James McCool commited on
Commit
c527886
·
1 Parent(s): 60833bc

Update leg_outcomes DataFrame to include 'Trending Over' and 'Trending Under' columns for enhanced prop data analysis. This change improves the clarity and accuracy of player projections by aligning with recent updates in prop data handling.

Browse files
Files changed (1) hide show
  1. app.py +3 -3
app.py CHANGED
@@ -59,7 +59,7 @@ prop_format = {'L5 Success': '{:.2%}', 'L10_Success': '{:.2%}', 'L20_success': '
59
  'Implied Over': '{:.2%}', 'Implied Under': '{:.2%}', 'Over Edge': '{:.2%}', 'Under Edge': '{:.2%}'}
60
  all_sim_vars = ['NHL_GAME_PLAYER_SHOTS_ON_GOAL', 'NHL_GAME_PLAYER_POINTS', 'NHL_GAME_PLAYER_BLOCKED_SHOTS', 'NHL_GAME_PLAYER_ASSISTS']
61
  pick6_sim_vars = ['Points', 'Shots on Goal', 'Assists', 'Blocks']
62
- sim_all_hold = pd.DataFrame(columns=['Player', 'Prop Type', 'Prop', 'Mean_Outcome', 'Imp Over', 'Over%', 'Imp Under', 'Under%', 'Bet?', 'Edge'])
63
 
64
  @st.cache_resource(ttl=200)
65
  def pull_baselines():
@@ -309,7 +309,7 @@ with tab3:
309
  players_only['Player'] = hold_file[['Player']]
310
  players_only['Team'] = players_only['Player'].map(team_dict)
311
 
312
- leg_outcomes = players_only[['Player', 'Team', 'Book', 'Prop Type', 'Prop', 'Mean_Outcome', 'Imp Over', 'Over%', 'Imp Under', 'Under%', 'Bet?', 'Edge']]
313
  sim_all_hold = pd.concat([sim_all_hold, leg_outcomes], ignore_index=True)
314
 
315
  final_outcomes = sim_all_hold
@@ -437,7 +437,7 @@ with tab3:
437
  players_only['Player'] = hold_file[['Player']]
438
  players_only['Team'] = players_only['Player'].map(team_dict)
439
 
440
- leg_outcomes = players_only[['Player', 'Team', 'Book', 'Prop', 'Prop Type', 'Mean_Outcome', 'Imp Over', 'Over%', 'Imp Under', 'Under%', 'Bet?', 'Edge']]
441
  sim_all_hold = pd.concat([sim_all_hold, leg_outcomes], ignore_index=True)
442
 
443
  final_outcomes = sim_all_hold
 
59
  'Implied Over': '{:.2%}', 'Implied Under': '{:.2%}', 'Over Edge': '{:.2%}', 'Under Edge': '{:.2%}'}
60
  all_sim_vars = ['NHL_GAME_PLAYER_SHOTS_ON_GOAL', 'NHL_GAME_PLAYER_POINTS', 'NHL_GAME_PLAYER_BLOCKED_SHOTS', 'NHL_GAME_PLAYER_ASSISTS']
61
  pick6_sim_vars = ['Points', 'Shots on Goal', 'Assists', 'Blocks']
62
+ sim_all_hold = pd.DataFrame(columns=['Player', 'Prop Type', 'Prop', 'Mean_Outcome', 'Imp Over', 'Trending Over', 'Over%', 'Imp Under', 'Trending Under', 'Under%', 'Bet?', 'Edge'])
63
 
64
  @st.cache_resource(ttl=200)
65
  def pull_baselines():
 
309
  players_only['Player'] = hold_file[['Player']]
310
  players_only['Team'] = players_only['Player'].map(team_dict)
311
 
312
+ leg_outcomes = players_only[['Player', 'Team', 'Book', 'Prop Type', 'Prop', 'Mean_Outcome', 'Imp Over', 'Trending Over', 'Over%', 'Imp Under', 'Trending Under', 'Under%', 'Bet?', 'Edge']]
313
  sim_all_hold = pd.concat([sim_all_hold, leg_outcomes], ignore_index=True)
314
 
315
  final_outcomes = sim_all_hold
 
437
  players_only['Player'] = hold_file[['Player']]
438
  players_only['Team'] = players_only['Player'].map(team_dict)
439
 
440
+ leg_outcomes = players_only[['Player', 'Team', 'Book', 'Prop', 'Prop Type', 'Mean_Outcome', 'Imp Over', 'Trending Over', 'Over%', 'Imp Under', 'Trending Under', 'Under%', 'Bet?', 'Edge']]
441
  sim_all_hold = pd.concat([sim_all_hold, leg_outcomes], ignore_index=True)
442
 
443
  final_outcomes = sim_all_hold