James McCool commited on
Commit
8dedc8e
·
1 Parent(s): e25cbc1

Refactor app.py to standardize DataFrame column names for leg_outcomes. Changed 'Imp Over' and 'Imp Under' to 'Over' and 'Under' respectively, enhancing clarity and consistency in prop data handling.

Browse files
Files changed (1) hide show
  1. app.py +3 -3
app.py CHANGED
@@ -60,7 +60,7 @@ prop_format = {'L5 Success': '{:.2%}', 'L10_Success': '{:.2%}', 'L20_success': '
60
  'Implied Over': '{:.2%}', 'Implied Under': '{:.2%}', 'Over Edge': '{:.2%}', 'Under Edge': '{:.2%}'}
61
  all_sim_vars = ['NHL_GAME_PLAYER_SHOTS_ON_GOAL', 'NHL_GAME_PLAYER_POINTS', 'NHL_GAME_PLAYER_SHOTS_BLOCKED', 'NHL_GAME_PLAYER_ASSISTS']
62
  pick6_sim_vars = ['Points', 'Shots on Goal', 'Assists', 'Blocks']
63
- sim_all_hold = pd.DataFrame(columns=['Player', 'Prop Type', 'Prop', 'Mean_Outcome', 'Imp Over', 'Trending Over', 'Over%', 'Imp Under', 'Trending Under', 'Under%', 'Bet?', 'Edge'])
64
 
65
  @st.cache_resource(ttl=200)
66
  def pull_baselines():
@@ -311,7 +311,7 @@ with tab3:
311
  players_only['Player'] = hold_file[['Player']]
312
  players_only['Team'] = players_only['Player'].map(team_dict)
313
 
314
- leg_outcomes = players_only[['Player', 'Team', 'Book', 'Prop Type', 'Prop', 'Mean_Outcome', 'Imp Over', 'Trending Over', 'Over%', 'Imp Under', 'Trending Under', 'Under%', 'Bet?', 'Edge']]
315
  sim_all_hold = pd.concat([sim_all_hold, leg_outcomes], ignore_index=True)
316
 
317
  final_outcomes = sim_all_hold
@@ -439,7 +439,7 @@ with tab3:
439
  players_only['Player'] = hold_file[['Player']]
440
  players_only['Team'] = players_only['Player'].map(team_dict)
441
 
442
- leg_outcomes = players_only[['Player', 'Team', 'Book', 'Prop', 'Prop Type', 'Mean_Outcome', 'Imp Over', 'Trending Over', 'Over%', 'Imp Under', 'Trending Under', 'Under%', 'Bet?', 'Edge']]
443
  sim_all_hold = pd.concat([sim_all_hold, leg_outcomes], ignore_index=True)
444
 
445
  final_outcomes = sim_all_hold
 
60
  'Implied Over': '{:.2%}', 'Implied Under': '{:.2%}', 'Over Edge': '{:.2%}', 'Under Edge': '{:.2%}'}
61
  all_sim_vars = ['NHL_GAME_PLAYER_SHOTS_ON_GOAL', 'NHL_GAME_PLAYER_POINTS', 'NHL_GAME_PLAYER_SHOTS_BLOCKED', 'NHL_GAME_PLAYER_ASSISTS']
62
  pick6_sim_vars = ['Points', 'Shots on Goal', 'Assists', 'Blocks']
63
+ sim_all_hold = pd.DataFrame(columns=['Player', 'Prop Type', 'Prop', 'Mean_Outcome', 'Imp Over', 'Over', 'Trending Over', 'Over%', 'Imp Under', 'Under', 'Trending Under', 'Under%', 'Bet?', 'Edge'])
64
 
65
  @st.cache_resource(ttl=200)
66
  def pull_baselines():
 
311
  players_only['Player'] = hold_file[['Player']]
312
  players_only['Team'] = players_only['Player'].map(team_dict)
313
 
314
+ leg_outcomes = players_only[['Player', 'Team', 'Book', 'Prop Type', 'Prop', 'Mean_Outcome', 'Imp Over', 'Over', 'Trending Over', 'Over%', 'Imp Under', 'Under', 'Trending Under', 'Under%', 'Bet?', 'Edge']]
315
  sim_all_hold = pd.concat([sim_all_hold, leg_outcomes], ignore_index=True)
316
 
317
  final_outcomes = sim_all_hold
 
439
  players_only['Player'] = hold_file[['Player']]
440
  players_only['Team'] = players_only['Player'].map(team_dict)
441
 
442
+ leg_outcomes = players_only[['Player', 'Team', 'Book', 'Prop', 'Prop Type', 'Mean_Outcome', 'Imp Over', 'Over', 'Trending Over', 'Over%', 'Imp Under', 'Under', 'Trending Under', 'Under%', 'Bet?', 'Edge']]
443
  sim_all_hold = pd.concat([sim_all_hold, leg_outcomes], ignore_index=True)
444
 
445
  final_outcomes = sim_all_hold