Spaces:
Running
Running
File size: 28,655 Bytes
6fe8715 336eea2 6fe8715 c789832 6fe8715 336eea2 c789832 cd502c2 6fe8715 fe8a02e 336eea2 fe8a02e 336eea2 e25cbc1 8a5a3f1 e25cbc1 0a2d441 b6f18d3 6fe8715 30742ba 06cad0a 30742ba 06cad0a 30742ba 06cad0a 30742ba 252a8e0 6fe8715 fe8a02e 0a2d441 3b90fa6 da1160a 8eb2700 ff585c2 38eab9f 6fe8715 fe8a02e 8a5a3f1 8eb2700 fe8a02e 8a5a3f1 fe8a02e ce44ad1 fe8a02e ce44ad1 fe6597f 6fe8715 fe8a02e 6fe8715 c789832 6fe8715 fe8a02e 6fe8715 8a5a3f1 6fe8715 4c1a5ef 57553f6 4c1a5ef 57553f6 4c1a5ef 6fe8715 a123bdd 6fe8715 a123bdd 6fe8715 4c1a5ef 8015159 8a5a3f1 cefcbd9 8a5a3f1 161a311 8a5a3f1 fe8a02e 42503f5 a238471 42503f5 a238471 e25cbc1 a238471 42503f5 e25cbc1 42503f5 e25cbc1 42503f5 0a2d441 42503f5 d39b71d 42503f5 1acbaaa 42503f5 1acbaaa 42503f5 3a0d10d 42503f5 b6f18d3 42503f5 8d05170 42503f5 e25cbc1 42503f5 e25cbc1 42503f5 8a5a3f1 42503f5 d39b71d 42503f5 3a0d10d 42503f5 3a0d10d 42503f5 3a0d10d 42503f5 b6f18d3 42503f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 |
import streamlit as st
st.set_page_config(layout="wide")
for name in dir():
if not name.startswith('_'):
del globals()[name]
import pulp
import numpy as np
from numpy import where as np_where
import pandas as pd
import streamlit as st
import gspread
import pymongo
from itertools import combinations
import scipy.stats as stats
from time import sleep as time_sleep
@st.cache_resource
def init_conn():
uri = st.secrets['mongo_uri']
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
db = client["NHL_Database"]
return db
db = init_conn()
prop_table_options = ['NHL_GAME_PLAYER_SHOTS_ON_GOAL', 'NHL_GAME_PLAYER_POINTS', 'NHL_GAME_PLAYER_SHOTS_BLOCKED', 'NHL_GAME_PLAYER_ASSISTS']
prop_format = {'L5 Success': '{:.2%}', 'L10_Success': '{:.2%}', 'L20_success': '{:.2%}', 'Matchup Boost': '{:.2%}', 'Trending Over': '{:.2%}', 'Trending Under': '{:.2%}',
'Implied Over': '{:.2%}', 'Implied Under': '{:.2%}', 'Over Edge': '{:.2%}', 'Under Edge': '{:.2%}'}
all_sim_vars = ['NHL_GAME_PLAYER_SHOTS_ON_GOAL', 'NHL_GAME_PLAYER_POINTS', 'NHL_GAME_PLAYER_SHOTS_BLOCKED', 'NHL_GAME_PLAYER_ASSISTS']
pick6_sim_vars = ['Points', 'Shots on Goal', 'Assists', 'Blocks']
sim_all_hold = pd.DataFrame(columns=['Player', 'Prop Type', 'Prop', 'Mean_Outcome', 'Imp Over', 'Trending Over', 'Over%', 'Imp Under', 'Trending Under', 'Under%', 'Bet?', 'Edge'])
st.markdown("""
<style>
/* Tab styling */
.stTabs [data-baseweb="tab-list"] {
gap: 8px;
padding: 4px;
}
.stTabs [data-baseweb="tab"] {
height: 50px;
white-space: pre-wrap;
background-color: #DAA520;
color: white;
border-radius: 10px;
gap: 1px;
padding: 10px 20px;
font-weight: bold;
transition: all 0.3s ease;
}
.stTabs [aria-selected="true"] {
background-color: #DAA520;
border: 3px solid #FFD700;
color: white;
}
.stTabs [data-baseweb="tab"]:hover {
background-color: #FFD700;
cursor: pointer;
}
</style>""", unsafe_allow_html=True)
@st.cache_resource(ttl=200)
def pull_baselines():
collection = db["Prop_Betting_Table"]
cursor = collection.find()
raw_display = pd.DataFrame(cursor)
prop_display = raw_display[raw_display['Player'] != ""]
prop_display['Player Blocks'].replace("", np.nan, inplace=True)
prop_table = prop_display[['Player', 'Position', 'Team', 'Opp', 'Team_Total', 'Player SOG', 'Player Goals', 'Player Assists',
'Player TP', 'Player Blocks', 'Player Saves']]
prop_table['Player'].replace(['JJ Peterka', 'Alexander Killorn', 'Matt Boldy', 'Nick Paul', 'Alex Kerfoot'],
['John-Jason Peterka', 'Alex Killorn', 'Matthew Boldy', 'Nicholas Paul', 'Alexander Kerfoot'], inplace=True)
prop_table['Player'] = prop_table['Player'].str.strip()
stat_columns = ['Team_Total', 'Player SOG', 'Player Goals', 'Player Assists', 'Player TP', 'Player Blocks', 'Player Saves']
for stat in stat_columns:
prop_table[stat] = prop_table[stat].astype(float)
collection = db["prop_trends"]
cursor = collection.find()
raw_display = pd.DataFrame(cursor)
raw_display.replace('', np.nan, inplace=True)
prop_trends = raw_display.dropna(subset='Player')
prop_trends['Player'].replace(['JJ Peterka', 'Alexander Killorn', 'Matt Boldy', 'Nick Paul', 'Alex Kerfoot'],
['John-Jason Peterka', 'Alex Killorn', 'Matthew Boldy', 'Nicholas Paul', 'Alexander Kerfoot'], inplace=True)
prop_trends = prop_trends.drop(columns=['_id', 'index'])
collection = db["Pick6_ingest"]
cursor = collection.find()
raw_display = pd.DataFrame(cursor)
raw_display.replace('', np.nan, inplace=True)
pick_frame = raw_display.dropna(subset='Player')
pick_frame['Player'].replace(['JJ Peterka', 'Alexander Killorn', 'Matt Boldy', 'Nick Paul', 'Alex Kerfoot'],
['John-Jason Peterka', 'Alex Killorn', 'Matthew Boldy', 'Nicholas Paul', 'Alexander Kerfoot'], inplace=True)
pick_frame = pick_frame.drop(columns=['_id', 'index'])
team_dict = dict(zip(prop_table['Player'], prop_table['Team']))
return prop_table, prop_trends, pick_frame, team_dict
def calculate_poisson(row):
mean_val = row['Mean_Outcome']
threshold = row['Prop']
cdf_value = stats.poisson.cdf(threshold, mean_val)
probability = 1 - cdf_value
return probability
def convert_df_to_csv(df):
return df.to_csv().encode('utf-8')
prop_display, prop_trends, pick_frame, team_dict = pull_baselines()
tab1, tab2, tab3 = st.tabs(["Player Stat Table", 'Prop Trend Table', 'Stat Specific Simulations'])
with tab1:
with st.expander("Info and Filters"):
if st.button("Reset Data", key='reset1'):
st.cache_data.clear()
prop_display, prop_trends, pick_frame, team_dict = pull_baselines()
team_var = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='team_var1')
if team_var == 'Specific Teams':
team_var = st.multiselect('Which teams would you like to include in the tables?', options = prop_display['Team'].unique(), key='team_var2')
elif team_var == 'All':
team_var = prop_display['Team'].unique()
prop_frame = prop_display[prop_display['Team'].isin(team_var)]
st.dataframe(prop_frame.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
st.download_button(
label="Export Table",
data=convert_df_to_csv(prop_frame),
file_name='NHL_prop_stat_export.csv',
mime='text/csv',
key='prop_export',
)
with tab2:
with st.expander("Info and Filters"):
if st.button("Reset Data", key='reset3'):
st.cache_data.clear()
prop_display, prop_trends, pick_frame, team_dict = pull_baselines()
split_var5 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var5')
if split_var5 == 'Specific Teams':
team_var5 = st.multiselect('Which teams would you like to include in the tables?', options = prop_trends['Team'].unique(), key='team_var5')
elif split_var5 == 'All':
team_var5 = prop_trends.Team.values.tolist()
book_split5 = st.radio("Would you like to view all books or specific ones?", ('All', 'Specific Books'), key='book_split5')
if book_split5 == 'Specific Books':
book_var5 = st.multiselect('Which books would you like to include in the tables?', options = ['BET_365', 'DRAFTKINGS', 'CONSENSUS', 'FANDUEL', 'MGM', 'UNIBET', 'WILLIAM_HILL'], key='book_var5')
elif book_split5 == 'All':
book_var5 = ['BET_365', 'DRAFTKINGS', 'CONSENSUS', 'FANDUEL', 'MGM', 'UNIBET', 'WILLIAM_HILL']
prop_type_var2 = st.selectbox('Select type of prop are you wanting to view', options = prop_table_options)
prop_frame_disp = prop_trends[prop_trends['Team'].isin(team_var5)]
prop_frame_disp = prop_frame_disp[prop_frame_disp['book'].isin(book_var5)]
prop_frame_disp = prop_frame_disp[prop_frame_disp['prop_type'] == prop_type_var2]
prop_frame_disp = prop_frame_disp.sort_values(by='Trending Over', ascending=False)
st.dataframe(prop_frame_disp.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(prop_format, precision=2), use_container_width = True)
st.download_button(
label="Export Prop Trends Model",
data=convert_df_to_csv(prop_frame_disp),
file_name='NHL_prop_trends_export.csv',
mime='text/csv',
)
with tab3:
st.info('The Over and Under percentages are a composite percentage based on simulations, historical performance, and implied probabilities, and may be different than you would expect based purely on the median projection. Likewise, the Edge of a bet is not the only indicator of if you should make the bet or not as the suggestion is using a base acceptable threshold to determine how much edge you should have for each stat category.')
if st.button("Reset Data/Load Data", key='reset5'):
st.cache_data.clear()
prop_display, prop_trends, pick_frame, team_dict = pull_baselines()
settings_container = st.container()
df_hold_container = st.empty()
export_container = st.empty()
with settings_container.container():
col1, col2, col3, col4 = st.columns([3, 3, 3, 3])
with col1:
game_select_var = st.selectbox('Select prop source', options = ['Aggregate', 'Pick6'])
with col2:
book_select_var = st.selectbox('Select book', options = ['ALL', 'BET_365', 'DRAFTKINGS', 'FANDUEL', 'MGM', 'UNIBET', 'WILLIAM_HILL'])
if book_select_var == 'ALL':
book_selections = ['BET_365', 'DRAFTKINGS', 'FANDUEL', 'MGM', 'UNIBET', 'WILLIAM_HILL']
else:
book_selections = [book_select_var]
if game_select_var == 'Aggregate':
prop_df = prop_trends[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type', 'Trending Over', 'Trending Under']]
elif game_select_var == 'Pick6':
prop_df = pick_frame[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type', 'Trending Over', 'Trending Under']]
book_selections = ['Pick6']
with col3:
if game_select_var == 'Aggregate':
prop_type_var = st.selectbox('Select prop category', options = ['All Props', 'NHL_GAME_PLAYER_POINTS', 'NHL_GAME_PLAYER_SHOTS_ON_GOAL', 'NHL_GAME_PLAYER_ASSISTS', 'NHL_GAME_PLAYER_SHOTS_BLOCKED'])
elif game_select_var == 'Pick6':
prop_type_var = st.selectbox('Select prop category', options = ['All Props', 'Points', 'Shots on Goal', 'Assists', 'Blocks'])
with col4:
st.download_button(
label="Download Prop Source",
data=convert_df_to_csv(prop_df),
file_name='NHL_prop_source.csv',
mime='text/csv',
key='prop_source',
)
if st.button('Simulate Prop Category'):
with df_hold_container.container():
if prop_type_var == 'All Props':
if game_select_var == 'Aggregate':
prop_df_raw = prop_trends[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type', 'Trending Over', 'Trending Under']]
sim_vars = ['NHL_GAME_PLAYER_POINTS', 'NHL_GAME_PLAYER_SHOTS_ON_GOAL', 'NHL_GAME_PLAYER_ASSISTS', 'NHL_GAME_PLAYER_SHOTS_BLOCKED']
elif game_select_var == 'Pick6':
prop_df_raw = pick_frame[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type', 'Trending Over', 'Trending Under']]
sim_vars = ['Points', 'Shots on Goal', 'Assists', 'Blocks']
player_df = prop_display.copy()
for prop in sim_vars:
for books in book_selections:
prop_df = prop_df_raw[prop_df_raw['prop_type'] == prop]
prop_df = prop_df[prop_df['book'] == books]
prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type', 'Trending Over', 'Trending Under']]
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
prop_df['Over'] = 1 / prop_df['over_line']
prop_df['Under'] = 1 / prop_df['under_line']
prop_dict = dict(zip(prop_df.Player, prop_df.Prop))
prop_type_dict = dict(zip(prop_df.Player, prop_df.prop_type))
book_dict = dict(zip(prop_df.Player, prop_df.book))
over_dict = dict(zip(prop_df.Player, prop_df.Over))
under_dict = dict(zip(prop_df.Player, prop_df.Under))
trending_over_dict = dict(zip(prop_df.Player, prop_df['Trending Over']))
trending_under_dict = dict(zip(prop_df.Player, prop_df['Trending Under']))
player_df['book'] = player_df['Player'].map(book_dict)
player_df['Prop'] = player_df['Player'].map(prop_dict)
player_df['prop_type'] = player_df['Player'].map(prop_type_dict)
player_df['Trending Over'] = player_df['Player'].map(trending_over_dict)
player_df['Trending Under'] = player_df['Player'].map(trending_under_dict)
df = player_df.reset_index(drop=True)
team_dict = dict(zip(df.Player, df.Team))
total_sims = 1000
df.replace("", 0, inplace=True)
if prop == 'NHL_GAME_PLAYER_POINTS' or prop == 'Points':
df['Median'] = df['Player TP']
elif prop == 'NHL_GAME_PLAYER_SHOTS_ON_GOAL' or prop == 'Shots on Goal':
df['Median'] = df['Player SOG']
elif prop == 'NHL_GAME_PLAYER_ASSISTS' or prop == 'Assists':
df['Median'] = df['Player Assists']
elif prop == 'NHL_GAME_PLAYER_SHOTS_BLOCKED' or prop == 'Blocks':
df['Median'] = df['Player Blocks']
flex_file = df.copy()
flex_file['Floor'] = (flex_file['Median'] * .15)
flex_file['Ceiling'] = flex_file['Median'] + (flex_file['Median'] * 1)
flex_file['STD'] = (flex_file['Median']/3)
flex_file['Prop'] = flex_file['Player'].map(prop_dict)
flex_file = flex_file[['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']]
hold_file = flex_file.copy()
overall_file = flex_file.copy()
prop_file = flex_file.copy()
overall_players = overall_file[['Player']]
for x in range(0,total_sims):
prop_file[x] = prop_file['Prop']
prop_file = prop_file.drop(['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
for x in range(0,total_sims):
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
overall_file=overall_file.drop(['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
players_only = hold_file[['Player']]
player_outcomes = pd.merge(players_only, overall_file, left_index=True, right_index=True)
prop_check = (overall_file - prop_file)
players_only['Mean_Outcome'] = overall_file.mean(axis=1)
players_only['Prop'] = players_only['Player'].map(prop_dict)
players_only['Book'] = players_only['Player'].map(book_dict)
players_only['Trending Over'] = players_only['Player'].map(trending_over_dict)
players_only['Trending Under'] = players_only['Player'].map(trending_under_dict)
players_only['over_adj'] = np_where((players_only['Mean_Outcome'] - players_only['Prop']) > 0, 1, (players_only['Mean_Outcome'] / players_only['Prop']))
players_only['under_adj'] = np_where((players_only['Prop'] - players_only['Mean_Outcome']) > 0, 1, (players_only['Prop'] / players_only['Mean_Outcome']))
players_only['poisson_var'] = players_only.apply(calculate_poisson, axis=1)
players_only['10%'] = overall_file.quantile(0.1, axis=1)
players_only['90%'] = overall_file.quantile(0.9, axis=1)
players_only['Over'] = np_where(players_only['Prop'] <= 3, players_only['poisson_var'], prop_check[prop_check > 0].count(axis=1)/float(total_sims))
players_only['Imp Over'] = players_only['Player'].map(over_dict)
players_only['Over%'] = (players_only['Over'] * 0.4) + (players_only['Trending Over'] * 0.4) + (players_only['Imp Over'] * 0.2)
players_only['Under'] = np_where(players_only['Prop'] <= 3, 1 - players_only['poisson_var'], prop_check[prop_check < 0].count(axis=1)/float(total_sims))
players_only['Imp Under'] = players_only['Player'].map(under_dict)
players_only['Under%'] = (players_only['Under'] * 0.4) + (players_only['Trending Under'] * 0.4) + (players_only['Imp Under'] * 0.2)
players_only['Prop_avg'] = players_only['Prop'].mean() / 100
players_only['prop_threshold'] = .10
players_only = players_only[players_only['Mean_Outcome'] > 0]
players_only['Over_diff'] = players_only['Over%'] - players_only['Imp Over']
players_only['Under_diff'] = players_only['Under%'] - players_only['Imp Under']
players_only['Bet_check'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], players_only['Over_diff'] * players_only['over_adj'], players_only['Under_diff'] * players_only['under_adj'])
players_only['Bet_suggest'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], "Over" , "Under")
players_only['Bet?'] = np.where(players_only['Bet_check'] >= players_only['prop_threshold'], players_only['Bet_suggest'], "No Bet")
players_only['Edge'] = players_only['Bet_check']
players_only['Prop Type'] = prop
players_only['Player'] = hold_file[['Player']]
players_only['Team'] = players_only['Player'].map(team_dict)
leg_outcomes = players_only[['Player', 'Team', 'Book', 'Prop Type', 'Prop', 'Mean_Outcome', 'Imp Over', 'Trending Over', 'Over%', 'Imp Under', 'Trending Under', 'Under%', 'Bet?', 'Edge']]
sim_all_hold = pd.concat([sim_all_hold, leg_outcomes], ignore_index=True)
final_outcomes = sim_all_hold
st.write(f'finished {prop} for {books}')
elif prop_type_var != 'All Props':
player_df = prop_display.copy()
if game_select_var == 'Aggregate':
prop_df_raw = prop_trends[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type', 'Trending Over', 'Trending Under']]
elif game_select_var == 'Pick6':
prop_df_raw = pick_frame[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type', 'Trending Over', 'Trending Under']]
for books in book_selections:
prop_df = prop_df_raw[prop_df_raw['book'] == books]
if prop_type_var == "NHL_GAME_PLAYER_SHOTS_ON_GOAL":
prop_df = prop_df[prop_df['prop_type'] == 'NHL_GAME_PLAYER_SHOTS_ON_GOAL']
elif prop_type_var == 'Shots on Goal':
prop_df = prop_df[prop_df['prop_type'] == 'Player SOG']
elif prop_type_var == "NHL_GAME_PLAYER_POINTS":
prop_df = prop_df[prop_df['prop_type'] == 'NHL_GAME_PLAYER_POINTS']
elif prop_type_var == "Points":
prop_df = prop_df[prop_df['prop_type'] == 'Player TP']
elif prop_type_var == "NHL_GAME_PLAYER_ASSISTS":
prop_df = prop_df[prop_df['prop_type'] == 'NHL_GAME_PLAYER_ASSISTS']
elif prop_type_var == "Assists":
prop_df = prop_df[prop_df['prop_type'] == 'Player Assists']
elif prop_type_var == "NHL_GAME_PLAYER_SHOTS_BLOCKED":
prop_df = prop_df[prop_df['prop_type'] == 'NHL_GAME_PLAYER_SHOTS_BLOCKED']
elif prop_type_var == "Blocks":
prop_df = prop_df[prop_df['prop_type'] == 'Player Blocks']
prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line']]
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
prop_df['Over'] = 1 / prop_df['over_line']
prop_df['Under'] = 1 / prop_df['under_line']
prop_dict = dict(zip(prop_df.Player, prop_df.Prop))
prop_type_dict = dict(zip(prop_df.Player, prop_df.prop_type))
book_dict = dict(zip(prop_df.Player, prop_df.book))
over_dict = dict(zip(prop_df.Player, prop_df.Over))
under_dict = dict(zip(prop_df.Player, prop_df.Under))
trending_over_dict = dict(zip(prop_df.Player, prop_df['Trending Over']))
trending_under_dict = dict(zip(prop_df.Player, prop_df['Trending Under']))
player_df['book'] = player_df['Player'].map(book_dict)
player_df['Prop'] = player_df['Player'].map(prop_dict)
player_df['prop_type'] = player_df['Player'].map(prop_type_dict)
player_df['Trending Over'] = player_df['Player'].map(trending_over_dict)
player_df['Trending Under'] = player_df['Player'].map(trending_under_dict)
df = player_df.reset_index(drop=True)
team_dict = dict(zip(df.Player, df.Team))
total_sims = 1000
df.replace("", 0, inplace=True)
if prop_type_var == 'NHL_GAME_PLAYER_POINTS' or prop_type_var == 'Points':
df['Median'] = df['Player TP']
elif prop_type_var == 'NHL_GAME_PLAYER_SHOTS_ON_GOAL' or prop_type_var == 'Shots on Goal':
df['Median'] = df['Player SOG']
elif prop_type_var == 'NHL_GAME_PLAYER_ASSISTS' or prop_type_var == 'Assists':
df['Median'] = df['Player Assists']
elif prop_type_var == 'NHL_GAME_PLAYER_SHOTS_BLOCKED' or prop_type_var == 'Blocks':
df['Median'] = df['Player Blocks']
flex_file = df.copy()
flex_file['Floor'] = (flex_file['Median'] * .15)
flex_file['Ceiling'] = flex_file['Median'] + (flex_file['Median'] * 1)
flex_file['STD'] = (flex_file['Median']/3)
flex_file['Prop'] = flex_file['Player'].map(prop_dict)
flex_file = flex_file[['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']]
hold_file = flex_file.copy()
overall_file = flex_file.copy()
prop_file = flex_file.copy()
overall_players = overall_file[['Player']]
for x in range(0,total_sims):
prop_file[x] = prop_file['Prop']
prop_file = prop_file.drop(['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
for x in range(0,total_sims):
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
overall_file=overall_file.drop(['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
players_only = hold_file[['Player']]
player_outcomes = pd.merge(players_only, overall_file, left_index=True, right_index=True)
prop_check = (overall_file - prop_file)
players_only['Mean_Outcome'] = overall_file.mean(axis=1)
players_only['Prop'] = players_only['Player'].map(prop_dict)
players_only['Book'] = players_only['Player'].map(book_dict)
players_only['Trending Over'] = players_only['Player'].map(trending_over_dict)
players_only['Trending Under'] = players_only['Player'].map(trending_under_dict)
players_only['over_adj'] = np_where((players_only['Mean_Outcome'] - players_only['Prop']) > 0, 1, (players_only['Mean_Outcome'] / players_only['Prop']))
players_only['under_adj'] = np_where((players_only['Prop'] - players_only['Mean_Outcome']) > 0, 1, (players_only['Prop'] / players_only['Mean_Outcome']))
players_only['poisson_var'] = players_only.apply(calculate_poisson, axis=1)
players_only['10%'] = overall_file.quantile(0.1, axis=1)
players_only['90%'] = overall_file.quantile(0.9, axis=1)
players_only['Over'] = np_where(players_only['Prop'] <= 3, players_only['poisson_var'], prop_check[prop_check > 0].count(axis=1)/float(total_sims))
players_only['Imp Over'] = players_only['Player'].map(over_dict)
players_only['Over%'] = (players_only['Over'] * 0.4) + (players_only['Trending Over'] * 0.4) + (players_only['Imp Over'] * 0.2)
players_only['Under'] = np_where(players_only['Prop'] <= 3, 1 - players_only['poisson_var'], prop_check[prop_check < 0].count(axis=1)/float(total_sims))
players_only['Imp Under'] = players_only['Player'].map(under_dict)
players_only['Under%'] = (players_only['Under'] * 0.4) + (players_only['Trending Under'] * 0.4) + (players_only['Imp Under'] * 0.2)
players_only['Prop_avg'] = players_only['Prop'].mean() / 100
players_only['prop_threshold'] = .10
players_only = players_only[players_only['Mean_Outcome'] > 0]
players_only['Over_diff'] = players_only['Over%'] - players_only['Imp Over']
players_only['Under_diff'] = players_only['Under%'] - players_only['Imp Under']
players_only['Bet_check'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], players_only['Over_diff'] * players_only['over_adj'], players_only['Under_diff'] * players_only['under_adj'])
players_only['Bet_suggest'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], "Over" , "Under")
players_only['Bet?'] = np.where(players_only['Bet_check'] >= players_only['prop_threshold'], players_only['Bet_suggest'], "No Bet")
players_only['Edge'] = players_only['Bet_check']
players_only['Prop Type'] = prop_type_var
players_only['Player'] = hold_file[['Player']]
players_only['Team'] = players_only['Player'].map(team_dict)
leg_outcomes = players_only[['Player', 'Team', 'Book', 'Prop', 'Prop Type', 'Mean_Outcome', 'Imp Over', 'Trending Over', 'Over%', 'Imp Under', 'Trending Under', 'Under%', 'Bet?', 'Edge']]
sim_all_hold = pd.concat([sim_all_hold, leg_outcomes], ignore_index=True)
final_outcomes = sim_all_hold
st.write(f'finished {prop_type_var} for {books}')
final_outcomes = final_outcomes[final_outcomes['Prop'] > 0]
if game_select_var == 'Pick6':
final_outcomes = final_outcomes.drop_duplicates(subset=['Player', 'Prop Type'])
final_outcomes = final_outcomes.sort_values(by='Edge', ascending=False)
with df_hold_container:
df_hold_container = st.empty()
st.dataframe(final_outcomes.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
with export_container:
export_container = st.empty()
st.download_button(
label="Export Projections",
data=convert_df_to_csv(final_outcomes),
file_name='NHL_prop_proj.csv',
mime='text/csv',
key='prop_proj',
) |