Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -746,116 +746,189 @@ with tab1:
|
|
746 |
|
747 |
try:
|
748 |
try:
|
749 |
-
|
750 |
-
|
751 |
-
|
752 |
-
|
753 |
-
|
754 |
-
|
755 |
-
|
756 |
-
|
757 |
-
|
758 |
-
|
759 |
-
|
760 |
-
|
761 |
-
|
762 |
-
|
763 |
-
|
764 |
-
|
765 |
-
|
766 |
-
|
767 |
-
|
768 |
-
|
769 |
-
|
770 |
-
|
771 |
-
|
772 |
-
|
773 |
-
|
774 |
-
|
775 |
-
|
776 |
-
|
777 |
-
|
778 |
-
|
779 |
-
|
780 |
-
|
781 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
782 |
|
783 |
-
split_portfolio['Projection'] = sum([split_portfolio['C1'].map(player_proj_dict),
|
784 |
-
split_portfolio['C2'].map(player_proj_dict),
|
785 |
-
split_portfolio['W1'].map(player_proj_dict),
|
786 |
-
split_portfolio['W2'].map(player_proj_dict),
|
787 |
-
split_portfolio['W3'].map(player_proj_dict),
|
788 |
-
split_portfolio['D1'].map(player_proj_dict),
|
789 |
-
split_portfolio['D2'].map(player_proj_dict),
|
790 |
-
split_portfolio['G'].map(player_proj_dict),
|
791 |
-
split_portfolio['UTIL'].map(player_proj_dict)])
|
792 |
|
793 |
-
|
794 |
-
|
795 |
-
|
796 |
-
|
797 |
-
|
798 |
-
|
799 |
-
|
800 |
-
|
801 |
-
|
802 |
-
|
803 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
804 |
except:
|
805 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
806 |
|
807 |
-
split_portfolio = portfolio_dataframe
|
808 |
-
split_portfolio[['C1_ID', 'C1']] = split_portfolio.C1.str.split(":", n=1, expand = True)
|
809 |
-
split_portfolio[['C2_ID', 'C2']] = split_portfolio.C2.str.split(":", n=1, expand = True)
|
810 |
-
split_portfolio[['W1_ID', 'W1']] = split_portfolio.W1.str.split(":", n=1, expand = True)
|
811 |
-
split_portfolio[['W2_ID', 'W2']] = split_portfolio.W2.str.split(":", n=1, expand = True)
|
812 |
-
split_portfolio[['D1_ID', 'D1']] = split_portfolio.D1.str.split(":", n=1, expand = True)
|
813 |
-
split_portfolio[['D2_ID', 'D2']] = split_portfolio.D2.str.split(":", n=1, expand = True)
|
814 |
-
split_portfolio[['UTIL1_ID', 'UTIL1']] = split_portfolio.UTIL1.str.split(":", n=1, expand = True)
|
815 |
-
split_portfolio[['UTIL2_ID', 'UTIL2']] = split_portfolio.UTIL2.str.split(":", n=1, expand = True)
|
816 |
-
split_portfolio[['G_ID', 'G']] = split_portfolio.G.str.split(":", n=1, expand = True)
|
817 |
|
818 |
-
|
819 |
-
|
820 |
-
|
821 |
-
|
822 |
-
|
823 |
-
|
824 |
-
|
825 |
-
|
826 |
-
|
827 |
-
|
828 |
-
|
829 |
-
|
830 |
-
|
831 |
-
|
832 |
-
|
833 |
-
|
834 |
-
|
835 |
-
|
836 |
-
|
837 |
-
|
838 |
-
|
839 |
-
|
840 |
-
|
841 |
-
|
842 |
-
|
843 |
-
|
844 |
-
|
845 |
-
|
846 |
-
|
847 |
-
|
848 |
-
|
849 |
-
|
850 |
-
|
851 |
-
|
852 |
-
|
853 |
-
split_portfolio['D1'].map(player_own_dict),
|
854 |
-
split_portfolio['D2'].map(player_own_dict),
|
855 |
-
split_portfolio['UTIL1'].map(player_own_dict),
|
856 |
-
split_portfolio['UTIL2'].map(player_own_dict),
|
857 |
-
split_portfolio['G'].map(player_own_dict)])
|
858 |
-
|
859 |
except:
|
860 |
try:
|
861 |
split_portfolio = portfolio_dataframe
|
@@ -1048,6 +1121,7 @@ with tab2:
|
|
1048 |
|
1049 |
if site_var1 == 'Draftkings':
|
1050 |
if insert_port == 1:
|
|
|
1051 |
UserPortfolio = portfolio_dataframe[['C1', 'C2', 'W1', 'W2', 'W3', 'D1', 'D2', 'G', 'UTIL']]
|
1052 |
elif insert_port == 0:
|
1053 |
UserPortfolio = pd.DataFrame(columns = ['C1', 'C2', 'W1', 'W2', 'W3', 'D1', 'D2', 'G', 'UTIL'])
|
|
|
746 |
|
747 |
try:
|
748 |
try:
|
749 |
+
try:
|
750 |
+
portfolio_dataframe.columns=["C1", "C2", "W1", "W2", "W3", "D1", "D2", "G", "UTIL"]
|
751 |
+
split_portfolio = portfolio_dataframe
|
752 |
+
split_portfolio[['C1', 'C1_ID']] = split_portfolio.C1.str.split("(", n=1, expand = True)
|
753 |
+
split_portfolio[['C2', 'C2_ID']] = split_portfolio.C2.str.split("(", n=1, expand = True)
|
754 |
+
split_portfolio[['W1', 'W1_ID']] = split_portfolio.W1.str.split("(", n=1, expand = True)
|
755 |
+
split_portfolio[['W2', 'W2_ID']] = split_portfolio.W2.str.split("(", n=1, expand = True)
|
756 |
+
split_portfolio[['W3', 'W3_ID']] = split_portfolio.W3.str.split("(", n=1, expand = True)
|
757 |
+
split_portfolio[['D1', 'D1_ID']] = split_portfolio.D1.str.split("(", n=1, expand = True)
|
758 |
+
split_portfolio[['D2', 'D2_ID']] = split_portfolio.D2.str.split("(", n=1, expand = True)
|
759 |
+
split_portfolio[['G', 'G_ID']] = split_portfolio.G.str.split("(", n=1, expand = True)
|
760 |
+
split_portfolio[['UTIL', 'UTIL_ID']] = split_portfolio.UTIL.str.split("(", n=1, expand = True)
|
761 |
+
|
762 |
+
split_portfolio['C1'] = split_portfolio['C1'].str.strip()
|
763 |
+
split_portfolio['C2'] = split_portfolio['C2'].str.strip()
|
764 |
+
split_portfolio['W1'] = split_portfolio['W1'].str.strip()
|
765 |
+
split_portfolio['W2'] = split_portfolio['W2'].str.strip()
|
766 |
+
split_portfolio['W3'] = split_portfolio['W3'].str.strip()
|
767 |
+
split_portfolio['D1'] = split_portfolio['D1'].str.strip()
|
768 |
+
split_portfolio['D2'] = split_portfolio['D2'].str.strip()
|
769 |
+
split_portfolio['G'] = split_portfolio['G'].str.strip()
|
770 |
+
split_portfolio['UTIL'] = split_portfolio['UTIL'].str.strip()
|
771 |
+
|
772 |
+
st.table(split_portfolio.head(10))
|
773 |
+
|
774 |
+
split_portfolio['Salary'] = sum([split_portfolio['C1'].map(player_salary_dict),
|
775 |
+
split_portfolio['C2'].map(player_salary_dict),
|
776 |
+
split_portfolio['W1'].map(player_salary_dict),
|
777 |
+
split_portfolio['W2'].map(player_salary_dict),
|
778 |
+
split_portfolio['W3'].map(player_salary_dict),
|
779 |
+
split_portfolio['D1'].map(player_salary_dict),
|
780 |
+
split_portfolio['D2'].map(player_salary_dict),
|
781 |
+
split_portfolio['G'].map(player_salary_dict),
|
782 |
+
split_portfolio['UTIL'].map(player_salary_dict)])
|
783 |
+
|
784 |
+
split_portfolio['Projection'] = sum([split_portfolio['C1'].map(player_proj_dict),
|
785 |
+
split_portfolio['C2'].map(player_proj_dict),
|
786 |
+
split_portfolio['W1'].map(player_proj_dict),
|
787 |
+
split_portfolio['W2'].map(player_proj_dict),
|
788 |
+
split_portfolio['W3'].map(player_proj_dict),
|
789 |
+
split_portfolio['D1'].map(player_proj_dict),
|
790 |
+
split_portfolio['D2'].map(player_proj_dict),
|
791 |
+
split_portfolio['G'].map(player_proj_dict),
|
792 |
+
split_portfolio['UTIL'].map(player_proj_dict)])
|
793 |
+
|
794 |
+
split_portfolio['Ownership'] = sum([split_portfolio['C1'].map(player_own_dict),
|
795 |
+
split_portfolio['C2'].map(player_own_dict),
|
796 |
+
split_portfolio['W1'].map(player_own_dict),
|
797 |
+
split_portfolio['W2'].map(player_own_dict),
|
798 |
+
split_portfolio['W3'].map(player_own_dict),
|
799 |
+
split_portfolio['D1'].map(player_own_dict),
|
800 |
+
split_portfolio['D2'].map(player_own_dict),
|
801 |
+
split_portfolio['G'].map(player_own_dict),
|
802 |
+
split_portfolio['UTIL'].map(player_own_dict)])
|
803 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
804 |
|
805 |
+
except:
|
806 |
+
portfolio_dataframe.columns=["C1", "C2", "W1", "W2", "D1", "D2", "UTIL1", "UTIL2", "G"]
|
807 |
+
|
808 |
+
split_portfolio = portfolio_dataframe
|
809 |
+
split_portfolio[['C1_ID', 'C1']] = split_portfolio.C1.str.split(":", n=1, expand = True)
|
810 |
+
split_portfolio[['C2_ID', 'C2']] = split_portfolio.C2.str.split(":", n=1, expand = True)
|
811 |
+
split_portfolio[['W1_ID', 'W1']] = split_portfolio.W1.str.split(":", n=1, expand = True)
|
812 |
+
split_portfolio[['W2_ID', 'W2']] = split_portfolio.W2.str.split(":", n=1, expand = True)
|
813 |
+
split_portfolio[['D1_ID', 'D1']] = split_portfolio.D1.str.split(":", n=1, expand = True)
|
814 |
+
split_portfolio[['D2_ID', 'D2']] = split_portfolio.D2.str.split(":", n=1, expand = True)
|
815 |
+
split_portfolio[['UTIL1_ID', 'UTIL1']] = split_portfolio.UTIL1.str.split(":", n=1, expand = True)
|
816 |
+
split_portfolio[['UTIL2_ID', 'UTIL2']] = split_portfolio.UTIL2.str.split(":", n=1, expand = True)
|
817 |
+
split_portfolio[['G_ID', 'G']] = split_portfolio.G.str.split(":", n=1, expand = True)
|
818 |
+
|
819 |
+
split_portfolio['C1'] = split_portfolio['C1'].str.strip()
|
820 |
+
split_portfolio['C2'] = split_portfolio['C2'].str.strip()
|
821 |
+
split_portfolio['W1'] = split_portfolio['W1'].str.strip()
|
822 |
+
split_portfolio['W2'] = split_portfolio['W2'].str.strip()
|
823 |
+
split_portfolio['D1'] = split_portfolio['D1'].str.strip()
|
824 |
+
split_portfolio['D2'] = split_portfolio['D2'].str.strip()
|
825 |
+
split_portfolio['UTIL1'] = split_portfolio['UTIL1'].str.strip()
|
826 |
+
split_portfolio['UTIL2'] = split_portfolio['UTIL2'].str.strip()
|
827 |
+
split_portfolio['G'] = split_portfolio['G'].str.strip()
|
828 |
+
|
829 |
+
split_portfolio['Salary'] = sum([split_portfolio['C1'].map(player_salary_dict),
|
830 |
+
split_portfolio['C2'].map(player_salary_dict),
|
831 |
+
split_portfolio['W1'].map(player_salary_dict),
|
832 |
+
split_portfolio['W2'].map(player_salary_dict),
|
833 |
+
split_portfolio['D1'].map(player_salary_dict),
|
834 |
+
split_portfolio['D2'].map(player_salary_dict),
|
835 |
+
split_portfolio['UTIL1'].map(player_salary_dict),
|
836 |
+
split_portfolio['UTIL2'].map(player_salary_dict),
|
837 |
+
split_portfolio['G'].map(player_salary_dict)])
|
838 |
+
|
839 |
+
split_portfolio['Projection'] = sum([split_portfolio['C1'].map(player_proj_dict),
|
840 |
+
split_portfolio['C2'].map(player_proj_dict),
|
841 |
+
split_portfolio['W1'].map(player_proj_dict),
|
842 |
+
split_portfolio['W2'].map(player_proj_dict),
|
843 |
+
split_portfolio['D1'].map(player_proj_dict),
|
844 |
+
split_portfolio['D2'].map(player_proj_dict),
|
845 |
+
split_portfolio['UTIL1'].map(player_proj_dict),
|
846 |
+
split_portfolio['UTIL2'].map(player_proj_dict),
|
847 |
+
split_portfolio['G'].map(player_proj_dict)])
|
848 |
+
|
849 |
+
st.table(split_portfolio.head(10))
|
850 |
+
split_portfolio['Ownership'] = sum([split_portfolio['C1'].map(player_own_dict),
|
851 |
+
split_portfolio['C2'].map(player_own_dict),
|
852 |
+
split_portfolio['W1'].map(player_own_dict),
|
853 |
+
split_portfolio['W2'].map(player_own_dict),
|
854 |
+
split_portfolio['D1'].map(player_own_dict),
|
855 |
+
split_portfolio['D2'].map(player_own_dict),
|
856 |
+
split_portfolio['UTIL1'].map(player_own_dict),
|
857 |
+
split_portfolio['UTIL2'].map(player_own_dict),
|
858 |
+
split_portfolio['G'].map(player_own_dict)])
|
859 |
except:
|
860 |
+
try:
|
861 |
+
portfolio_dataframe.columns=["C1", "C2", "W1", "W2", "W3", "D1", "D2", "G", "UTIL"]
|
862 |
+
split_portfolio = portfolio_dataframe
|
863 |
+
|
864 |
+
st.table(split_portfolio.head(10))
|
865 |
+
|
866 |
+
split_portfolio['Salary'] = sum([split_portfolio['C1'].map(player_salary_dict),
|
867 |
+
split_portfolio['C2'].map(player_salary_dict),
|
868 |
+
split_portfolio['W1'].map(player_salary_dict),
|
869 |
+
split_portfolio['W2'].map(player_salary_dict),
|
870 |
+
split_portfolio['W3'].map(player_salary_dict),
|
871 |
+
split_portfolio['D1'].map(player_salary_dict),
|
872 |
+
split_portfolio['D2'].map(player_salary_dict),
|
873 |
+
split_portfolio['G'].map(player_salary_dict),
|
874 |
+
split_portfolio['UTIL'].map(player_salary_dict)])
|
875 |
+
|
876 |
+
split_portfolio['Projection'] = sum([split_portfolio['C1'].map(player_proj_dict),
|
877 |
+
split_portfolio['C2'].map(player_proj_dict),
|
878 |
+
split_portfolio['W1'].map(player_proj_dict),
|
879 |
+
split_portfolio['W2'].map(player_proj_dict),
|
880 |
+
split_portfolio['W3'].map(player_proj_dict),
|
881 |
+
split_portfolio['D1'].map(player_proj_dict),
|
882 |
+
split_portfolio['D2'].map(player_proj_dict),
|
883 |
+
split_portfolio['G'].map(player_proj_dict),
|
884 |
+
split_portfolio['UTIL'].map(player_proj_dict)])
|
885 |
+
|
886 |
+
split_portfolio['Ownership'] = sum([split_portfolio['C1'].map(player_own_dict),
|
887 |
+
split_portfolio['C2'].map(player_own_dict),
|
888 |
+
split_portfolio['W1'].map(player_own_dict),
|
889 |
+
split_portfolio['W2'].map(player_own_dict),
|
890 |
+
split_portfolio['W3'].map(player_own_dict),
|
891 |
+
split_portfolio['D1'].map(player_own_dict),
|
892 |
+
split_portfolio['D2'].map(player_own_dict),
|
893 |
+
split_portfolio['G'].map(player_own_dict),
|
894 |
+
split_portfolio['UTIL'].map(player_own_dict)])
|
895 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
896 |
|
897 |
+
except:
|
898 |
+
portfolio_dataframe.columns=["C1", "C2", "W1", "W2", "D1", "D2", "UTIL1", "UTIL2", "G"]
|
899 |
+
|
900 |
+
split_portfolio = portfolio_dataframe
|
901 |
+
|
902 |
+
split_portfolio['Salary'] = sum([split_portfolio['C1'].map(player_salary_dict),
|
903 |
+
split_portfolio['C2'].map(player_salary_dict),
|
904 |
+
split_portfolio['W1'].map(player_salary_dict),
|
905 |
+
split_portfolio['W2'].map(player_salary_dict),
|
906 |
+
split_portfolio['D1'].map(player_salary_dict),
|
907 |
+
split_portfolio['D2'].map(player_salary_dict),
|
908 |
+
split_portfolio['UTIL1'].map(player_salary_dict),
|
909 |
+
split_portfolio['UTIL2'].map(player_salary_dict),
|
910 |
+
split_portfolio['G'].map(player_salary_dict)])
|
911 |
+
|
912 |
+
split_portfolio['Projection'] = sum([split_portfolio['C1'].map(player_proj_dict),
|
913 |
+
split_portfolio['C2'].map(player_proj_dict),
|
914 |
+
split_portfolio['W1'].map(player_proj_dict),
|
915 |
+
split_portfolio['W2'].map(player_proj_dict),
|
916 |
+
split_portfolio['D1'].map(player_proj_dict),
|
917 |
+
split_portfolio['D2'].map(player_proj_dict),
|
918 |
+
split_portfolio['UTIL1'].map(player_proj_dict),
|
919 |
+
split_portfolio['UTIL2'].map(player_proj_dict),
|
920 |
+
split_portfolio['G'].map(player_proj_dict)])
|
921 |
+
|
922 |
+
st.table(split_portfolio.head(10))
|
923 |
+
split_portfolio['Ownership'] = sum([split_portfolio['C1'].map(player_own_dict),
|
924 |
+
split_portfolio['C2'].map(player_own_dict),
|
925 |
+
split_portfolio['W1'].map(player_own_dict),
|
926 |
+
split_portfolio['W2'].map(player_own_dict),
|
927 |
+
split_portfolio['D1'].map(player_own_dict),
|
928 |
+
split_portfolio['D2'].map(player_own_dict),
|
929 |
+
split_portfolio['UTIL1'].map(player_own_dict),
|
930 |
+
split_portfolio['UTIL2'].map(player_own_dict),
|
931 |
+
split_portfolio['G'].map(player_own_dict)])
|
|
|
|
|
|
|
|
|
|
|
|
|
932 |
except:
|
933 |
try:
|
934 |
split_portfolio = portfolio_dataframe
|
|
|
1121 |
|
1122 |
if site_var1 == 'Draftkings':
|
1123 |
if insert_port == 1:
|
1124 |
+
st.table(portfolio_dataframe)
|
1125 |
UserPortfolio = portfolio_dataframe[['C1', 'C2', 'W1', 'W2', 'W3', 'D1', 'D2', 'G', 'UTIL']]
|
1126 |
elif insert_port == 0:
|
1127 |
UserPortfolio = pd.DataFrame(columns = ['C1', 'C2', 'W1', 'W2', 'W3', 'D1', 'D2', 'G', 'UTIL'])
|