File size: 28,655 Bytes
6fe8715
 
 
 
 
 
 
336eea2
6fe8715
c789832
6fe8715
 
 
336eea2
 
c789832
cd502c2
6fe8715
 
 
fe8a02e
 
 
 
 
336eea2
fe8a02e
336eea2
e25cbc1
8a5a3f1
 
e25cbc1
0a2d441
b6f18d3
6fe8715
30742ba
 
 
 
 
 
 
 
 
 
 
06cad0a
30742ba
 
 
 
 
 
 
 
 
 
06cad0a
30742ba
 
 
 
06cad0a
30742ba
 
 
 
252a8e0
6fe8715
fe8a02e
 
 
0a2d441
3b90fa6
da1160a
 
8eb2700
 
ff585c2
38eab9f
 
 
 
6fe8715
fe8a02e
 
 
8a5a3f1
 
8eb2700
 
fe8a02e
8a5a3f1
fe8a02e
 
 
ce44ad1
 
 
 
fe8a02e
ce44ad1
fe6597f
6fe8715
fe8a02e
6fe8715
c789832
 
 
 
 
 
 
6fe8715
 
 
fe8a02e
6fe8715
8a5a3f1
6fe8715
 
4c1a5ef
 
 
 
57553f6
4c1a5ef
57553f6
4c1a5ef
 
 
6fe8715
 
 
a123bdd
6fe8715
 
 
a123bdd
6fe8715
 
 
4c1a5ef
 
 
 
 
8015159
 
 
 
 
 
 
 
 
 
 
8a5a3f1
cefcbd9
8a5a3f1
 
 
 
 
161a311
8a5a3f1
 
 
 
 
 
 
 
fe8a02e
42503f5
 
 
 
 
 
 
 
 
 
 
a238471
 
 
 
 
 
 
 
 
42503f5
a238471
e25cbc1
a238471
 
42503f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e25cbc1
42503f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e25cbc1
42503f5
 
 
 
 
 
 
 
 
 
 
 
0a2d441
42503f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d39b71d
 
42503f5
 
 
 
 
1acbaaa
42503f5
 
1acbaaa
42503f5
 
 
 
 
3a0d10d
42503f5
 
 
 
 
 
 
 
b6f18d3
42503f5
 
 
 
 
 
 
 
 
 
 
 
 
8d05170
42503f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e25cbc1
 
42503f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e25cbc1
42503f5
 
 
 
 
 
 
 
 
 
 
 
8a5a3f1
42503f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d39b71d
 
42503f5
 
 
 
 
3a0d10d
42503f5
 
3a0d10d
42503f5
 
 
 
 
3a0d10d
42503f5
 
 
 
 
 
 
 
b6f18d3
42503f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
import streamlit as st
st.set_page_config(layout="wide")

for name in dir():
    if not name.startswith('_'):
        del globals()[name]

import pulp
import numpy as np
from numpy import where as np_where
import pandas as pd
import streamlit as st
import gspread
import pymongo
from itertools import combinations
import scipy.stats as stats
from time import sleep as time_sleep

@st.cache_resource
def init_conn():
        uri = st.secrets['mongo_uri']
        client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
        db = client["NHL_Database"]

        return db
    
db = init_conn()

prop_table_options = ['NHL_GAME_PLAYER_SHOTS_ON_GOAL', 'NHL_GAME_PLAYER_POINTS', 'NHL_GAME_PLAYER_SHOTS_BLOCKED', 'NHL_GAME_PLAYER_ASSISTS']
prop_format = {'L5 Success': '{:.2%}', 'L10_Success': '{:.2%}', 'L20_success': '{:.2%}', 'Matchup Boost': '{:.2%}', 'Trending Over': '{:.2%}', 'Trending Under': '{:.2%}',
               'Implied Over': '{:.2%}', 'Implied Under': '{:.2%}', 'Over Edge': '{:.2%}', 'Under Edge': '{:.2%}'}
all_sim_vars = ['NHL_GAME_PLAYER_SHOTS_ON_GOAL', 'NHL_GAME_PLAYER_POINTS', 'NHL_GAME_PLAYER_SHOTS_BLOCKED', 'NHL_GAME_PLAYER_ASSISTS']
pick6_sim_vars = ['Points', 'Shots on Goal', 'Assists', 'Blocks']
sim_all_hold = pd.DataFrame(columns=['Player', 'Prop Type', 'Prop', 'Mean_Outcome', 'Imp Over', 'Trending Over', 'Over%', 'Imp Under', 'Trending Under', 'Under%', 'Bet?', 'Edge'])

st.markdown("""
<style>
    /* Tab styling */
    .stTabs [data-baseweb="tab-list"] {
        gap: 8px;
        padding: 4px;
    }

    .stTabs [data-baseweb="tab"] {
        height: 50px;
        white-space: pre-wrap;
        background-color: #DAA520;
        color: white;
        border-radius: 10px;
        gap: 1px;
        padding: 10px 20px;
        font-weight: bold;
        transition: all 0.3s ease;
    }

    .stTabs [aria-selected="true"] {
        background-color: #DAA520;
        border: 3px solid #FFD700;
        color: white;
    }

    .stTabs [data-baseweb="tab"]:hover {
        background-color: #FFD700;
        cursor: pointer;
    }
</style>""", unsafe_allow_html=True)

@st.cache_resource(ttl=200)
def pull_baselines():
    collection = db["Prop_Betting_Table"] 
    cursor = collection.find()
    raw_display = pd.DataFrame(cursor)
    prop_display = raw_display[raw_display['Player'] != ""]
    prop_display['Player Blocks'].replace("", np.nan, inplace=True)
    prop_table = prop_display[['Player', 'Position', 'Team', 'Opp', 'Team_Total', 'Player SOG', 'Player Goals', 'Player Assists',
                               'Player TP', 'Player Blocks', 'Player Saves']]
    prop_table['Player'].replace(['JJ Peterka', 'Alexander Killorn', 'Matt Boldy', 'Nick Paul', 'Alex Kerfoot'],
                                  ['John-Jason Peterka', 'Alex Killorn', 'Matthew Boldy', 'Nicholas Paul', 'Alexander Kerfoot'], inplace=True)
    prop_table['Player'] = prop_table['Player'].str.strip()

    stat_columns = ['Team_Total', 'Player SOG', 'Player Goals', 'Player Assists', 'Player TP', 'Player Blocks', 'Player Saves']
    for stat in stat_columns:
        prop_table[stat] = prop_table[stat].astype(float)
    
    collection = db["prop_trends"] 
    cursor = collection.find()
    raw_display = pd.DataFrame(cursor)
    raw_display.replace('', np.nan, inplace=True)
    prop_trends = raw_display.dropna(subset='Player')
    prop_trends['Player'].replace(['JJ Peterka', 'Alexander Killorn', 'Matt Boldy', 'Nick Paul', 'Alex Kerfoot'],
                                  ['John-Jason Peterka', 'Alex Killorn', 'Matthew Boldy', 'Nicholas Paul', 'Alexander Kerfoot'], inplace=True)
    prop_trends = prop_trends.drop(columns=['_id', 'index'])
    
    collection = db["Pick6_ingest"] 
    cursor = collection.find()
    raw_display = pd.DataFrame(cursor)
    raw_display.replace('', np.nan, inplace=True)
    pick_frame = raw_display.dropna(subset='Player')
    pick_frame['Player'].replace(['JJ Peterka', 'Alexander Killorn', 'Matt Boldy', 'Nick Paul', 'Alex Kerfoot'],
                                  ['John-Jason Peterka', 'Alex Killorn', 'Matthew Boldy', 'Nicholas Paul', 'Alexander Kerfoot'], inplace=True)
    pick_frame = pick_frame.drop(columns=['_id', 'index'])
    
    team_dict = dict(zip(prop_table['Player'], prop_table['Team']))

    return prop_table, prop_trends, pick_frame, team_dict

def calculate_poisson(row):
    mean_val = row['Mean_Outcome']
    threshold = row['Prop']
    cdf_value = stats.poisson.cdf(threshold, mean_val)
    probability = 1 - cdf_value
    return probability

def convert_df_to_csv(df):
    return df.to_csv().encode('utf-8')

prop_display, prop_trends, pick_frame, team_dict = pull_baselines()

tab1, tab2, tab3 = st.tabs(["Player Stat Table", 'Prop Trend Table', 'Stat Specific Simulations'])

with tab1:
    with st.expander("Info and Filters"):
        if st.button("Reset Data", key='reset1'):
            st.cache_data.clear()
            prop_display, prop_trends, pick_frame, team_dict = pull_baselines()
        team_var = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='team_var1')
        if team_var == 'Specific Teams':
            team_var = st.multiselect('Which teams would you like to include in the tables?', options = prop_display['Team'].unique(), key='team_var2')
        elif team_var == 'All':
            team_var = prop_display['Team'].unique()
    prop_frame = prop_display[prop_display['Team'].isin(team_var)]
    st.dataframe(prop_frame.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
    
    st.download_button(
        label="Export Table",
        data=convert_df_to_csv(prop_frame),
        file_name='NHL_prop_stat_export.csv',
        mime='text/csv',
        key='prop_export',
    )

with tab2:
    with st.expander("Info and Filters"):
        if st.button("Reset Data", key='reset3'):
                st.cache_data.clear()
                prop_display, prop_trends, pick_frame, team_dict = pull_baselines()
    
        split_var5 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var5')
        if split_var5 == 'Specific Teams':
            team_var5 = st.multiselect('Which teams would you like to include in the tables?', options = prop_trends['Team'].unique(), key='team_var5')
        elif split_var5 == 'All':
            team_var5 = prop_trends.Team.values.tolist()
        book_split5 = st.radio("Would you like to view all books or specific ones?", ('All', 'Specific Books'), key='book_split5')
        if book_split5 == 'Specific Books':
            book_var5 = st.multiselect('Which books would you like to include in the tables?', options = ['BET_365', 'DRAFTKINGS', 'CONSENSUS', 'FANDUEL', 'MGM', 'UNIBET', 'WILLIAM_HILL'], key='book_var5')
        elif book_split5 == 'All':
            book_var5 = ['BET_365', 'DRAFTKINGS', 'CONSENSUS', 'FANDUEL', 'MGM', 'UNIBET', 'WILLIAM_HILL']
        prop_type_var2 = st.selectbox('Select type of prop are you wanting to view', options = prop_table_options)
    prop_frame_disp = prop_trends[prop_trends['Team'].isin(team_var5)]
    prop_frame_disp = prop_frame_disp[prop_frame_disp['book'].isin(book_var5)]
    prop_frame_disp = prop_frame_disp[prop_frame_disp['prop_type'] == prop_type_var2]
    prop_frame_disp = prop_frame_disp.sort_values(by='Trending Over', ascending=False)
    st.dataframe(prop_frame_disp.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(prop_format, precision=2), use_container_width = True)
    st.download_button(
        label="Export Prop Trends Model",
        data=convert_df_to_csv(prop_frame_disp),
        file_name='NHL_prop_trends_export.csv',
        mime='text/csv',
    )

with tab3:
    st.info('The Over and Under percentages are a composite percentage based on simulations, historical performance, and implied probabilities, and may be different than you would expect based purely on the median projection. Likewise, the Edge of a bet is not the only indicator of if you should make the bet or not as the suggestion is using a base acceptable threshold to determine how much edge you should have for each stat category.')
    if st.button("Reset Data/Load Data", key='reset5'):
              st.cache_data.clear()
              prop_display, prop_trends, pick_frame, team_dict = pull_baselines()

    settings_container = st.container()
    df_hold_container = st.empty()
    export_container = st.empty()

    with settings_container.container():
        col1, col2, col3, col4 = st.columns([3, 3, 3, 3])
        with col1:
            game_select_var = st.selectbox('Select prop source', options = ['Aggregate', 'Pick6'])
        with col2:
            book_select_var = st.selectbox('Select book', options = ['ALL', 'BET_365', 'DRAFTKINGS', 'FANDUEL', 'MGM', 'UNIBET', 'WILLIAM_HILL'])
            if book_select_var == 'ALL':
                book_selections = ['BET_365', 'DRAFTKINGS', 'FANDUEL', 'MGM', 'UNIBET', 'WILLIAM_HILL']
            else:
                book_selections = [book_select_var]
            if game_select_var == 'Aggregate':
                prop_df = prop_trends[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type', 'Trending Over', 'Trending Under']]
            elif game_select_var == 'Pick6':
                prop_df = pick_frame[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type', 'Trending Over', 'Trending Under']]
                book_selections = ['Pick6']
        with col3:
            if game_select_var == 'Aggregate':
                prop_type_var = st.selectbox('Select prop category', options = ['All Props', 'NHL_GAME_PLAYER_POINTS', 'NHL_GAME_PLAYER_SHOTS_ON_GOAL', 'NHL_GAME_PLAYER_ASSISTS', 'NHL_GAME_PLAYER_SHOTS_BLOCKED'])
            elif game_select_var == 'Pick6':
                prop_type_var = st.selectbox('Select prop category', options = ['All Props', 'Points', 'Shots on Goal', 'Assists', 'Blocks'])
        with col4:
            st.download_button(
                label="Download Prop Source",
                data=convert_df_to_csv(prop_df),
                file_name='NHL_prop_source.csv',
                mime='text/csv',
                key='prop_source',
            )

    if st.button('Simulate Prop Category'):
        with df_hold_container.container():
            if prop_type_var == 'All Props':

                if game_select_var == 'Aggregate':
                    prop_df_raw = prop_trends[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type', 'Trending Over', 'Trending Under']]
                    sim_vars = ['NHL_GAME_PLAYER_POINTS', 'NHL_GAME_PLAYER_SHOTS_ON_GOAL', 'NHL_GAME_PLAYER_ASSISTS', 'NHL_GAME_PLAYER_SHOTS_BLOCKED']
                elif game_select_var == 'Pick6':
                    prop_df_raw = pick_frame[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type', 'Trending Over', 'Trending Under']]
                    sim_vars = ['Points', 'Shots on Goal', 'Assists', 'Blocks']
                
                player_df = prop_display.copy()

                for prop in sim_vars:
                    
                    for books in book_selections:
                        prop_df = prop_df_raw[prop_df_raw['prop_type'] == prop]
                        prop_df = prop_df[prop_df['book'] == books]
                        prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type', 'Trending Over', 'Trending Under']]
                        prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
                        prop_df['Over'] = 1 / prop_df['over_line']
                        prop_df['Under'] = 1 / prop_df['under_line']

                        prop_dict = dict(zip(prop_df.Player, prop_df.Prop))
                        prop_type_dict = dict(zip(prop_df.Player, prop_df.prop_type))
                        book_dict = dict(zip(prop_df.Player, prop_df.book))
                        over_dict = dict(zip(prop_df.Player, prop_df.Over))
                        under_dict = dict(zip(prop_df.Player, prop_df.Under))
                        trending_over_dict = dict(zip(prop_df.Player, prop_df['Trending Over']))
                        trending_under_dict = dict(zip(prop_df.Player, prop_df['Trending Under']))

                        player_df['book'] = player_df['Player'].map(book_dict)
                        player_df['Prop'] = player_df['Player'].map(prop_dict)
                        player_df['prop_type'] = player_df['Player'].map(prop_type_dict)
                        player_df['Trending Over'] = player_df['Player'].map(trending_over_dict)
                        player_df['Trending Under'] = player_df['Player'].map(trending_under_dict)

                        df = player_df.reset_index(drop=True)

                        team_dict = dict(zip(df.Player, df.Team))
                        
                        total_sims = 1000

                        df.replace("", 0, inplace=True)

                        if prop == 'NHL_GAME_PLAYER_POINTS' or prop == 'Points':
                            df['Median'] = df['Player TP']
                        elif prop == 'NHL_GAME_PLAYER_SHOTS_ON_GOAL' or prop == 'Shots on Goal':
                            df['Median'] = df['Player SOG']
                        elif prop == 'NHL_GAME_PLAYER_ASSISTS' or prop == 'Assists':
                            df['Median'] = df['Player Assists']
                        elif prop == 'NHL_GAME_PLAYER_SHOTS_BLOCKED' or prop == 'Blocks':
                            df['Median'] = df['Player Blocks']

                        flex_file = df.copy()
                        flex_file['Floor'] = (flex_file['Median'] * .15)
                        flex_file['Ceiling'] = flex_file['Median'] + (flex_file['Median'] * 1)
                        flex_file['STD'] = (flex_file['Median']/3)
                        flex_file['Prop'] = flex_file['Player'].map(prop_dict)
                        flex_file = flex_file[['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']]

                        hold_file = flex_file.copy()
                        overall_file = flex_file.copy()
                        prop_file = flex_file.copy()
                            
                        overall_players = overall_file[['Player']]

                        for x in range(0,total_sims):    
                            prop_file[x] = prop_file['Prop']

                        prop_file = prop_file.drop(['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)

                        for x in range(0,total_sims):
                            overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])

                        overall_file=overall_file.drop(['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)

                        players_only = hold_file[['Player']]

                        player_outcomes = pd.merge(players_only, overall_file, left_index=True, right_index=True)

                        prop_check = (overall_file - prop_file)

                        players_only['Mean_Outcome'] = overall_file.mean(axis=1)
                        players_only['Prop'] = players_only['Player'].map(prop_dict)
                        players_only['Book'] = players_only['Player'].map(book_dict)
                        players_only['Trending Over'] = players_only['Player'].map(trending_over_dict)
                        players_only['Trending Under'] = players_only['Player'].map(trending_under_dict)
                        players_only['over_adj'] = np_where((players_only['Mean_Outcome'] - players_only['Prop']) > 0, 1, (players_only['Mean_Outcome'] / players_only['Prop']))
                        players_only['under_adj'] = np_where((players_only['Prop'] - players_only['Mean_Outcome']) > 0, 1, (players_only['Prop'] / players_only['Mean_Outcome']))
                        players_only['poisson_var'] = players_only.apply(calculate_poisson, axis=1)
                        players_only['10%'] = overall_file.quantile(0.1, axis=1)
                        players_only['90%'] = overall_file.quantile(0.9, axis=1)
                        players_only['Over'] = np_where(players_only['Prop'] <= 3, players_only['poisson_var'], prop_check[prop_check > 0].count(axis=1)/float(total_sims))
                        players_only['Imp Over'] = players_only['Player'].map(over_dict)
                        players_only['Over%'] = (players_only['Over'] * 0.4) + (players_only['Trending Over'] * 0.4) + (players_only['Imp Over'] * 0.2)
                        players_only['Under'] = np_where(players_only['Prop'] <= 3, 1 - players_only['poisson_var'], prop_check[prop_check < 0].count(axis=1)/float(total_sims))
                        players_only['Imp Under'] = players_only['Player'].map(under_dict)
                        players_only['Under%'] = (players_only['Under'] * 0.4) + (players_only['Trending Under'] * 0.4) + (players_only['Imp Under'] * 0.2)
                        players_only['Prop_avg'] = players_only['Prop'].mean() / 100
                        players_only['prop_threshold'] = .10
                        players_only = players_only[players_only['Mean_Outcome'] > 0]
                        players_only['Over_diff'] = players_only['Over%'] - players_only['Imp Over']
                        players_only['Under_diff'] = players_only['Under%'] - players_only['Imp Under']
                        players_only['Bet_check'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], players_only['Over_diff'] * players_only['over_adj'], players_only['Under_diff'] * players_only['under_adj'])
                        players_only['Bet_suggest'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], "Over" , "Under")
                        players_only['Bet?'] = np.where(players_only['Bet_check'] >= players_only['prop_threshold'], players_only['Bet_suggest'], "No Bet")
                        players_only['Edge'] = players_only['Bet_check']
                        players_only['Prop Type'] = prop

                        players_only['Player'] = hold_file[['Player']]
                        players_only['Team'] = players_only['Player'].map(team_dict)

                        leg_outcomes = players_only[['Player', 'Team', 'Book', 'Prop Type', 'Prop', 'Mean_Outcome', 'Imp Over', 'Trending Over', 'Over%', 'Imp Under', 'Trending Under', 'Under%', 'Bet?', 'Edge']]
                        sim_all_hold = pd.concat([sim_all_hold, leg_outcomes], ignore_index=True)
                    
                        final_outcomes = sim_all_hold
                        st.write(f'finished {prop} for {books}')

            elif prop_type_var != 'All Props':

                player_df = prop_display.copy()

                if game_select_var == 'Aggregate':
                    prop_df_raw = prop_trends[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type', 'Trending Over', 'Trending Under']]
                elif game_select_var == 'Pick6':
                    prop_df_raw = pick_frame[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type', 'Trending Over', 'Trending Under']]
            
                for books in book_selections:
                    prop_df = prop_df_raw[prop_df_raw['book'] == books]

                    if prop_type_var == "NHL_GAME_PLAYER_SHOTS_ON_GOAL":
                        prop_df = prop_df[prop_df['prop_type'] == 'NHL_GAME_PLAYER_SHOTS_ON_GOAL']
                    elif prop_type_var == 'Shots on Goal':
                        prop_df = prop_df[prop_df['prop_type'] == 'Player SOG']
                    elif prop_type_var == "NHL_GAME_PLAYER_POINTS":
                        prop_df = prop_df[prop_df['prop_type'] == 'NHL_GAME_PLAYER_POINTS']
                    elif prop_type_var == "Points":
                        prop_df = prop_df[prop_df['prop_type'] == 'Player TP']
                    elif prop_type_var == "NHL_GAME_PLAYER_ASSISTS":
                        prop_df = prop_df[prop_df['prop_type'] == 'NHL_GAME_PLAYER_ASSISTS']
                    elif prop_type_var == "Assists":
                        prop_df = prop_df[prop_df['prop_type'] == 'Player Assists']
                    elif prop_type_var == "NHL_GAME_PLAYER_SHOTS_BLOCKED":
                        prop_df = prop_df[prop_df['prop_type'] == 'NHL_GAME_PLAYER_SHOTS_BLOCKED']
                    elif prop_type_var == "Blocks":
                        prop_df = prop_df[prop_df['prop_type'] == 'Player Blocks']

                    prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line']]
                    prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
                    prop_df['Over'] = 1 / prop_df['over_line']
                    prop_df['Under'] = 1 / prop_df['under_line']

                    prop_dict = dict(zip(prop_df.Player, prop_df.Prop))
                    prop_type_dict = dict(zip(prop_df.Player, prop_df.prop_type))
                    book_dict = dict(zip(prop_df.Player, prop_df.book))
                    over_dict = dict(zip(prop_df.Player, prop_df.Over))
                    under_dict = dict(zip(prop_df.Player, prop_df.Under))
                    trending_over_dict = dict(zip(prop_df.Player, prop_df['Trending Over']))
                    trending_under_dict = dict(zip(prop_df.Player, prop_df['Trending Under']))

                    player_df['book'] = player_df['Player'].map(book_dict)
                    player_df['Prop'] = player_df['Player'].map(prop_dict)
                    player_df['prop_type'] = player_df['Player'].map(prop_type_dict)
                    player_df['Trending Over'] = player_df['Player'].map(trending_over_dict)
                    player_df['Trending Under'] = player_df['Player'].map(trending_under_dict)

                    df = player_df.reset_index(drop=True)

                    team_dict = dict(zip(df.Player, df.Team))
                    
                    total_sims = 1000

                    df.replace("", 0, inplace=True)

                    if prop_type_var == 'NHL_GAME_PLAYER_POINTS' or prop_type_var == 'Points':
                        df['Median'] = df['Player TP']
                    elif prop_type_var == 'NHL_GAME_PLAYER_SHOTS_ON_GOAL' or prop_type_var == 'Shots on Goal':
                        df['Median'] = df['Player SOG']
                    elif prop_type_var == 'NHL_GAME_PLAYER_ASSISTS' or prop_type_var == 'Assists':
                        df['Median'] = df['Player Assists']
                    elif prop_type_var == 'NHL_GAME_PLAYER_SHOTS_BLOCKED' or prop_type_var == 'Blocks':
                        df['Median'] = df['Player Blocks']

                    flex_file = df.copy()
                    flex_file['Floor'] = (flex_file['Median'] * .15)
                    flex_file['Ceiling'] = flex_file['Median'] + (flex_file['Median'] * 1)
                    flex_file['STD'] = (flex_file['Median']/3)
                    flex_file['Prop'] = flex_file['Player'].map(prop_dict)
                    flex_file = flex_file[['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']]

                    hold_file = flex_file.copy()
                    overall_file = flex_file.copy()
                    prop_file = flex_file.copy()
                        
                    overall_players = overall_file[['Player']]

                    for x in range(0,total_sims):    
                        prop_file[x] = prop_file['Prop']

                    prop_file = prop_file.drop(['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)

                    for x in range(0,total_sims):
                        overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])

                    overall_file=overall_file.drop(['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)

                    players_only = hold_file[['Player']]

                    player_outcomes = pd.merge(players_only, overall_file, left_index=True, right_index=True)

                    prop_check = (overall_file - prop_file)

                    players_only['Mean_Outcome'] = overall_file.mean(axis=1)
                    players_only['Prop'] = players_only['Player'].map(prop_dict)
                    players_only['Book'] = players_only['Player'].map(book_dict)
                    players_only['Trending Over'] = players_only['Player'].map(trending_over_dict)
                    players_only['Trending Under'] = players_only['Player'].map(trending_under_dict)
                    players_only['over_adj'] = np_where((players_only['Mean_Outcome'] - players_only['Prop']) > 0, 1, (players_only['Mean_Outcome'] / players_only['Prop']))
                    players_only['under_adj'] = np_where((players_only['Prop'] - players_only['Mean_Outcome']) > 0, 1, (players_only['Prop'] / players_only['Mean_Outcome']))
                    players_only['poisson_var'] = players_only.apply(calculate_poisson, axis=1)
                    players_only['10%'] = overall_file.quantile(0.1, axis=1)
                    players_only['90%'] = overall_file.quantile(0.9, axis=1)
                    players_only['Over'] = np_where(players_only['Prop'] <= 3, players_only['poisson_var'], prop_check[prop_check > 0].count(axis=1)/float(total_sims))
                    players_only['Imp Over'] = players_only['Player'].map(over_dict)
                    players_only['Over%'] = (players_only['Over'] * 0.4) + (players_only['Trending Over'] * 0.4) + (players_only['Imp Over'] * 0.2)
                    players_only['Under'] = np_where(players_only['Prop'] <= 3, 1 - players_only['poisson_var'], prop_check[prop_check < 0].count(axis=1)/float(total_sims))
                    players_only['Imp Under'] = players_only['Player'].map(under_dict)
                    players_only['Under%'] = (players_only['Under'] * 0.4) + (players_only['Trending Under'] * 0.4) + (players_only['Imp Under'] * 0.2)
                    players_only['Prop_avg'] = players_only['Prop'].mean() / 100
                    players_only['prop_threshold'] = .10
                    players_only = players_only[players_only['Mean_Outcome'] > 0]
                    players_only['Over_diff'] = players_only['Over%'] - players_only['Imp Over']
                    players_only['Under_diff'] = players_only['Under%'] - players_only['Imp Under']
                    players_only['Bet_check'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], players_only['Over_diff'] * players_only['over_adj'], players_only['Under_diff'] * players_only['under_adj'])
                    players_only['Bet_suggest'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], "Over" , "Under")
                    players_only['Bet?'] = np.where(players_only['Bet_check'] >= players_only['prop_threshold'], players_only['Bet_suggest'], "No Bet")
                    players_only['Edge'] = players_only['Bet_check']
                    players_only['Prop Type'] = prop_type_var

                    players_only['Player'] = hold_file[['Player']]
                    players_only['Team'] = players_only['Player'].map(team_dict)

                    leg_outcomes = players_only[['Player', 'Team', 'Book', 'Prop', 'Prop Type', 'Mean_Outcome', 'Imp Over', 'Trending Over', 'Over%', 'Imp Under', 'Trending Under', 'Under%', 'Bet?', 'Edge']]
                    sim_all_hold = pd.concat([sim_all_hold, leg_outcomes], ignore_index=True)
                    
                    final_outcomes = sim_all_hold
                    st.write(f'finished {prop_type_var} for {books}')
                
            final_outcomes = final_outcomes[final_outcomes['Prop'] > 0]
            if game_select_var == 'Pick6':
                final_outcomes = final_outcomes.drop_duplicates(subset=['Player', 'Prop Type'])
            final_outcomes = final_outcomes.sort_values(by='Edge', ascending=False)

            with df_hold_container:
                df_hold_container = st.empty()
                st.dataframe(final_outcomes.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
            with export_container:
                export_container = st.empty()
                st.download_button(
                    label="Export Projections",
                    data=convert_df_to_csv(final_outcomes),
                    file_name='NHL_prop_proj.csv',
                    mime='text/csv',
                    key='prop_proj',
                )