Spaces:
Running
Running
James McCool
commited on
Commit
·
c527886
1
Parent(s):
60833bc
Update leg_outcomes DataFrame to include 'Trending Over' and 'Trending Under' columns for enhanced prop data analysis. This change improves the clarity and accuracy of player projections by aligning with recent updates in prop data handling.
Browse files
app.py
CHANGED
@@ -59,7 +59,7 @@ prop_format = {'L5 Success': '{:.2%}', 'L10_Success': '{:.2%}', 'L20_success': '
|
|
59 |
'Implied Over': '{:.2%}', 'Implied Under': '{:.2%}', 'Over Edge': '{:.2%}', 'Under Edge': '{:.2%}'}
|
60 |
all_sim_vars = ['NHL_GAME_PLAYER_SHOTS_ON_GOAL', 'NHL_GAME_PLAYER_POINTS', 'NHL_GAME_PLAYER_BLOCKED_SHOTS', 'NHL_GAME_PLAYER_ASSISTS']
|
61 |
pick6_sim_vars = ['Points', 'Shots on Goal', 'Assists', 'Blocks']
|
62 |
-
sim_all_hold = pd.DataFrame(columns=['Player', 'Prop Type', 'Prop', 'Mean_Outcome', 'Imp Over', 'Over%', 'Imp Under', 'Under%', 'Bet?', 'Edge'])
|
63 |
|
64 |
@st.cache_resource(ttl=200)
|
65 |
def pull_baselines():
|
@@ -309,7 +309,7 @@ with tab3:
|
|
309 |
players_only['Player'] = hold_file[['Player']]
|
310 |
players_only['Team'] = players_only['Player'].map(team_dict)
|
311 |
|
312 |
-
leg_outcomes = players_only[['Player', 'Team', 'Book', 'Prop Type', 'Prop', 'Mean_Outcome', 'Imp Over', 'Over%', 'Imp Under', 'Under%', 'Bet?', 'Edge']]
|
313 |
sim_all_hold = pd.concat([sim_all_hold, leg_outcomes], ignore_index=True)
|
314 |
|
315 |
final_outcomes = sim_all_hold
|
@@ -437,7 +437,7 @@ with tab3:
|
|
437 |
players_only['Player'] = hold_file[['Player']]
|
438 |
players_only['Team'] = players_only['Player'].map(team_dict)
|
439 |
|
440 |
-
leg_outcomes = players_only[['Player', 'Team', 'Book', 'Prop', 'Prop Type', 'Mean_Outcome', 'Imp Over', 'Over%', 'Imp Under', 'Under%', 'Bet?', 'Edge']]
|
441 |
sim_all_hold = pd.concat([sim_all_hold, leg_outcomes], ignore_index=True)
|
442 |
|
443 |
final_outcomes = sim_all_hold
|
|
|
59 |
'Implied Over': '{:.2%}', 'Implied Under': '{:.2%}', 'Over Edge': '{:.2%}', 'Under Edge': '{:.2%}'}
|
60 |
all_sim_vars = ['NHL_GAME_PLAYER_SHOTS_ON_GOAL', 'NHL_GAME_PLAYER_POINTS', 'NHL_GAME_PLAYER_BLOCKED_SHOTS', 'NHL_GAME_PLAYER_ASSISTS']
|
61 |
pick6_sim_vars = ['Points', 'Shots on Goal', 'Assists', 'Blocks']
|
62 |
+
sim_all_hold = pd.DataFrame(columns=['Player', 'Prop Type', 'Prop', 'Mean_Outcome', 'Imp Over', 'Trending Over', 'Over%', 'Imp Under', 'Trending Under', 'Under%', 'Bet?', 'Edge'])
|
63 |
|
64 |
@st.cache_resource(ttl=200)
|
65 |
def pull_baselines():
|
|
|
309 |
players_only['Player'] = hold_file[['Player']]
|
310 |
players_only['Team'] = players_only['Player'].map(team_dict)
|
311 |
|
312 |
+
leg_outcomes = players_only[['Player', 'Team', 'Book', 'Prop Type', 'Prop', 'Mean_Outcome', 'Imp Over', 'Trending Over', 'Over%', 'Imp Under', 'Trending Under', 'Under%', 'Bet?', 'Edge']]
|
313 |
sim_all_hold = pd.concat([sim_all_hold, leg_outcomes], ignore_index=True)
|
314 |
|
315 |
final_outcomes = sim_all_hold
|
|
|
437 |
players_only['Player'] = hold_file[['Player']]
|
438 |
players_only['Team'] = players_only['Player'].map(team_dict)
|
439 |
|
440 |
+
leg_outcomes = players_only[['Player', 'Team', 'Book', 'Prop', 'Prop Type', 'Mean_Outcome', 'Imp Over', 'Trending Over', 'Over%', 'Imp Under', 'Trending Under', 'Under%', 'Bet?', 'Edge']]
|
441 |
sim_all_hold = pd.concat([sim_all_hold, leg_outcomes], ignore_index=True)
|
442 |
|
443 |
final_outcomes = sim_all_hold
|