 
 
53
  worksheet = sh.worksheet('Player_Projections')
54
  raw_display = pd.DataFrame(worksheet.get_all_records())
55
+ player_stats = raw_display
56
+
 
 
 
 
57
  worksheet = sh.worksheet('DK_ROO')
58
  load_display = pd.DataFrame(worksheet.get_all_records())
59
  load_display.replace('', np.nan, inplace=True)
60
  raw_display = load_display.dropna(subset=['Median'])
61
+ dk_roo_raw = raw_display
62
+
 
 
 
 
63
  worksheet = sh.worksheet('FD_ROO')
64
  load_display = pd.DataFrame(worksheet.get_all_records())
65
  load_display.replace('', np.nan, inplace=True)
66
  raw_display = load_display.dropna(subset=['Median'])
67
+ fd_roo_raw = raw_display
68
 
69
+ return site_slates, player_stats, dk_roo_raw, fd_roo_raw
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70
 
71
  @st.cache_data
72
  def convert_df_to_csv(df):
73
  return df.to_csv().encode('utf-8')
74
 
75
+ site_slates, player_stats, dk_roo_raw, fd_roo_raw = init_baselines()
 
 
76
  t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST"
 
77
  col1, col2 = st.columns([1, 5])
78
 
79
  tab1, tab2 = st.tabs(['Uploads and Info', 'Stack Finder'])
 
101
  st.info(t_stamp)
102
  if st.button("Load/Reset Data", key='reset1'):
103
  st.cache_data.clear()
104
+ site_slates, player_stats, dk_roo_raw, fd_roo_raw = init_baselines()
 
 
105
  t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST"
 
106
  slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate', 'Thurs-Mon Slate', 'User'), key='slate_var1')
107
  site_var1 = st.radio("What site are you playing?", ('Draftkings', 'Fanduel'), key='site_var1')
108