Spaces:
Running
Running
Upload app (3).py
Browse files- app (3).py +1182 -0
app (3).py
ADDED
@@ -0,0 +1,1182 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
st.set_page_config(layout="wide")
|
3 |
+
|
4 |
+
for name in dir():
|
5 |
+
if not name.startswith('_'):
|
6 |
+
del globals()[name]
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
import pandas as pd
|
10 |
+
import streamlit as st
|
11 |
+
import gspread
|
12 |
+
import random
|
13 |
+
import gc
|
14 |
+
|
15 |
+
@st.cache_resource
|
16 |
+
def init_conn():
|
17 |
+
scope = ['https://www.googleapis.com/auth/spreadsheets',
|
18 |
+
"https://www.googleapis.com/auth/drive"]
|
19 |
+
|
20 |
+
credentials = {
|
21 |
+
"type": "service_account",
|
22 |
+
"project_id": "sheets-api-connect-378620",
|
23 |
+
"private_key_id": "1005124050c80d085e2c5b344345715978dd9cc9",
|
24 |
+
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
|
25 |
+
"client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
|
26 |
+
"client_id": "106625872877651920064",
|
27 |
+
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
|
28 |
+
"token_uri": "https://oauth2.googleapis.com/token",
|
29 |
+
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
|
30 |
+
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
|
31 |
+
}
|
32 |
+
|
33 |
+
gc_con = gspread.service_account_from_dict(credentials)
|
34 |
+
|
35 |
+
return gc_con
|
36 |
+
|
37 |
+
gcservice_account = init_conn()
|
38 |
+
|
39 |
+
freq_format = {'Proj Own': '{:.2%}', 'Exposure': '{:.2%}', 'Edge': '{:.2%}'}
|
40 |
+
|
41 |
+
@st.cache_resource(ttl = 300)
|
42 |
+
def load_dk_player_projections():
|
43 |
+
sh = gcservice_account.open_by_url('https://docs.google.com/spreadsheets/d/1I_1Ve3F4tftgfLQQoRKOJ351XfEG48s36OxXUKxmgS8/edit#gid=1391856348')
|
44 |
+
worksheet = sh.worksheet('DK_ROO')
|
45 |
+
load_display = pd.DataFrame(worksheet.get_all_records())
|
46 |
+
load_display.replace('', np.nan, inplace=True)
|
47 |
+
raw_display = load_display.dropna(subset=['Median'])
|
48 |
+
|
49 |
+
return raw_display
|
50 |
+
|
51 |
+
@st.cache_resource(ttl = 300)
|
52 |
+
def load_fd_player_projections():
|
53 |
+
sh = gcservice_account.open_by_url('https://docs.google.com/spreadsheets/d/1I_1Ve3F4tftgfLQQoRKOJ351XfEG48s36OxXUKxmgS8/edit#gid=1391856348')
|
54 |
+
worksheet = sh.worksheet('FD_ROO')
|
55 |
+
load_display = pd.DataFrame(worksheet.get_all_records())
|
56 |
+
load_display.replace('', np.nan, inplace=True)
|
57 |
+
raw_display = load_display.dropna(subset=['Median'])
|
58 |
+
|
59 |
+
return raw_display
|
60 |
+
|
61 |
+
@st.cache_resource(ttl = 300)
|
62 |
+
def set_export_ids():
|
63 |
+
sh = gcservice_account.open_by_url('https://docs.google.com/spreadsheets/d/1I_1Ve3F4tftgfLQQoRKOJ351XfEG48s36OxXUKxmgS8/edit#gid=1391856348')
|
64 |
+
worksheet = sh.worksheet('DK_ROO')
|
65 |
+
load_display = pd.DataFrame(worksheet.get_all_records())
|
66 |
+
load_display.replace('', np.nan, inplace=True)
|
67 |
+
raw_display = load_display.dropna(subset=['Median'])
|
68 |
+
dk_ids = dict(zip(raw_display['Player'], raw_display['player_id']))
|
69 |
+
|
70 |
+
worksheet = sh.worksheet('FD_ROO')
|
71 |
+
load_display = pd.DataFrame(worksheet.get_all_records())
|
72 |
+
load_display.replace('', np.nan, inplace=True)
|
73 |
+
raw_display = load_display.dropna(subset=['Median'])
|
74 |
+
fd_ids = dict(zip(raw_display['Player'], raw_display['player_id']))
|
75 |
+
|
76 |
+
return dk_ids, fd_ids
|
77 |
+
|
78 |
+
dk_roo_raw = load_dk_player_projections()
|
79 |
+
fd_roo_raw = load_fd_player_projections()
|
80 |
+
t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST"
|
81 |
+
dkid_dict, fdid_dict = set_export_ids()
|
82 |
+
|
83 |
+
static_exposure = pd.DataFrame(columns=['Player', 'count'])
|
84 |
+
overall_exposure = pd.DataFrame(columns=['Player', 'count'])
|
85 |
+
|
86 |
+
def sim_contest(Sim_size, FinalPortfolio, CleanPortfolio, maps_dict, up_dict, insert_port):
|
87 |
+
SimVar = 1
|
88 |
+
Sim_Winners = []
|
89 |
+
fp_array = FinalPortfolio.values
|
90 |
+
|
91 |
+
if insert_port == 1:
|
92 |
+
up_array = CleanPortfolio.values
|
93 |
+
|
94 |
+
# Pre-vectorize functions
|
95 |
+
vec_projection_map = np.vectorize(maps_dict['Projection_map'].__getitem__)
|
96 |
+
vec_stdev_map = np.vectorize(maps_dict['STDev_map'].__getitem__)
|
97 |
+
|
98 |
+
if insert_port == 1:
|
99 |
+
vec_up_projection_map = np.vectorize(up_dict['Projection_map'].__getitem__)
|
100 |
+
vec_up_stdev_map = np.vectorize(up_dict['STDev_map'].__getitem__)
|
101 |
+
|
102 |
+
st.write('Simulating contest on frames')
|
103 |
+
|
104 |
+
while SimVar <= Sim_size:
|
105 |
+
if insert_port == 1:
|
106 |
+
fp_random = fp_array[np.random.choice(fp_array.shape[0], Contest_Size-len(CleanPortfolio))]
|
107 |
+
elif insert_port == 0:
|
108 |
+
fp_random = fp_array[np.random.choice(fp_array.shape[0], Contest_Size)]
|
109 |
+
|
110 |
+
sample_arrays1 = np.c_[
|
111 |
+
fp_random,
|
112 |
+
np.sum(np.random.normal(
|
113 |
+
loc=vec_projection_map(fp_random[:, :-5]),
|
114 |
+
scale=vec_stdev_map(fp_random[:, :-5])),
|
115 |
+
axis=1)
|
116 |
+
]
|
117 |
+
|
118 |
+
if insert_port == 1:
|
119 |
+
sample_arrays2 = np.c_[
|
120 |
+
up_array,
|
121 |
+
np.sum(np.random.normal(
|
122 |
+
loc=vec_up_projection_map(up_array[:, :-5]),
|
123 |
+
scale=vec_up_stdev_map(up_array[:, :-5])),
|
124 |
+
axis=1)
|
125 |
+
]
|
126 |
+
sample_arrays = np.vstack((sample_arrays1, sample_arrays2))
|
127 |
+
else:
|
128 |
+
sample_arrays = sample_arrays1
|
129 |
+
|
130 |
+
final_array = sample_arrays[sample_arrays[:, 10].argsort()[::-1]]
|
131 |
+
best_lineup = final_array[final_array[:, -1].argsort(kind='stable')[::-1][:1]]
|
132 |
+
Sim_Winners.append(best_lineup)
|
133 |
+
SimVar += 1
|
134 |
+
|
135 |
+
return Sim_Winners
|
136 |
+
|
137 |
+
def run_seed_frame(seed_depth1, Strength_var, strength_grow, Teams_used, Total_Runs, field_growth):
|
138 |
+
RunsVar = 1
|
139 |
+
seed_depth_def = seed_depth1
|
140 |
+
Strength_var_def = Strength_var
|
141 |
+
strength_grow_def = strength_grow
|
142 |
+
Teams_used_def = Teams_used
|
143 |
+
Total_Runs_def = Total_Runs
|
144 |
+
|
145 |
+
st.write('Creating Seed Frames')
|
146 |
+
|
147 |
+
while RunsVar <= seed_depth_def:
|
148 |
+
if RunsVar <= 3:
|
149 |
+
FieldStrength = Strength_var_def
|
150 |
+
FinalPortfolio, maps_dict = get_correlated_portfolio_for_sim(Total_Runs_def * .25, sharp_split, field_growth)
|
151 |
+
FinalPortfolio2, maps_dict2 = get_uncorrelated_portfolio_for_sim(Total_Runs_def * .25, sharp_split, field_growth)
|
152 |
+
FinalPortfolio_init = pd.concat([FinalPortfolio, FinalPortfolio2], axis=0)
|
153 |
+
maps_dict.update(maps_dict2)
|
154 |
+
elif RunsVar > 3 and RunsVar <= 4:
|
155 |
+
FieldStrength += (strength_grow_def + ((30 - len(Teams_used_def)) * .001))
|
156 |
+
FinalPortfolio3, maps_dict3 = get_correlated_portfolio_for_sim(Total_Runs_def * .25, sharp_split, field_growth)
|
157 |
+
FinalPortfolio4, maps_dict4 = get_uncorrelated_portfolio_for_sim(Total_Runs_def * .25, sharp_split, field_growth)
|
158 |
+
FinalPortfolio_merge_3 = pd.concat([FinalPortfolio_init, FinalPortfolio3], axis=0)
|
159 |
+
FinalPortfolio_merge_4 = pd.concat([FinalPortfolio_merge_3, FinalPortfolio4], axis=0)
|
160 |
+
FinalPortfolio_step_2 = FinalPortfolio_merge_4.drop_duplicates(subset = ['Projection', 'Own'],keep = 'last').reset_index(drop = True)
|
161 |
+
maps_dict.update(maps_dict3)
|
162 |
+
maps_dict.update(maps_dict4)
|
163 |
+
elif RunsVar > 4:
|
164 |
+
FieldStrength = 1
|
165 |
+
FinalPortfolio5, maps_dict5 = get_correlated_portfolio_for_sim(Total_Runs_def * .25, sharp_split, field_growth)
|
166 |
+
FinalPortfolio6, maps_dict6 = get_uncorrelated_portfolio_for_sim(Total_Runs_def * .25, sharp_split, field_growth)
|
167 |
+
FinalPortfolio_merge_5 = pd.concat([FinalPortfolio_step_2, FinalPortfolio5], axis=0)
|
168 |
+
FinalPortfolio_merge_6 = pd.concat([FinalPortfolio_merge_5, FinalPortfolio6], axis=0)
|
169 |
+
FinalPortfolio_export = FinalPortfolio_merge_6.drop_duplicates(subset = ['Projection', 'Own'],keep = 'last').reset_index(drop = True)
|
170 |
+
maps_dict.update(maps_dict5)
|
171 |
+
maps_dict.update(maps_dict6)
|
172 |
+
RunsVar += 1
|
173 |
+
|
174 |
+
return FinalPortfolio_export, maps_dict
|
175 |
+
|
176 |
+
def create_stack_options(player_data, wr_var):
|
177 |
+
merged_frame = pd.DataFrame(columns = ['QB', 'Player'])
|
178 |
+
data_raw = player_data.sort_values(by='Median', ascending=False)
|
179 |
+
|
180 |
+
for team in data_raw['Team'].unique():
|
181 |
+
data_split = data_raw.loc[data_raw['Team'] == team]
|
182 |
+
qb_frame = data_split.loc[data_split['Position'] == 'QB'].reset_index()
|
183 |
+
wr_frame = data_split.loc[data_split['Position'] == 'WR'].iloc[wr_var-1:wr_var]
|
184 |
+
wr_frame['QB'] = qb_frame['Player'][0]
|
185 |
+
merge_slice = wr_frame[['QB', 'Player']]
|
186 |
+
merged_frame = pd.concat([merged_frame, merge_slice])
|
187 |
+
merged_frame = merged_frame.reset_index()
|
188 |
+
correl_dict = dict(zip(merged_frame.QB, merged_frame.Player))
|
189 |
+
|
190 |
+
return correl_dict
|
191 |
+
|
192 |
+
def create_overall_dfs(pos_players, table_name, dict_name, pos):
|
193 |
+
if pos == "FLEX":
|
194 |
+
pos_players = pos_players.sort_values(by='Value', ascending=False)
|
195 |
+
table_name_raw = pos_players.reset_index(drop=True)
|
196 |
+
overall_table_name = table_name_raw.head(round(len(table_name_raw)))
|
197 |
+
overall_table_name = overall_table_name.assign(Var = range(0,len(overall_table_name)))
|
198 |
+
overall_dict_name = pd.Series(overall_table_name.Player.values, index=overall_table_name.Var).to_dict()
|
199 |
+
elif pos != "FLEX":
|
200 |
+
table_name_raw = pos_players[pos_players['Position'].str.contains(pos)].reset_index(drop=True)
|
201 |
+
overall_table_name = table_name_raw.head(round(len(table_name_raw)))
|
202 |
+
overall_table_name = overall_table_name.assign(Var = range(0,len(overall_table_name)))
|
203 |
+
overall_dict_name = pd.Series(overall_table_name.Player.values, index=overall_table_name.Var).to_dict()
|
204 |
+
|
205 |
+
return overall_table_name, overall_dict_name
|
206 |
+
|
207 |
+
|
208 |
+
def get_overall_merged_df():
|
209 |
+
ref_dict = {
|
210 |
+
'pos':['RB', 'WR', 'TE', 'FLEX'],
|
211 |
+
'pos_dfs':['RB_Table', 'WR_Table', 'TE_Table', 'FLEX_Table'],
|
212 |
+
'pos_dicts':['rb_dict', 'wr_dict', 'te_dict', 'flex_dict']
|
213 |
+
}
|
214 |
+
|
215 |
+
for i in range(0,4):
|
216 |
+
ref_dict['pos_dfs'][i], ref_dict['pos_dicts'][i] =\
|
217 |
+
create_overall_dfs(pos_players, ref_dict['pos_dfs'][i], ref_dict['pos_dicts'][i], ref_dict['pos'][i])
|
218 |
+
|
219 |
+
df_out = pd.concat(ref_dict['pos_dfs'], ignore_index=True)
|
220 |
+
|
221 |
+
return ref_dict
|
222 |
+
|
223 |
+
def calculate_range_var(count, min_val, FieldStrength, field_growth):
|
224 |
+
var = round(len(count[0]) * FieldStrength)
|
225 |
+
var = max(var, min_val)
|
226 |
+
var += round(field_growth)
|
227 |
+
|
228 |
+
return min(var, len(count[0]))
|
229 |
+
|
230 |
+
def create_random_portfolio(Total_Sample_Size, raw_baselines, field_growth):
|
231 |
+
|
232 |
+
full_pos_player_dict = get_overall_merged_df()
|
233 |
+
qb_baselines = raw_baselines[raw_baselines['Position'] == 'QB']
|
234 |
+
qb_baselines = qb_baselines.drop_duplicates(subset='Team')
|
235 |
+
max_var = len(qb_baselines[qb_baselines['Position'] == 'QB'])
|
236 |
+
|
237 |
+
field_growth_rounded = round(field_growth)
|
238 |
+
ranges_dict = {}
|
239 |
+
|
240 |
+
# Calculate ranges
|
241 |
+
for df, dict_val, min_val, key in zip(ref_dict['pos_dfs'], ref_dict['pos_dicts'], [10, 20, 10, 30], ['RB', 'WR', 'TE', 'FLEX']):
|
242 |
+
count = create_overall_dfs(pos_players, df, dict_val, key)
|
243 |
+
ranges_dict[f"{key.lower()}_range"] = calculate_range_var(count, min_val, FieldStrength, field_growth_rounded)
|
244 |
+
if max_var <= 10:
|
245 |
+
ranges_dict['qb_range'] = round(max_var)
|
246 |
+
ranges_dict['dst_range'] = round(max_var)
|
247 |
+
elif max_var > 10 and max_var <= 16:
|
248 |
+
ranges_dict['qb_range'] = round(max_var / 1.5)
|
249 |
+
ranges_dict['dst_range'] = round(max_var)
|
250 |
+
elif max_var > 16:
|
251 |
+
ranges_dict['qb_range'] = round(max_var / 2)
|
252 |
+
ranges_dict['dst_range'] = round(max_var)
|
253 |
+
|
254 |
+
# Generate random portfolios
|
255 |
+
rng = np.random.default_rng()
|
256 |
+
total_elements = [1, 2, 3, 1, 1, 1]
|
257 |
+
keys = ['qb', 'rb', 'wr', 'te', 'flex', 'dst']
|
258 |
+
|
259 |
+
all_choices = [rng.choice(ranges_dict[f"{key}_range"], size=(Total_Sample_Size, elem)) for key, elem in zip(keys, total_elements)]
|
260 |
+
RandomPortfolio = pd.DataFrame(np.hstack(all_choices), columns=['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST'])
|
261 |
+
RandomPortfolio['User/Field'] = 0
|
262 |
+
|
263 |
+
return RandomPortfolio, maps_dict, ranges_dict, full_pos_player_dict
|
264 |
+
|
265 |
+
def get_correlated_portfolio_for_sim(Total_Sample_Size, sharp_split, field_growth):
|
266 |
+
|
267 |
+
sizesplit = round(Total_Sample_Size * sharp_split)
|
268 |
+
|
269 |
+
RandomPortfolio, maps_dict, ranges_dict, full_pos_player_dict = create_random_portfolio(sizesplit, raw_baselines, field_growth)
|
270 |
+
stack_num = random.randint(1, 3)
|
271 |
+
stacking_dict = create_stack_options(raw_baselines, stack_num)
|
272 |
+
|
273 |
+
RandomPortfolio['QB'] = pd.Series(list(RandomPortfolio['QB'].map(qb_dict)), dtype="string[pyarrow]")
|
274 |
+
RandomPortfolio['RB1'] = pd.Series(list(RandomPortfolio['RB1'].map(full_pos_player_dict['pos_dicts'][0])), dtype="string[pyarrow]")
|
275 |
+
RandomPortfolio['RB2'] = pd.Series(list(RandomPortfolio['RB2'].map(full_pos_player_dict['pos_dicts'][0])), dtype="string[pyarrow]")
|
276 |
+
RandomPortfolio['WR1'] = pd.Series(list(RandomPortfolio['QB'].map(stacking_dict)), dtype="string[pyarrow]")
|
277 |
+
RandomPortfolio['WR2'] = pd.Series(list(RandomPortfolio['WR2'].map(full_pos_player_dict['pos_dicts'][1])), dtype="string[pyarrow]")
|
278 |
+
RandomPortfolio['WR3'] = pd.Series(list(RandomPortfolio['WR3'].map(full_pos_player_dict['pos_dicts'][1])), dtype="string[pyarrow]")
|
279 |
+
RandomPortfolio['TE'] = pd.Series(list(RandomPortfolio['TE'].map(full_pos_player_dict['pos_dicts'][2])), dtype="string[pyarrow]")
|
280 |
+
RandomPortfolio['FLEX'] = pd.Series(list(RandomPortfolio['FLEX'].map(full_pos_player_dict['pos_dicts'][3])), dtype="string[pyarrow]")
|
281 |
+
RandomPortfolio['DST'] = pd.Series(list(RandomPortfolio['DST'].map(def_dict)), dtype="string[pyarrow]")
|
282 |
+
RandomPortfolio['plyr_list'] = RandomPortfolio[RandomPortfolio.columns.values.tolist()].values.tolist()
|
283 |
+
RandomPortfolio['plyr_count'] = RandomPortfolio['plyr_list'].apply(lambda x: len(set(x)))
|
284 |
+
RandomPortfolio = RandomPortfolio[RandomPortfolio['plyr_count'] == 10].drop(columns=['plyr_list','plyr_count']).\
|
285 |
+
reset_index(drop=True)
|
286 |
+
|
287 |
+
RandomPortfolio['QBs'] = RandomPortfolio['QB'].map(maps_dict['Salary_map']).astype(np.int32)
|
288 |
+
RandomPortfolio['RB1s'] = RandomPortfolio['RB1'].map(maps_dict['Salary_map']).astype(np.int32)
|
289 |
+
RandomPortfolio['RB2s'] = RandomPortfolio['RB2'].map(maps_dict['Salary_map']).astype(np.int32)
|
290 |
+
RandomPortfolio['WR1s'] = RandomPortfolio['WR1'].map(maps_dict['Salary_map']).astype(np.int32)
|
291 |
+
RandomPortfolio['WR2s'] = RandomPortfolio['WR2'].map(maps_dict['Salary_map']).astype(np.int32)
|
292 |
+
RandomPortfolio['WR3s'] = RandomPortfolio['WR3'].map(maps_dict['Salary_map']).astype(np.int32)
|
293 |
+
RandomPortfolio['TEs'] = RandomPortfolio['TE'].map(maps_dict['Salary_map']).astype(np.int32)
|
294 |
+
RandomPortfolio['FLEXs'] = RandomPortfolio['FLEX'].map(maps_dict['Salary_map']).astype(np.int32)
|
295 |
+
RandomPortfolio['DSTs'] = RandomPortfolio['DST'].map(maps_dict['Salary_map']).astype(np.int32)
|
296 |
+
|
297 |
+
RandomPortfolio['QBp'] = RandomPortfolio['QB'].map(maps_dict['Projection_map']).astype(np.float16)
|
298 |
+
RandomPortfolio['RB1p'] = RandomPortfolio['RB1'].map(maps_dict['Projection_map']).astype(np.float16)
|
299 |
+
RandomPortfolio['RB2p'] = RandomPortfolio['RB2'].map(maps_dict['Projection_map']).astype(np.float16)
|
300 |
+
RandomPortfolio['WR1p'] = RandomPortfolio['WR1'].map(maps_dict['Projection_map']).astype(np.float16)
|
301 |
+
RandomPortfolio['WR2p'] = RandomPortfolio['WR2'].map(maps_dict['Projection_map']).astype(np.float16)
|
302 |
+
RandomPortfolio['WR3p'] = RandomPortfolio['WR3'].map(maps_dict['Projection_map']).astype(np.float16)
|
303 |
+
RandomPortfolio['TEp'] = RandomPortfolio['TE'].map(maps_dict['Projection_map']).astype(np.float16)
|
304 |
+
RandomPortfolio['FLEXp'] = RandomPortfolio['FLEX'].map(maps_dict['Projection_map']).astype(np.float16)
|
305 |
+
RandomPortfolio['DSTp'] = RandomPortfolio['DST'].map(maps_dict['Projection_map']).astype(np.float16)
|
306 |
+
|
307 |
+
RandomPortfolio['QBo'] = RandomPortfolio['QB'].map(maps_dict['Own_map']).astype(np.float16)
|
308 |
+
RandomPortfolio['RB1o'] = RandomPortfolio['RB1'].map(maps_dict['Own_map']).astype(np.float16)
|
309 |
+
RandomPortfolio['RB2o'] = RandomPortfolio['RB2'].map(maps_dict['Own_map']).astype(np.float16)
|
310 |
+
RandomPortfolio['WR1o'] = RandomPortfolio['WR1'].map(maps_dict['Own_map']).astype(np.float16)
|
311 |
+
RandomPortfolio['WR2o'] = RandomPortfolio['WR2'].map(maps_dict['Own_map']).astype(np.float16)
|
312 |
+
RandomPortfolio['WR3o'] = RandomPortfolio['WR3'].map(maps_dict['Own_map']).astype(np.float16)
|
313 |
+
RandomPortfolio['TEo'] = RandomPortfolio['TE'].map(maps_dict['Own_map']).astype(np.float16)
|
314 |
+
RandomPortfolio['FLEXo'] = RandomPortfolio['FLEX'].map(maps_dict['Own_map']).astype(np.float16)
|
315 |
+
RandomPortfolio['DSTo'] = RandomPortfolio['DST'].map(maps_dict['Own_map']).astype(np.float16)
|
316 |
+
|
317 |
+
RandomPortArray = RandomPortfolio.to_numpy()
|
318 |
+
|
319 |
+
RandomPortArray = np.c_[RandomPortArray, np.einsum('ij->i',RandomPortArray[:,10:19].astype(int))]
|
320 |
+
RandomPortArray = np.c_[RandomPortArray, np.einsum('ij->i',RandomPortArray[:,19:28].astype(np.double))]
|
321 |
+
RandomPortArray = np.c_[RandomPortArray, np.einsum('ij->i',RandomPortArray[:,28:37].astype(np.double))]
|
322 |
+
|
323 |
+
RandomPortArrayOut = np.delete(RandomPortArray, np.s_[10:37], axis=1)
|
324 |
+
RandomPortfolioDF = pd.DataFrame(RandomPortArrayOut, columns = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'User/Field', 'Salary', 'Projection', 'Own'])
|
325 |
+
RandomPortfolioDF = RandomPortfolioDF.sort_values(by=Sim_function, ascending=False)
|
326 |
+
|
327 |
+
if insert_port == 1:
|
328 |
+
CleanPortfolio['Salary'] = sum([CleanPortfolio['QB'].map(maps_dict['Salary_map']),
|
329 |
+
CleanPortfolio['RB1'].map(maps_dict['Salary_map']),
|
330 |
+
CleanPortfolio['RB2'].map(maps_dict['Salary_map']),
|
331 |
+
CleanPortfolio['WR1'].map(maps_dict['Salary_map']),
|
332 |
+
CleanPortfolio['WR2'].map(maps_dict['Salary_map']),
|
333 |
+
CleanPortfolio['WR3'].map(maps_dict['Salary_map']),
|
334 |
+
CleanPortfolio['TE'].map(maps_dict['Salary_map']),
|
335 |
+
CleanPortfolio['FLEX'].map(maps_dict['Salary_map']),
|
336 |
+
CleanPortfolio['DST'].map(maps_dict['Salary_map'])
|
337 |
+
]).astype(np.int16)
|
338 |
+
if insert_port == 1:
|
339 |
+
CleanPortfolio['Projection'] = sum([CleanPortfolio['QB'].map(up_dict['Projection_map']),
|
340 |
+
CleanPortfolio['RB1'].map(up_dict['Projection_map']),
|
341 |
+
CleanPortfolio['RB2'].map(up_dict['Projection_map']),
|
342 |
+
CleanPortfolio['WR1'].map(up_dict['Projection_map']),
|
343 |
+
CleanPortfolio['WR2'].map(up_dict['Projection_map']),
|
344 |
+
CleanPortfolio['WR3'].map(up_dict['Projection_map']),
|
345 |
+
CleanPortfolio['TE'].map(up_dict['Projection_map']),
|
346 |
+
CleanPortfolio['FLEX'].map(up_dict['Projection_map']),
|
347 |
+
CleanPortfolio['DST'].map(up_dict['Projection_map'])
|
348 |
+
]).astype(np.float16)
|
349 |
+
if insert_port == 1:
|
350 |
+
CleanPortfolio['Own'] = sum([CleanPortfolio['QB'].map(maps_dict['Own_map']),
|
351 |
+
CleanPortfolio['RB1'].map(maps_dict['Own_map']),
|
352 |
+
CleanPortfolio['RB2'].map(maps_dict['Own_map']),
|
353 |
+
CleanPortfolio['WR1'].map(maps_dict['Own_map']),
|
354 |
+
CleanPortfolio['WR2'].map(maps_dict['Own_map']),
|
355 |
+
CleanPortfolio['WR3'].map(maps_dict['Own_map']),
|
356 |
+
CleanPortfolio['TE'].map(maps_dict['Own_map']),
|
357 |
+
CleanPortfolio['FLEX'].map(maps_dict['Own_map']),
|
358 |
+
CleanPortfolio['DST'].map(maps_dict['Own_map'])
|
359 |
+
]).astype(np.float16)
|
360 |
+
|
361 |
+
if site_var1 == 'Draftkings':
|
362 |
+
RandomPortfolioDF = RandomPortfolioDF[RandomPortfolioDF['Salary'] <= 50000].reset_index(drop=True)
|
363 |
+
RandomPortfolioDF = RandomPortfolioDF[RandomPortfolioDF['Salary'] >= (49500 - (5000 * (1 - (len(Teams_used) / 32)))) - (FieldStrength * 1000)].reset_index(drop=True)
|
364 |
+
elif site_var1 == 'Fanduel':
|
365 |
+
RandomPortfolioDF = RandomPortfolioDF[RandomPortfolioDF['Salary'] <= 60000].reset_index(drop=True)
|
366 |
+
RandomPortfolioDF = RandomPortfolioDF[RandomPortfolioDF['Salary'] >= (59500 - (5000 * (1 - (len(Teams_used) / 32)))) - (FieldStrength * 1000)].reset_index(drop=True)
|
367 |
+
|
368 |
+
RandomPortfolio = RandomPortfolioDF.sort_values(by=Sim_function, ascending=False)
|
369 |
+
|
370 |
+
RandomPortfolio = RandomPortfolio[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'User/Field', 'Salary', 'Projection', 'Own']]
|
371 |
+
|
372 |
+
return RandomPortfolio, maps_dict
|
373 |
+
|
374 |
+
def get_uncorrelated_portfolio_for_sim(Total_Sample_Size, sharp_split, field_growth):
|
375 |
+
|
376 |
+
sizesplit = round(Total_Sample_Size * (1-sharp_split))
|
377 |
+
|
378 |
+
RandomPortfolio, maps_dict, ranges_dict, full_pos_player_dict = create_random_portfolio(sizesplit, raw_baselines, field_growth)
|
379 |
+
|
380 |
+
RandomPortfolio['QB'] = pd.Series(list(RandomPortfolio['QB'].map(qb_dict)), dtype="string[pyarrow]")
|
381 |
+
RandomPortfolio['RB1'] = pd.Series(list(RandomPortfolio['RB1'].map(full_pos_player_dict['pos_dicts'][0])), dtype="string[pyarrow]")
|
382 |
+
RandomPortfolio['RB2'] = pd.Series(list(RandomPortfolio['RB2'].map(full_pos_player_dict['pos_dicts'][0])), dtype="string[pyarrow]")
|
383 |
+
RandomPortfolio['WR1'] = pd.Series(list(RandomPortfolio['WR1'].map(full_pos_player_dict['pos_dicts'][1])), dtype="string[pyarrow]")
|
384 |
+
RandomPortfolio['WR2'] = pd.Series(list(RandomPortfolio['WR2'].map(full_pos_player_dict['pos_dicts'][1])), dtype="string[pyarrow]")
|
385 |
+
RandomPortfolio['WR3'] = pd.Series(list(RandomPortfolio['WR3'].map(full_pos_player_dict['pos_dicts'][1])), dtype="string[pyarrow]")
|
386 |
+
RandomPortfolio['TE'] = pd.Series(list(RandomPortfolio['TE'].map(full_pos_player_dict['pos_dicts'][2])), dtype="string[pyarrow]")
|
387 |
+
RandomPortfolio['FLEX'] = pd.Series(list(RandomPortfolio['FLEX'].map(full_pos_player_dict['pos_dicts'][3])), dtype="string[pyarrow]")
|
388 |
+
RandomPortfolio['DST'] = pd.Series(list(RandomPortfolio['DST'].map(def_dict)), dtype="string[pyarrow]")
|
389 |
+
RandomPortfolio['plyr_list'] = RandomPortfolio[RandomPortfolio.columns.values.tolist()].values.tolist()
|
390 |
+
RandomPortfolio['plyr_count'] = RandomPortfolio['plyr_list'].apply(lambda x: len(set(x)))
|
391 |
+
RandomPortfolio = RandomPortfolio[RandomPortfolio['plyr_count'] == 10].drop(columns=['plyr_list','plyr_count']).\
|
392 |
+
reset_index(drop=True)
|
393 |
+
|
394 |
+
RandomPortfolio['QBs'] = RandomPortfolio['QB'].map(maps_dict['Salary_map']).astype(np.int32)
|
395 |
+
RandomPortfolio['RB1s'] = RandomPortfolio['RB1'].map(maps_dict['Salary_map']).astype(np.int32)
|
396 |
+
RandomPortfolio['RB2s'] = RandomPortfolio['RB2'].map(maps_dict['Salary_map']).astype(np.int32)
|
397 |
+
RandomPortfolio['WR1s'] = RandomPortfolio['WR1'].map(maps_dict['Salary_map']).astype(np.int32)
|
398 |
+
RandomPortfolio['WR2s'] = RandomPortfolio['WR2'].map(maps_dict['Salary_map']).astype(np.int32)
|
399 |
+
RandomPortfolio['WR3s'] = RandomPortfolio['WR3'].map(maps_dict['Salary_map']).astype(np.int32)
|
400 |
+
RandomPortfolio['TEs'] = RandomPortfolio['TE'].map(maps_dict['Salary_map']).astype(np.int32)
|
401 |
+
RandomPortfolio['FLEXs'] = RandomPortfolio['FLEX'].map(maps_dict['Salary_map']).astype(np.int32)
|
402 |
+
RandomPortfolio['DSTs'] = RandomPortfolio['DST'].map(maps_dict['Salary_map']).astype(np.int32)
|
403 |
+
|
404 |
+
RandomPortfolio['QBp'] = RandomPortfolio['QB'].map(maps_dict['Projection_map']).astype(np.float16)
|
405 |
+
RandomPortfolio['RB1p'] = RandomPortfolio['RB1'].map(maps_dict['Projection_map']).astype(np.float16)
|
406 |
+
RandomPortfolio['RB2p'] = RandomPortfolio['RB2'].map(maps_dict['Projection_map']).astype(np.float16)
|
407 |
+
RandomPortfolio['WR1p'] = RandomPortfolio['WR1'].map(maps_dict['Projection_map']).astype(np.float16)
|
408 |
+
RandomPortfolio['WR2p'] = RandomPortfolio['WR2'].map(maps_dict['Projection_map']).astype(np.float16)
|
409 |
+
RandomPortfolio['WR3p'] = RandomPortfolio['WR3'].map(maps_dict['Projection_map']).astype(np.float16)
|
410 |
+
RandomPortfolio['TEp'] = RandomPortfolio['TE'].map(maps_dict['Projection_map']).astype(np.float16)
|
411 |
+
RandomPortfolio['FLEXp'] = RandomPortfolio['FLEX'].map(maps_dict['Projection_map']).astype(np.float16)
|
412 |
+
RandomPortfolio['DSTp'] = RandomPortfolio['DST'].map(maps_dict['Projection_map']).astype(np.float16)
|
413 |
+
|
414 |
+
RandomPortfolio['QBo'] = RandomPortfolio['QB'].map(maps_dict['Own_map']).astype(np.float16)
|
415 |
+
RandomPortfolio['RB1o'] = RandomPortfolio['RB1'].map(maps_dict['Own_map']).astype(np.float16)
|
416 |
+
RandomPortfolio['RB2o'] = RandomPortfolio['RB2'].map(maps_dict['Own_map']).astype(np.float16)
|
417 |
+
RandomPortfolio['WR1o'] = RandomPortfolio['WR1'].map(maps_dict['Own_map']).astype(np.float16)
|
418 |
+
RandomPortfolio['WR2o'] = RandomPortfolio['WR2'].map(maps_dict['Own_map']).astype(np.float16)
|
419 |
+
RandomPortfolio['WR3o'] = RandomPortfolio['WR3'].map(maps_dict['Own_map']).astype(np.float16)
|
420 |
+
RandomPortfolio['TEo'] = RandomPortfolio['TE'].map(maps_dict['Own_map']).astype(np.float16)
|
421 |
+
RandomPortfolio['FLEXo'] = RandomPortfolio['FLEX'].map(maps_dict['Own_map']).astype(np.float16)
|
422 |
+
RandomPortfolio['DSTo'] = RandomPortfolio['DST'].map(maps_dict['Own_map']).astype(np.float16)
|
423 |
+
|
424 |
+
RandomPortArray = RandomPortfolio.to_numpy()
|
425 |
+
|
426 |
+
RandomPortArray = np.c_[RandomPortArray, np.einsum('ij->i',RandomPortArray[:,10:19].astype(int))]
|
427 |
+
RandomPortArray = np.c_[RandomPortArray, np.einsum('ij->i',RandomPortArray[:,19:28].astype(np.double))]
|
428 |
+
RandomPortArray = np.c_[RandomPortArray, np.einsum('ij->i',RandomPortArray[:,28:37].astype(np.double))]
|
429 |
+
|
430 |
+
RandomPortArrayOut = np.delete(RandomPortArray, np.s_[10:37], axis=1)
|
431 |
+
RandomPortfolioDF = pd.DataFrame(RandomPortArrayOut, columns = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'User/Field', 'Salary', 'Projection', 'Own'])
|
432 |
+
RandomPortfolioDF = RandomPortfolioDF.sort_values(by=Sim_function, ascending=False)
|
433 |
+
|
434 |
+
if insert_port == 1:
|
435 |
+
CleanPortfolio['Salary'] = sum([CleanPortfolio['QB'].map(maps_dict['Salary_map']),
|
436 |
+
CleanPortfolio['RB1'].map(maps_dict['Salary_map']),
|
437 |
+
CleanPortfolio['RB2'].map(maps_dict['Salary_map']),
|
438 |
+
CleanPortfolio['WR1'].map(maps_dict['Salary_map']),
|
439 |
+
CleanPortfolio['WR2'].map(maps_dict['Salary_map']),
|
440 |
+
CleanPortfolio['WR3'].map(maps_dict['Salary_map']),
|
441 |
+
CleanPortfolio['TE'].map(maps_dict['Salary_map']),
|
442 |
+
CleanPortfolio['FLEX'].map(maps_dict['Salary_map']),
|
443 |
+
CleanPortfolio['DST'].map(maps_dict['Salary_map'])
|
444 |
+
]).astype(np.int16)
|
445 |
+
if insert_port == 1:
|
446 |
+
CleanPortfolio['Projection'] = sum([CleanPortfolio['QB'].map(up_dict['Projection_map']),
|
447 |
+
CleanPortfolio['RB1'].map(up_dict['Projection_map']),
|
448 |
+
CleanPortfolio['RB2'].map(up_dict['Projection_map']),
|
449 |
+
CleanPortfolio['WR1'].map(up_dict['Projection_map']),
|
450 |
+
CleanPortfolio['WR2'].map(up_dict['Projection_map']),
|
451 |
+
CleanPortfolio['WR3'].map(up_dict['Projection_map']),
|
452 |
+
CleanPortfolio['TE'].map(up_dict['Projection_map']),
|
453 |
+
CleanPortfolio['FLEX'].map(up_dict['Projection_map']),
|
454 |
+
CleanPortfolio['DST'].map(up_dict['Projection_map'])
|
455 |
+
]).astype(np.float16)
|
456 |
+
if insert_port == 1:
|
457 |
+
CleanPortfolio['Own'] = sum([CleanPortfolio['QB'].map(maps_dict['Own_map']),
|
458 |
+
CleanPortfolio['RB1'].map(maps_dict['Own_map']),
|
459 |
+
CleanPortfolio['RB2'].map(maps_dict['Own_map']),
|
460 |
+
CleanPortfolio['WR1'].map(maps_dict['Own_map']),
|
461 |
+
CleanPortfolio['WR2'].map(maps_dict['Own_map']),
|
462 |
+
CleanPortfolio['WR3'].map(maps_dict['Own_map']),
|
463 |
+
CleanPortfolio['TE'].map(maps_dict['Own_map']),
|
464 |
+
CleanPortfolio['FLEX'].map(maps_dict['Own_map']),
|
465 |
+
CleanPortfolio['DST'].map(maps_dict['Own_map'])
|
466 |
+
]).astype(np.float16)
|
467 |
+
|
468 |
+
if site_var1 == 'Draftkings':
|
469 |
+
RandomPortfolioDF = RandomPortfolioDF[RandomPortfolioDF['Salary'] <= 50000].reset_index(drop=True)
|
470 |
+
RandomPortfolioDF = RandomPortfolioDF[RandomPortfolioDF['Salary'] >= (49500 - (5000 * (1 - (len(Teams_used) / 32)))) - (FieldStrength * 1000)].reset_index(drop=True)
|
471 |
+
elif site_var1 == 'Fanduel':
|
472 |
+
RandomPortfolioDF = RandomPortfolioDF[RandomPortfolioDF['Salary'] <= 60000].reset_index(drop=True)
|
473 |
+
RandomPortfolioDF = RandomPortfolioDF[RandomPortfolioDF['Salary'] >= (59500 - (5000 * (1 - (len(Teams_used) / 32)))) - (FieldStrength * 1000)].reset_index(drop=True)
|
474 |
+
|
475 |
+
RandomPortfolio = RandomPortfolioDF.sort_values(by=Sim_function, ascending=False)
|
476 |
+
|
477 |
+
RandomPortfolio = RandomPortfolio[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST', 'User/Field', 'Salary', 'Projection', 'Own']]
|
478 |
+
|
479 |
+
return RandomPortfolio, maps_dict
|
480 |
+
|
481 |
+
tab1, tab2 = st.tabs(['Uploads', 'Contest Sim'])
|
482 |
+
|
483 |
+
with tab1:
|
484 |
+
with st.container():
|
485 |
+
col1, col2 = st.columns([3, 3])
|
486 |
+
|
487 |
+
with col1:
|
488 |
+
st.info("The Projections file can have any columns in any order, but must contain columns explicitly named: 'Player', 'Salary', 'Position', 'Team', 'Opp', 'Median', and 'Own'. Upload your projections first to avoid an error message.")
|
489 |
+
proj_file = st.file_uploader("Upload Projections File", key = 'proj_uploader')
|
490 |
+
|
491 |
+
if proj_file is not None:
|
492 |
+
try:
|
493 |
+
proj_dataframe = pd.read_csv(proj_file)
|
494 |
+
proj_dataframe = proj_dataframe.dropna(subset='Median')
|
495 |
+
proj_dataframe['Player'] = proj_dataframe['Player'].str.strip()
|
496 |
+
try:
|
497 |
+
proj_dataframe['Own'] = proj_dataframe['Own'].str.strip('%').astype(float)
|
498 |
+
except:
|
499 |
+
pass
|
500 |
+
|
501 |
+
except:
|
502 |
+
proj_dataframe = pd.read_excel(proj_file)
|
503 |
+
proj_dataframe = proj_dataframe.dropna(subset='Median')
|
504 |
+
proj_dataframe['Player'] = proj_dataframe['Player'].str.strip()
|
505 |
+
try:
|
506 |
+
proj_dataframe['Own'] = proj_dataframe['Own'].str.strip('%').astype(float)
|
507 |
+
except:
|
508 |
+
pass
|
509 |
+
st.table(proj_dataframe.head(10))
|
510 |
+
player_salary_dict = dict(zip(proj_dataframe.Player, proj_dataframe.Salary))
|
511 |
+
player_proj_dict = dict(zip(proj_dataframe.Player, proj_dataframe.Median))
|
512 |
+
player_own_dict = dict(zip(proj_dataframe.Player, proj_dataframe.Own))
|
513 |
+
|
514 |
+
with col2:
|
515 |
+
st.info("The Portfolio file must contain only columns in order and explicitly named: 'QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', and 'DST'. Upload your projections first to avoid an error message.")
|
516 |
+
portfolio_file = st.file_uploader("Upload Portfolio File", key = 'portfolio_uploader')
|
517 |
+
|
518 |
+
if portfolio_file is not None:
|
519 |
+
try:
|
520 |
+
portfolio_dataframe = pd.read_csv(portfolio_file)
|
521 |
+
|
522 |
+
except:
|
523 |
+
portfolio_dataframe = pd.read_excel(portfolio_file)
|
524 |
+
|
525 |
+
try:
|
526 |
+
try:
|
527 |
+
portfolio_dataframe.columns=["QB", "RB1", "RB2", "WR1", "WR2", "WR3", "TE", "FLEX", "DST"]
|
528 |
+
split_portfolio = portfolio_dataframe
|
529 |
+
split_portfolio[['QB', 'QB_ID']] = split_portfolio.QB.str.split("(", n=1, expand = True)
|
530 |
+
split_portfolio[['RB1', 'RB1_ID']] = split_portfolio.RB1.str.split("(", n=1, expand = True)
|
531 |
+
split_portfolio[['RB2', 'RB2_ID']] = split_portfolio.RB2.str.split("(", n=1, expand = True)
|
532 |
+
split_portfolio[['WR1', 'WR1_ID']] = split_portfolio.WR1.str.split("(", n=1, expand = True)
|
533 |
+
split_portfolio[['WR2', 'WR2_ID']] = split_portfolio.WR2.str.split("(", n=1, expand = True)
|
534 |
+
split_portfolio[['WR3', 'WR3_ID']] = split_portfolio.WR3.str.split("(", n=1, expand = True)
|
535 |
+
split_portfolio[['TE', 'TE_ID']] = split_portfolio.TE.str.split("(", n=1, expand = True)
|
536 |
+
split_portfolio[['FLEX', 'FLEX_ID']] = split_portfolio.FLEX.str.split("(", n=1, expand = True)
|
537 |
+
split_portfolio[['DST', 'DST_ID']] = split_portfolio.DST.str.split("(", n=1, expand = True)
|
538 |
+
|
539 |
+
split_portfolio['QB'] = split_portfolio['QB'].str.strip()
|
540 |
+
split_portfolio['RB1'] = split_portfolio['RB1'].str.strip()
|
541 |
+
split_portfolio['RB2'] = split_portfolio['RB2'].str.strip()
|
542 |
+
split_portfolio['WR1'] = split_portfolio['WR1'].str.strip()
|
543 |
+
split_portfolio['WR2'] = split_portfolio['WR2'].str.strip()
|
544 |
+
split_portfolio['WR3'] = split_portfolio['WR3'].str.strip()
|
545 |
+
split_portfolio['TE'] = split_portfolio['TE'].str.strip()
|
546 |
+
split_portfolio['FLEX'] = split_portfolio['FLEX'].str.strip()
|
547 |
+
split_portfolio['DST'] = split_portfolio['DST'].str.strip()
|
548 |
+
|
549 |
+
st.table(split_portfolio.head(10))
|
550 |
+
|
551 |
+
split_portfolio['Salary'] = sum([split_portfolio['QB'].map(player_salary_dict),
|
552 |
+
split_portfolio['RB1'].map(player_salary_dict),
|
553 |
+
split_portfolio['RB2'].map(player_salary_dict),
|
554 |
+
split_portfolio['WR1'].map(player_salary_dict),
|
555 |
+
split_portfolio['WR2'].map(player_salary_dict),
|
556 |
+
split_portfolio['WR3'].map(player_salary_dict),
|
557 |
+
split_portfolio['TE'].map(player_salary_dict),
|
558 |
+
split_portfolio['FLEX'].map(player_salary_dict),
|
559 |
+
split_portfolio['DST'].map(player_salary_dict)])
|
560 |
+
|
561 |
+
split_portfolio['Projection'] = sum([split_portfolio['QB'].map(player_proj_dict),
|
562 |
+
split_portfolio['RB1'].map(player_proj_dict),
|
563 |
+
split_portfolio['RB2'].map(player_proj_dict),
|
564 |
+
split_portfolio['WR1'].map(player_proj_dict),
|
565 |
+
split_portfolio['WR2'].map(player_proj_dict),
|
566 |
+
split_portfolio['WR3'].map(player_proj_dict),
|
567 |
+
split_portfolio['TE'].map(player_proj_dict),
|
568 |
+
split_portfolio['FLEX'].map(player_proj_dict),
|
569 |
+
split_portfolio['DST'].map(player_proj_dict)])
|
570 |
+
|
571 |
+
split_portfolio['Ownership'] = sum([split_portfolio['QB'].map(player_own_dict),
|
572 |
+
split_portfolio['RB1'].map(player_own_dict),
|
573 |
+
split_portfolio['RB2'].map(player_own_dict),
|
574 |
+
split_portfolio['WR1'].map(player_own_dict),
|
575 |
+
split_portfolio['WR2'].map(player_own_dict),
|
576 |
+
split_portfolio['WR3'].map(player_own_dict),
|
577 |
+
split_portfolio['TE'].map(player_own_dict),
|
578 |
+
split_portfolio['FLEX'].map(player_own_dict),
|
579 |
+
split_portfolio['DST'].map(player_own_dict)])
|
580 |
+
|
581 |
+
|
582 |
+
except:
|
583 |
+
portfolio_dataframe.columns=["QB", "RB1", "RB2", "WR1", "WR2", "WR3", "TE", "FLEX", "DST"]
|
584 |
+
|
585 |
+
split_portfolio = portfolio_dataframe
|
586 |
+
split_portfolio[['QB_ID', 'QB']] = split_portfolio.QB.str.split(":", n=1, expand = True)
|
587 |
+
split_portfolio[['RB1_ID', 'RB1']] = split_portfolio.RB1.str.split(":", n=1, expand = True)
|
588 |
+
split_portfolio[['RB2_ID', 'RB2']] = split_portfolio.RB2.str.split(":", n=1, expand = True)
|
589 |
+
split_portfolio[['WR1_ID', 'WR1']] = split_portfolio.WR1.str.split(":", n=1, expand = True)
|
590 |
+
split_portfolio[['WR2_ID', 'WR2']] = split_portfolio.WR2.str.split(":", n=1, expand = True)
|
591 |
+
split_portfolio[['WR3_ID', 'WR3']] = split_portfolio.WR3.str.split(":", n=1, expand = True)
|
592 |
+
split_portfolio[['TE_ID', 'TE']] = split_portfolio.TE.str.split(":", n=1, expand = True)
|
593 |
+
split_portfolio[['FLEX_ID', 'FLEX']] = split_portfolio.FLEX.str.split(":", n=1, expand = True)
|
594 |
+
split_portfolio[['DST_ID', 'DST']] = split_portfolio.DST.str.split(":", n=1, expand = True)
|
595 |
+
|
596 |
+
split_portfolio['QB'] = split_portfolio['QB'].str.strip()
|
597 |
+
split_portfolio['RB1'] = split_portfolio['RB1'].str.strip()
|
598 |
+
split_portfolio['RB2'] = split_portfolio['RB2'].str.strip()
|
599 |
+
split_portfolio['WR1'] = split_portfolio['WR1'].str.strip()
|
600 |
+
split_portfolio['WR2'] = split_portfolio['WR2'].str.strip()
|
601 |
+
split_portfolio['WR3'] = split_portfolio['WR3'].str.strip()
|
602 |
+
split_portfolio['TE'] = split_portfolio['TE'].str.strip()
|
603 |
+
split_portfolio['FLEX'] = split_portfolio['FLEX'].str.strip()
|
604 |
+
split_portfolio['DST'] = split_portfolio['DST'].str.strip()
|
605 |
+
|
606 |
+
split_portfolio['Salary'] = sum([split_portfolio['QB'].map(player_salary_dict),
|
607 |
+
split_portfolio['RB1'].map(player_salary_dict),
|
608 |
+
split_portfolio['RB2'].map(player_salary_dict),
|
609 |
+
split_portfolio['WR1'].map(player_salary_dict),
|
610 |
+
split_portfolio['WR2'].map(player_salary_dict),
|
611 |
+
split_portfolio['WR3'].map(player_salary_dict),
|
612 |
+
split_portfolio['TE'].map(player_salary_dict),
|
613 |
+
split_portfolio['FLEX'].map(player_salary_dict),
|
614 |
+
split_portfolio['DST'].map(player_salary_dict)])
|
615 |
+
|
616 |
+
split_portfolio['Projection'] = sum([split_portfolio['QB'].map(player_proj_dict),
|
617 |
+
split_portfolio['RB1'].map(player_proj_dict),
|
618 |
+
split_portfolio['RB2'].map(player_proj_dict),
|
619 |
+
split_portfolio['WR1'].map(player_proj_dict),
|
620 |
+
split_portfolio['WR2'].map(player_proj_dict),
|
621 |
+
split_portfolio['WR3'].map(player_proj_dict),
|
622 |
+
split_portfolio['TE'].map(player_proj_dict),
|
623 |
+
split_portfolio['FLEX'].map(player_proj_dict),
|
624 |
+
split_portfolio['DST'].map(player_proj_dict)])
|
625 |
+
|
626 |
+
st.table(split_portfolio.head(10))
|
627 |
+
split_portfolio['Ownership'] = sum([split_portfolio['QB'].map(player_own_dict),
|
628 |
+
split_portfolio['RB1'].map(player_own_dict),
|
629 |
+
split_portfolio['RB2'].map(player_own_dict),
|
630 |
+
split_portfolio['WR1'].map(player_own_dict),
|
631 |
+
split_portfolio['WR2'].map(player_own_dict),
|
632 |
+
split_portfolio['WR3'].map(player_own_dict),
|
633 |
+
split_portfolio['TE'].map(player_own_dict),
|
634 |
+
split_portfolio['FLEX'].map(player_own_dict),
|
635 |
+
split_portfolio['DST'].map(player_own_dict)])
|
636 |
+
|
637 |
+
except:
|
638 |
+
split_portfolio = portfolio_dataframe
|
639 |
+
|
640 |
+
split_portfolio['Salary'] = sum([split_portfolio['QB'].map(player_salary_dict),
|
641 |
+
split_portfolio['RB1'].map(player_salary_dict),
|
642 |
+
split_portfolio['RB2'].map(player_salary_dict),
|
643 |
+
split_portfolio['WR1'].map(player_salary_dict),
|
644 |
+
split_portfolio['WR2'].map(player_salary_dict),
|
645 |
+
split_portfolio['WR3'].map(player_salary_dict),
|
646 |
+
split_portfolio['TE'].map(player_salary_dict),
|
647 |
+
split_portfolio['FLEX'].map(player_salary_dict),
|
648 |
+
split_portfolio['DST'].map(player_salary_dict)])
|
649 |
+
|
650 |
+
split_portfolio['Projection'] = sum([split_portfolio['QB'].map(player_proj_dict),
|
651 |
+
split_portfolio['RB1'].map(player_proj_dict),
|
652 |
+
split_portfolio['RB2'].map(player_proj_dict),
|
653 |
+
split_portfolio['WR1'].map(player_proj_dict),
|
654 |
+
split_portfolio['WR2'].map(player_proj_dict),
|
655 |
+
split_portfolio['WR3'].map(player_proj_dict),
|
656 |
+
split_portfolio['TE'].map(player_proj_dict),
|
657 |
+
split_portfolio['FLEX'].map(player_proj_dict),
|
658 |
+
split_portfolio['DST'].map(player_proj_dict)])
|
659 |
+
|
660 |
+
split_portfolio['Ownership'] = sum([split_portfolio['QB'].map(player_own_dict),
|
661 |
+
split_portfolio['RB1'].map(player_own_dict),
|
662 |
+
split_portfolio['RB2'].map(player_own_dict),
|
663 |
+
split_portfolio['WR1'].map(player_own_dict),
|
664 |
+
split_portfolio['WR2'].map(player_own_dict),
|
665 |
+
split_portfolio['WR3'].map(player_own_dict),
|
666 |
+
split_portfolio['TE'].map(player_own_dict),
|
667 |
+
split_portfolio['FLEX'].map(player_own_dict),
|
668 |
+
split_portfolio['DST'].map(player_own_dict)])
|
669 |
+
|
670 |
+
gc.collect()
|
671 |
+
|
672 |
+
with tab2:
|
673 |
+
col1, col2 = st.columns([1, 7])
|
674 |
+
with col1:
|
675 |
+
st.info(t_stamp)
|
676 |
+
if st.button("Load/Reset Data", key='reset1'):
|
677 |
+
st.cache_data.clear()
|
678 |
+
for key in st.session_state.keys():
|
679 |
+
del st.session_state[key]
|
680 |
+
dk_roo_raw = load_dk_player_projections()
|
681 |
+
fd_roo_raw = load_fd_player_projections()
|
682 |
+
t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST"
|
683 |
+
dkid_dict, fdid_dict = set_export_ids()
|
684 |
+
|
685 |
+
slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate', 'Thurs-Mon Slate', 'User'))
|
686 |
+
site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'))
|
687 |
+
if site_var1 == 'Draftkings':
|
688 |
+
if slate_var1 == 'User':
|
689 |
+
raw_baselines = proj_dataframe[['Player', 'Salary', 'Position', 'Team', 'Opp', 'Median', 'Own']]
|
690 |
+
elif slate_var1 != 'User':
|
691 |
+
raw_baselines = dk_roo_raw[dk_roo_raw['slate'] == str(slate_var1)]
|
692 |
+
raw_baselines = raw_baselines[raw_baselines['version'] == 'overall']
|
693 |
+
elif site_var1 == 'Fanduel':
|
694 |
+
if slate_var1 == 'User':
|
695 |
+
raw_baselines = proj_dataframe
|
696 |
+
elif slate_var1 != 'User':
|
697 |
+
raw_baselines = fd_roo_raw[fd_roo_raw['slate'] == str(slate_var1)]
|
698 |
+
raw_baselines = raw_baselines[raw_baselines['version'] == 'overall']
|
699 |
+
|
700 |
+
st.info("If you are uploading a portfolio, note that there is an adjustments to projections and deviation mapping to prevent 'Projection Bias' and create a fair simulation")
|
701 |
+
insert_port1 = st.selectbox("Are you uploading a portfolio?", ('No', 'Yes'), key='insert_port1')
|
702 |
+
if insert_port1 == 'Yes':
|
703 |
+
insert_port = 1
|
704 |
+
elif insert_port1 == 'No':
|
705 |
+
insert_port = 0
|
706 |
+
contest_var1 = st.selectbox("What contest size are you simulating?", ('Small', 'Medium', 'Large'))
|
707 |
+
if contest_var1 == 'Small':
|
708 |
+
Contest_Size = 1000
|
709 |
+
elif contest_var1 == 'Medium':
|
710 |
+
Contest_Size = 5000
|
711 |
+
elif contest_var1 == 'Large':
|
712 |
+
Contest_Size = 10000
|
713 |
+
strength_var1 = st.selectbox("How sharp is the field in the contest?", ('Not Very', 'Average', 'Very'))
|
714 |
+
if strength_var1 == 'Not Very':
|
715 |
+
sharp_split = .33
|
716 |
+
Strength_var = .50
|
717 |
+
scaling_var = 5
|
718 |
+
elif strength_var1 == 'Average':
|
719 |
+
sharp_split = .50
|
720 |
+
Strength_var = .25
|
721 |
+
scaling_var = 10
|
722 |
+
elif strength_var1 == 'Very':
|
723 |
+
sharp_split = .75
|
724 |
+
Strength_var = .01
|
725 |
+
scaling_var = 15
|
726 |
+
|
727 |
+
Sort_function = 'Median'
|
728 |
+
Sim_function = 'Projection'
|
729 |
+
|
730 |
+
if Contest_Size <= 1000:
|
731 |
+
strength_grow = .01
|
732 |
+
elif Contest_Size > 1000 and Contest_Size <= 2500:
|
733 |
+
strength_grow = .025
|
734 |
+
elif Contest_Size > 2500 and Contest_Size <= 5000:
|
735 |
+
strength_grow = .05
|
736 |
+
elif Contest_Size > 5000 and Contest_Size <= 20000:
|
737 |
+
strength_grow = .075
|
738 |
+
elif Contest_Size > 20000:
|
739 |
+
strength_grow = .1
|
740 |
+
|
741 |
+
field_growth = 100 * strength_grow
|
742 |
+
|
743 |
+
with col2:
|
744 |
+
with st.container():
|
745 |
+
if st.button("Simulate Contest"):
|
746 |
+
with st.container():
|
747 |
+
for key in st.session_state.keys():
|
748 |
+
del st.session_state[key]
|
749 |
+
|
750 |
+
if slate_var1 == 'User':
|
751 |
+
initial_proj = proj_dataframe[['Player', 'Team', 'Position', 'Median', 'Own', 'Salary']]
|
752 |
+
|
753 |
+
# Define the calculation to be applied
|
754 |
+
def calculate_own(position, own, mean_own, factor, max_own=75):
|
755 |
+
return np.where((position == 'QB') & (own - mean_own >= 0),
|
756 |
+
own * (factor * (own - mean_own) / 100) + mean_own,
|
757 |
+
own)
|
758 |
+
|
759 |
+
# Set the factors based on the contest_var1
|
760 |
+
factor_qb, factor_other = {
|
761 |
+
'Small': (10, 5),
|
762 |
+
'Medium': (6, 3),
|
763 |
+
'Large': (3, 1.5),
|
764 |
+
}[contest_var1]
|
765 |
+
|
766 |
+
# Apply the calculation to the DataFrame
|
767 |
+
initial_proj['Own%'] = initial_proj.apply(lambda row: calculate_own(row['Position'], row['Own'], initial_proj.loc[initial_proj['Position'] == row['Position'], 'Own'].mean(), factor_qb if row['Position'] == 'QB' else factor_other), axis=1)
|
768 |
+
initial_proj['Own%'] = initial_proj['Own%'].clip(upper=75)
|
769 |
+
initial_proj['Own'] = initial_proj['Own%'] * (900 / initial_proj['Own%'].sum())
|
770 |
+
|
771 |
+
# Drop unnecessary columns and create the final DataFrame
|
772 |
+
Overall_Proj = initial_proj[['Player', 'Team', 'Position', 'Median', 'Own', 'Salary']]
|
773 |
+
|
774 |
+
elif slate_var1 != 'User':
|
775 |
+
# Copy only the necessary columns
|
776 |
+
initial_proj = raw_baselines[['Player', 'Team', 'Position', 'Median', 'Own', 'Salary']]
|
777 |
+
|
778 |
+
# Define the calculation to be applied
|
779 |
+
def calculate_own(position, own, mean_own, factor, max_own=75):
|
780 |
+
return np.where((position == 'QB') & (own - mean_own >= 0),
|
781 |
+
own * (factor * (own - mean_own) / 100) + mean_own,
|
782 |
+
own)
|
783 |
+
|
784 |
+
# Set the factors based on the contest_var1
|
785 |
+
factor_qb, factor_other = {
|
786 |
+
'Small': (10, 5),
|
787 |
+
'Medium': (6, 3),
|
788 |
+
'Large': (3, 1.5),
|
789 |
+
}[contest_var1]
|
790 |
+
|
791 |
+
# Apply the calculation to the DataFrame
|
792 |
+
initial_proj['Own%'] = initial_proj.apply(lambda row: calculate_own(row['Position'], row['Own'], initial_proj.loc[initial_proj['Position'] == row['Position'], 'Own'].mean(), factor_qb if row['Position'] == 'QB' else factor_other), axis=1)
|
793 |
+
initial_proj['Own%'] = initial_proj['Own%'].clip(upper=75)
|
794 |
+
initial_proj['Own'] = initial_proj['Own%'] * (900 / initial_proj['Own%'].sum())
|
795 |
+
|
796 |
+
# Drop unnecessary columns and create the final DataFrame
|
797 |
+
Overall_Proj = initial_proj[['Player', 'Team', 'Position', 'Median', 'Own', 'Salary']]
|
798 |
+
|
799 |
+
if insert_port == 1:
|
800 |
+
UserPortfolio = portfolio_dataframe[['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST']]
|
801 |
+
elif insert_port == 0:
|
802 |
+
UserPortfolio = pd.DataFrame(columns = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST'])
|
803 |
+
|
804 |
+
Overall_Proj.replace('', np.nan, inplace=True)
|
805 |
+
Overall_Proj = Overall_Proj.dropna(subset=['Median'])
|
806 |
+
Overall_Proj = Overall_Proj.assign(Value=lambda x: (x.Median / (x.Salary / 1000)))
|
807 |
+
Overall_Proj['Sort_var'] = (Overall_Proj['Median'].rank(ascending=False) + Overall_Proj['Value'].rank(ascending=False)) / 2
|
808 |
+
Overall_Proj = Overall_Proj.sort_values(by='Sort_var', ascending=False)
|
809 |
+
Overall_Proj['Own'] = np.where((Overall_Proj['Median'] > 0) & (Overall_Proj['Own'] == 0), 1, Overall_Proj['Own'])
|
810 |
+
Overall_Proj = Overall_Proj.loc[Overall_Proj['Own'] > 0]
|
811 |
+
|
812 |
+
Overall_Proj['Floor'] = np.where(Overall_Proj['Position'] == 'QB', Overall_Proj['Median'] * .5, Overall_Proj['Median'] * .25)
|
813 |
+
Overall_Proj['Ceiling'] = np.where(Overall_Proj['Position'] == 'WR', Overall_Proj['Median'] + Overall_Proj['Median'], Overall_Proj['Median'] + Overall_Proj['Floor'])
|
814 |
+
Overall_Proj['STDev'] = Overall_Proj['Median'] / 4
|
815 |
+
|
816 |
+
Teams_used = Overall_Proj['Team'].drop_duplicates().reset_index(drop=True)
|
817 |
+
Teams_used = Teams_used.reset_index()
|
818 |
+
Teams_used['team_item'] = Teams_used['index'] + 1
|
819 |
+
Teams_used = Teams_used.drop(columns=['index'])
|
820 |
+
Teams_used_dictraw = Teams_used.drop(columns=['team_item'])
|
821 |
+
|
822 |
+
team_list = Teams_used['Team'].to_list()
|
823 |
+
item_list = Teams_used['team_item'].to_list()
|
824 |
+
|
825 |
+
FieldStrength_raw = Strength_var + ((30 - len(Teams_used)) * .01)
|
826 |
+
FieldStrength = FieldStrength_raw - (FieldStrength_raw * (20000 / Contest_Size))
|
827 |
+
|
828 |
+
if FieldStrength < 0:
|
829 |
+
FieldStrength = Strength_var
|
830 |
+
field_split = Strength_var
|
831 |
+
|
832 |
+
for checkVar in range(len(team_list)):
|
833 |
+
Overall_Proj['Team'] = Overall_Proj['Team'].replace(team_list, item_list)
|
834 |
+
|
835 |
+
qbs_raw = Overall_Proj[Overall_Proj.Position == 'QB']
|
836 |
+
qbs_raw.dropna(subset=['Median']).reset_index(drop=True)
|
837 |
+
qbs_raw = qbs_raw.reset_index(drop=True)
|
838 |
+
qbs_raw = qbs_raw.sort_values(by=['Median'], ascending=False)
|
839 |
+
|
840 |
+
qbs = qbs_raw.head(round(len(qbs_raw)))
|
841 |
+
qbs = qbs.assign(Var = range(0,len(qbs)))
|
842 |
+
qb_dict = pd.Series(qbs.Player.values, index=qbs.Var).to_dict()
|
843 |
+
|
844 |
+
defs_raw = Overall_Proj[Overall_Proj.Position.str.contains("D")]
|
845 |
+
defs_raw.dropna(subset=['Median']).reset_index(drop=True)
|
846 |
+
defs_raw = defs_raw.reset_index(drop=True)
|
847 |
+
defs_raw = defs_raw.sort_values(by=['Own', 'Value'], ascending=False)
|
848 |
+
|
849 |
+
defs = defs_raw.head(round(len(defs_raw)))
|
850 |
+
defs = defs.assign(Var = range(0,len(defs)))
|
851 |
+
def_dict = pd.Series(defs.Player.values, index=defs.Var).to_dict()
|
852 |
+
|
853 |
+
rbs_raw = Overall_Proj[Overall_Proj.Position == 'RB']
|
854 |
+
rbs_raw.dropna(subset=['Median']).reset_index(drop=True)
|
855 |
+
rbs_raw = rbs_raw.reset_index(drop=True)
|
856 |
+
rbs_raw = rbs_raw.sort_values(by=['Own', 'Value'], ascending=False)
|
857 |
+
|
858 |
+
wrs_raw = Overall_Proj[Overall_Proj.Position == 'WR']
|
859 |
+
wrs_raw.dropna(subset=['Median']).reset_index(drop=True)
|
860 |
+
wrs_raw = wrs_raw.reset_index(drop=True)
|
861 |
+
wrs_raw = wrs_raw.sort_values(by=['Own', 'Median'], ascending=False)
|
862 |
+
|
863 |
+
tes_raw = Overall_Proj[Overall_Proj.Position == 'TE']
|
864 |
+
tes_raw.dropna(subset=['Median']).reset_index(drop=True)
|
865 |
+
tes_raw = tes_raw.reset_index(drop=True)
|
866 |
+
tes_raw = tes_raw.sort_values(by=['Own', 'Value'], ascending=False)
|
867 |
+
|
868 |
+
pos_players = pd.concat([rbs_raw, wrs_raw, tes_raw])
|
869 |
+
pos_players.dropna(subset=['Median']).reset_index(drop=True)
|
870 |
+
pos_players = pos_players.reset_index(drop=True)
|
871 |
+
|
872 |
+
if insert_port == 1:
|
873 |
+
try:
|
874 |
+
# Initialize an empty DataFrame for Raw Portfolio
|
875 |
+
Raw_Portfolio = pd.DataFrame()
|
876 |
+
|
877 |
+
# Loop through each position and split the data accordingly
|
878 |
+
positions = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST']
|
879 |
+
for pos in positions:
|
880 |
+
temp_df = UserPortfolio[pos].str.split("(", n=1, expand=True)
|
881 |
+
temp_df.columns = [pos, 'Drop']
|
882 |
+
Raw_Portfolio = pd.concat([Raw_Portfolio, temp_df], axis=1)
|
883 |
+
|
884 |
+
# Select only necessary columns and strip white spaces
|
885 |
+
CleanPortfolio = Raw_Portfolio[positions].apply(lambda x: x.str.strip())
|
886 |
+
CleanPortfolio.reset_index(inplace=True)
|
887 |
+
CleanPortfolio['User/Field'] = CleanPortfolio['index'] + 1
|
888 |
+
CleanPortfolio.drop(columns=['index'], inplace=True)
|
889 |
+
|
890 |
+
CleanPortfolio.replace('', np.nan, inplace=True)
|
891 |
+
CleanPortfolio.dropna(subset=['QB'], inplace=True)
|
892 |
+
|
893 |
+
# Create frequency table for players
|
894 |
+
cleaport_players = pd.DataFrame(
|
895 |
+
np.column_stack(np.unique(CleanPortfolio.iloc[:, 0:9].values, return_counts=True)),
|
896 |
+
columns=['Player', 'Freq']
|
897 |
+
).sort_values('Freq', ascending=False).reset_index(drop=True)
|
898 |
+
cleaport_players['Freq'] = cleaport_players['Freq'].astype(int)
|
899 |
+
|
900 |
+
# Merge and update nerf_frame
|
901 |
+
nerf_frame = pd.merge(cleaport_players, Overall_Proj, on='Player', how='left')
|
902 |
+
for col in ['Median', 'Floor', 'Ceiling', 'STDev']:
|
903 |
+
nerf_frame[col] *= 0.90
|
904 |
+
except:
|
905 |
+
CleanPortfolio = UserPortfolio.reset_index()
|
906 |
+
CleanPortfolio['User/Field'] = CleanPortfolio['index'] + 1
|
907 |
+
CleanPortfolio.drop(columns=['index'], inplace=True)
|
908 |
+
|
909 |
+
# Replace empty strings and drop rows with NaN in 'QB' column
|
910 |
+
CleanPortfolio.replace('', np.nan, inplace=True)
|
911 |
+
CleanPortfolio.dropna(subset=['QB'], inplace=True)
|
912 |
+
|
913 |
+
# Create frequency table for players
|
914 |
+
cleaport_players = pd.DataFrame(
|
915 |
+
np.column_stack(np.unique(CleanPortfolio.iloc[:, 0:9].values, return_counts=True)),
|
916 |
+
columns=['Player', 'Freq']
|
917 |
+
).sort_values('Freq', ascending=False).reset_index(drop=True)
|
918 |
+
cleaport_players['Freq'] = cleaport_players['Freq'].astype(int)
|
919 |
+
|
920 |
+
# Merge and update nerf_frame
|
921 |
+
nerf_frame = pd.merge(cleaport_players, Overall_Proj, on='Player', how='left')
|
922 |
+
for col in ['Median', 'Floor', 'Ceiling', 'STDev']:
|
923 |
+
nerf_frame[col] *= 0.90
|
924 |
+
|
925 |
+
elif insert_port == 0:
|
926 |
+
CleanPortfolio = UserPortfolio
|
927 |
+
cleaport_players = pd.DataFrame(np.column_stack(np.unique(CleanPortfolio.iloc[:,0:9].values, return_counts=True)),
|
928 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
929 |
+
cleaport_players['Freq'] = cleaport_players['Freq'].astype(int)
|
930 |
+
nerf_frame = Overall_Proj
|
931 |
+
|
932 |
+
ref_dict = {
|
933 |
+
'pos':['RB', 'WR', 'TE', 'FLEX'],
|
934 |
+
'pos_dfs':['RB_Table', 'WR_Table', 'TE_Table', 'FLEX_Table'],
|
935 |
+
'pos_dicts':['rb_dict', 'wr_dict', 'te_dict', 'flex_dict']
|
936 |
+
}
|
937 |
+
|
938 |
+
maps_dict = {
|
939 |
+
'Floor_map':dict(zip(Overall_Proj.Player,Overall_Proj.Floor)),
|
940 |
+
'Projection_map':dict(zip(Overall_Proj.Player,Overall_Proj.Median)),
|
941 |
+
'Ceiling_map':dict(zip(Overall_Proj.Player,Overall_Proj.Ceiling)),
|
942 |
+
'Salary_map':dict(zip(Overall_Proj.Player,Overall_Proj.Salary)),
|
943 |
+
'Pos_map':dict(zip(Overall_Proj.Player,Overall_Proj.Position)),
|
944 |
+
'Own_map':dict(zip(Overall_Proj.Player,Overall_Proj.Own)),
|
945 |
+
'Team_map':dict(zip(Overall_Proj.Player,Overall_Proj.Team)),
|
946 |
+
'STDev_map':dict(zip(Overall_Proj.Player,Overall_Proj.STDev)),
|
947 |
+
'team_check_map':dict(zip(Overall_Proj.Player,Overall_Proj.Team))
|
948 |
+
}
|
949 |
+
|
950 |
+
up_dict = {
|
951 |
+
'Floor_map':dict(zip(cleaport_players.Player,nerf_frame.Floor)),
|
952 |
+
'Projection_map':dict(zip(cleaport_players.Player,nerf_frame.Median)),
|
953 |
+
'Ceiling_map':dict(zip(cleaport_players.Player,nerf_frame.Ceiling)),
|
954 |
+
'Salary_map':dict(zip(cleaport_players.Player,nerf_frame.Salary)),
|
955 |
+
'Pos_map':dict(zip(cleaport_players.Player,nerf_frame.Position)),
|
956 |
+
'Own_map':dict(zip(cleaport_players.Player,nerf_frame.Own)),
|
957 |
+
'Team_map':dict(zip(cleaport_players.Player,nerf_frame.Team)),
|
958 |
+
'STDev_map':dict(zip(cleaport_players.Player,nerf_frame.STDev)),
|
959 |
+
'team_check_map':dict(zip(cleaport_players.Player,nerf_frame.Team))
|
960 |
+
}
|
961 |
+
|
962 |
+
FinalPortfolio, maps_dict = run_seed_frame(5, Strength_var, strength_grow, Teams_used, 1000000, field_growth)
|
963 |
+
|
964 |
+
Sim_Winners = sim_contest(2500, FinalPortfolio, CleanPortfolio, maps_dict, up_dict, insert_port)
|
965 |
+
|
966 |
+
# Initial setup
|
967 |
+
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=FinalPortfolio.columns.tolist() + ['Fantasy'])
|
968 |
+
Sim_Winner_Frame['GPP_Proj'] = (Sim_Winner_Frame['Projection'] + Sim_Winner_Frame['Fantasy']) / 2
|
969 |
+
Sim_Winner_Frame['unique_id'] = Sim_Winner_Frame['Projection'].astype(str) + Sim_Winner_Frame['Salary'].astype(str) + Sim_Winner_Frame['Own'].astype(str)
|
970 |
+
Sim_Winner_Frame = Sim_Winner_Frame.assign(win_count=Sim_Winner_Frame['unique_id'].map(Sim_Winner_Frame['unique_id'].value_counts()))
|
971 |
+
|
972 |
+
# Type Casting
|
973 |
+
type_cast_dict = {'Salary': int, 'Projection': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float32}
|
974 |
+
Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict)
|
975 |
+
|
976 |
+
del FinalPortfolio, insert_port, type_cast_dict
|
977 |
+
|
978 |
+
# Sorting
|
979 |
+
st.session_state.Sim_Winner_Frame = Sim_Winner_Frame.sort_values(by=['win_count', 'GPP_Proj'], ascending= [False, False]).copy().drop_duplicates(subset='unique_id').head(100)
|
980 |
+
st.session_state.Sim_Winner_Frame.drop(columns='unique_id', inplace=True)
|
981 |
+
|
982 |
+
# Data Copying
|
983 |
+
st.session_state.Sim_Winner_Export = Sim_Winner_Frame.copy()
|
984 |
+
|
985 |
+
# Data Copying
|
986 |
+
st.session_state.Sim_Winner_Display = Sim_Winner_Frame.copy()
|
987 |
+
|
988 |
+
# Conditional Replacement
|
989 |
+
columns_to_replace = ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX', 'DST']
|
990 |
+
|
991 |
+
if site_var1 == 'Draftkings':
|
992 |
+
replace_dict = dkid_dict
|
993 |
+
elif site_var1 == 'Fanduel':
|
994 |
+
replace_dict = fdid_dict
|
995 |
+
|
996 |
+
for col in columns_to_replace:
|
997 |
+
st.session_state.Sim_Winner_Export[col].replace(replace_dict, inplace=True)
|
998 |
+
|
999 |
+
del replace_dict, Sim_Winner_Frame, Sim_Winners
|
1000 |
+
|
1001 |
+
st.session_state.player_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Display.iloc[:,0:9].values, return_counts=True)),
|
1002 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1003 |
+
st.session_state.player_freq['Freq'] = st.session_state.player_freq['Freq'].astype(int)
|
1004 |
+
st.session_state.player_freq['Position'] = st.session_state.player_freq['Player'].map(maps_dict['Pos_map'])
|
1005 |
+
st.session_state.player_freq['Salary'] = st.session_state.player_freq['Player'].map(maps_dict['Salary_map'])
|
1006 |
+
st.session_state.player_freq['Proj Own'] = st.session_state.player_freq['Player'].map(maps_dict['Own_map']) / 100
|
1007 |
+
st.session_state.player_freq['Exposure'] = st.session_state.player_freq['Freq']/(2500)
|
1008 |
+
st.session_state.player_freq['Edge'] = st.session_state.player_freq['Exposure'] - st.session_state.player_freq['Proj Own']
|
1009 |
+
st.session_state.player_freq['Team'] = st.session_state.player_freq['Player'].map(maps_dict['Team_map'])
|
1010 |
+
for checkVar in range(len(team_list)):
|
1011 |
+
st.session_state.player_freq['Team'] = st.session_state.player_freq['Team'].replace(item_list, team_list)
|
1012 |
+
|
1013 |
+
st.session_state.qb_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Display.iloc[:,0:1].values, return_counts=True)),
|
1014 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1015 |
+
st.session_state.qb_freq['Freq'] = st.session_state.qb_freq['Freq'].astype(int)
|
1016 |
+
st.session_state.qb_freq['Position'] = st.session_state.qb_freq['Player'].map(maps_dict['Pos_map'])
|
1017 |
+
st.session_state.qb_freq['Salary'] = st.session_state.qb_freq['Player'].map(maps_dict['Salary_map'])
|
1018 |
+
st.session_state.qb_freq['Proj Own'] = st.session_state.qb_freq['Player'].map(maps_dict['Own_map']) / 100
|
1019 |
+
st.session_state.qb_freq['Exposure'] = st.session_state.qb_freq['Freq']/(2500)
|
1020 |
+
st.session_state.qb_freq['Edge'] = st.session_state.qb_freq['Exposure'] - st.session_state.qb_freq['Proj Own']
|
1021 |
+
st.session_state.qb_freq['Team'] = st.session_state.qb_freq['Player'].map(maps_dict['Team_map'])
|
1022 |
+
for checkVar in range(len(team_list)):
|
1023 |
+
st.session_state.qb_freq['Team'] = st.session_state.qb_freq['Team'].replace(item_list, team_list)
|
1024 |
+
|
1025 |
+
st.session_state.rb_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Display.iloc[:,[1, 2]].values, return_counts=True)),
|
1026 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1027 |
+
st.session_state.rb_freq['Freq'] = st.session_state.rb_freq['Freq'].astype(int)
|
1028 |
+
st.session_state.rb_freq['Position'] = st.session_state.rb_freq['Player'].map(maps_dict['Pos_map'])
|
1029 |
+
st.session_state.rb_freq['Salary'] = st.session_state.rb_freq['Player'].map(maps_dict['Salary_map'])
|
1030 |
+
st.session_state.rb_freq['Proj Own'] = st.session_state.rb_freq['Player'].map(maps_dict['Own_map']) / 100
|
1031 |
+
st.session_state.rb_freq['Exposure'] = st.session_state.rb_freq['Freq']/2500
|
1032 |
+
st.session_state.rb_freq['Edge'] = st.session_state.rb_freq['Exposure'] - st.session_state.rb_freq['Proj Own']
|
1033 |
+
st.session_state.rb_freq['Team'] = st.session_state.rb_freq['Player'].map(maps_dict['Team_map'])
|
1034 |
+
for checkVar in range(len(team_list)):
|
1035 |
+
st.session_state.rb_freq['Team'] = st.session_state.rb_freq['Team'].replace(item_list, team_list)
|
1036 |
+
|
1037 |
+
st.session_state.wr_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Display.iloc[:,[3, 4, 5]].values, return_counts=True)),
|
1038 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1039 |
+
st.session_state.wr_freq['Freq'] = st.session_state.wr_freq['Freq'].astype(int)
|
1040 |
+
st.session_state.wr_freq['Position'] = st.session_state.wr_freq['Player'].map(maps_dict['Pos_map'])
|
1041 |
+
st.session_state.wr_freq['Salary'] = st.session_state.wr_freq['Player'].map(maps_dict['Salary_map'])
|
1042 |
+
st.session_state.wr_freq['Proj Own'] = st.session_state.wr_freq['Player'].map(maps_dict['Own_map']) / 100
|
1043 |
+
st.session_state.wr_freq['Exposure'] = st.session_state.wr_freq['Freq']/2500
|
1044 |
+
st.session_state.wr_freq['Edge'] = st.session_state.wr_freq['Exposure'] - st.session_state.wr_freq['Proj Own']
|
1045 |
+
st.session_state.wr_freq['Team'] = st.session_state.wr_freq['Player'].map(maps_dict['Team_map'])
|
1046 |
+
for checkVar in range(len(team_list)):
|
1047 |
+
st.session_state.wr_freq['Team'] = st.session_state.wr_freq['Team'].replace(item_list, team_list)
|
1048 |
+
|
1049 |
+
st.session_state.te_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Display.iloc[:,[6]].values, return_counts=True)),
|
1050 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1051 |
+
st.session_state.te_freq['Freq'] = st.session_state.te_freq['Freq'].astype(int)
|
1052 |
+
st.session_state.te_freq['Position'] = st.session_state.te_freq['Player'].map(maps_dict['Pos_map'])
|
1053 |
+
st.session_state.te_freq['Salary'] = st.session_state.te_freq['Player'].map(maps_dict['Salary_map'])
|
1054 |
+
st.session_state.te_freq['Proj Own'] = st.session_state.te_freq['Player'].map(maps_dict['Own_map']) / 100
|
1055 |
+
st.session_state.te_freq['Exposure'] = st.session_state.te_freq['Freq']/2500
|
1056 |
+
st.session_state.te_freq['Edge'] = st.session_state.te_freq['Exposure'] - st.session_state.te_freq['Proj Own']
|
1057 |
+
st.session_state.te_freq['Team'] = st.session_state.te_freq['Player'].map(maps_dict['Team_map'])
|
1058 |
+
for checkVar in range(len(team_list)):
|
1059 |
+
st.session_state.te_freq['Team'] = st.session_state.te_freq['Team'].replace(item_list, team_list)
|
1060 |
+
|
1061 |
+
st.session_state.flex_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Display.iloc[:,[7]].values, return_counts=True)),
|
1062 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1063 |
+
st.session_state.flex_freq['Freq'] = st.session_state.flex_freq['Freq'].astype(int)
|
1064 |
+
st.session_state.flex_freq['Position'] = st.session_state.flex_freq['Player'].map(maps_dict['Pos_map'])
|
1065 |
+
st.session_state.flex_freq['Salary'] = st.session_state.flex_freq['Player'].map(maps_dict['Salary_map'])
|
1066 |
+
st.session_state.flex_freq['Proj Own'] = st.session_state.flex_freq['Player'].map(maps_dict['Own_map']) / 100
|
1067 |
+
st.session_state.flex_freq['Exposure'] = st.session_state.flex_freq['Freq']/2500
|
1068 |
+
st.session_state.flex_freq['Edge'] = st.session_state.flex_freq['Exposure'] - st.session_state.flex_freq['Proj Own']
|
1069 |
+
st.session_state.flex_freq['Team'] = st.session_state.flex_freq['Player'].map(maps_dict['Team_map'])
|
1070 |
+
for checkVar in range(len(team_list)):
|
1071 |
+
st.session_state.flex_freq['Team'] = st.session_state.flex_freq['Team'].replace(item_list, team_list)
|
1072 |
+
|
1073 |
+
st.session_state.dst_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.Sim_Winner_Display.iloc[:,8:9].values, return_counts=True)),
|
1074 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
1075 |
+
st.session_state.dst_freq['Freq'] = st.session_state.dst_freq['Freq'].astype(int)
|
1076 |
+
st.session_state.dst_freq['Position'] = st.session_state.dst_freq['Player'].map(maps_dict['Pos_map'])
|
1077 |
+
st.session_state.dst_freq['Salary'] = st.session_state.dst_freq['Player'].map(maps_dict['Salary_map'])
|
1078 |
+
st.session_state.dst_freq['Proj Own'] = st.session_state.dst_freq['Player'].map(maps_dict['Own_map']) / 100
|
1079 |
+
st.session_state.dst_freq['Exposure'] = st.session_state.dst_freq['Freq']/2500
|
1080 |
+
st.session_state.dst_freq['Edge'] = st.session_state.dst_freq['Exposure'] - st.session_state.dst_freq['Proj Own']
|
1081 |
+
st.session_state.dst_freq['Team'] = st.session_state.dst_freq['Player'].map(maps_dict['Team_map'])
|
1082 |
+
for checkVar in range(len(team_list)):
|
1083 |
+
st.session_state.dst_freq['Team'] = st.session_state.dst_freq['Team'].replace(item_list, team_list)
|
1084 |
+
|
1085 |
+
with st.container():
|
1086 |
+
if 'player_freq' in st.session_state:
|
1087 |
+
player_split_var2 = st.radio("Are you wanting to isolate any lineups with specific players?", ('Full Players', 'Specific Players'), key='player_split_var2')
|
1088 |
+
if player_split_var2 == 'Specific Players':
|
1089 |
+
find_var2 = st.multiselect('Which players must be included in the lineups?', options = st.session_state.player_freq['Player'].unique())
|
1090 |
+
elif player_split_var2 == 'Full Players':
|
1091 |
+
find_var2 = st.session_state.player_freq.Player.values.tolist()
|
1092 |
+
|
1093 |
+
if player_split_var2 == 'Specific Players':
|
1094 |
+
st.session_state.Sim_Winner_Display = st.session_state.Sim_Winner_Frame[np.equal.outer(st.session_state.Sim_Winner_Frame.to_numpy(), find_var2).any(axis=1).all(axis=1)]
|
1095 |
+
if player_split_var2 == 'Full Players':
|
1096 |
+
st.session_state.Sim_Winner_Display = st.session_state.Sim_Winner_Frame
|
1097 |
+
if 'Sim_Winner_Display' in st.session_state:
|
1098 |
+
st.dataframe(st.session_state.Sim_Winner_Display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').background_gradient(cmap='RdYlGn_r', subset=['Own']).format(precision=2), use_container_width = True)
|
1099 |
+
if 'Sim_Winner_Export' in st.session_state:
|
1100 |
+
st.download_button(
|
1101 |
+
label="Export Full Frame",
|
1102 |
+
data=st.session_state.Sim_Winner_Export.to_csv().encode('utf-8'),
|
1103 |
+
file_name='NFL_consim_export.csv',
|
1104 |
+
mime='text/csv',
|
1105 |
+
)
|
1106 |
+
|
1107 |
+
with st.container():
|
1108 |
+
tab1, tab2, tab3, tab4, tab5, tab6, tab7 = st.tabs(['Overall Exposures', 'QB Exposures', 'RB Exposures', 'WR Exposures', 'TE Exposures', 'FLEX Exposures', 'DST Exposures'])
|
1109 |
+
with tab1:
|
1110 |
+
if 'player_freq' in st.session_state:
|
1111 |
+
st.dataframe(st.session_state.player_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
1112 |
+
st.download_button(
|
1113 |
+
label="Export Exposures",
|
1114 |
+
data=st.session_state.player_freq.to_csv().encode('utf-8'),
|
1115 |
+
file_name='player_freq_export.csv',
|
1116 |
+
mime='text/csv',
|
1117 |
+
)
|
1118 |
+
with tab2:
|
1119 |
+
if 'qb_freq' in st.session_state:
|
1120 |
+
st.dataframe(st.session_state.qb_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
1121 |
+
st.download_button(
|
1122 |
+
label="Export Exposures",
|
1123 |
+
data=st.session_state.qb_freq.to_csv().encode('utf-8'),
|
1124 |
+
file_name='qb_freq_export.csv',
|
1125 |
+
mime='text/csv',
|
1126 |
+
)
|
1127 |
+
with tab3:
|
1128 |
+
if 'rb_freq' in st.session_state:
|
1129 |
+
st.dataframe(st.session_state.rb_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
1130 |
+
st.download_button(
|
1131 |
+
label="Export Exposures",
|
1132 |
+
data=st.session_state.rb_freq.to_csv().encode('utf-8'),
|
1133 |
+
file_name='rb_freq_export.csv',
|
1134 |
+
mime='text/csv',
|
1135 |
+
)
|
1136 |
+
with tab4:
|
1137 |
+
if 'wr_freq' in st.session_state:
|
1138 |
+
st.dataframe(st.session_state.wr_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
1139 |
+
st.download_button(
|
1140 |
+
label="Export Exposures",
|
1141 |
+
data=st.session_state.wr_freq.to_csv().encode('utf-8'),
|
1142 |
+
file_name='wr_freq_export.csv',
|
1143 |
+
mime='text/csv',
|
1144 |
+
)
|
1145 |
+
with tab5:
|
1146 |
+
if 'te_freq' in st.session_state:
|
1147 |
+
st.dataframe(st.session_state.te_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
1148 |
+
st.download_button(
|
1149 |
+
label="Export Exposures",
|
1150 |
+
data=st.session_state.te_freq.to_csv().encode('utf-8'),
|
1151 |
+
file_name='te_freq_export.csv',
|
1152 |
+
mime='text/csv',
|
1153 |
+
)
|
1154 |
+
with tab6:
|
1155 |
+
if 'flex_freq' in st.session_state:
|
1156 |
+
st.dataframe(st.session_state.flex_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
1157 |
+
st.download_button(
|
1158 |
+
label="Export Exposures",
|
1159 |
+
data=st.session_state.flex_freq.to_csv().encode('utf-8'),
|
1160 |
+
file_name='flex_freq_export.csv',
|
1161 |
+
mime='text/csv',
|
1162 |
+
)
|
1163 |
+
with tab7:
|
1164 |
+
if 'dst_freq' in st.session_state:
|
1165 |
+
st.dataframe(st.session_state.dst_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
1166 |
+
st.download_button(
|
1167 |
+
label="Export Exposures",
|
1168 |
+
data=st.session_state.dst_freq.to_csv().encode('utf-8'),
|
1169 |
+
file_name='dst_freq_export.csv',
|
1170 |
+
mime='text/csv',
|
1171 |
+
)
|
1172 |
+
|
1173 |
+
del gcservice_account
|
1174 |
+
del dk_roo_raw, fd_roo_raw
|
1175 |
+
del t_stamp
|
1176 |
+
del dkid_dict, fdid_dict
|
1177 |
+
del static_exposure, overall_exposure
|
1178 |
+
del insert_port1, Contest_Size, sharp_split, Strength_var, scaling_var, Sort_function, Sim_function, strength_grow, field_growth
|
1179 |
+
del raw_baselines
|
1180 |
+
del freq_format
|
1181 |
+
|
1182 |
+
gc.collect()
|